教案:第九课时:13.3.2等边三角形(第二课时)

合集下载

最新人教版八年级数学上册《13.3.2 等边三角形(第2课时)》优质教学课件

最新人教版八年级数学上册《13.3.2 等边三角形(第2课时)》优质教学课件

含30°角的直角三角形的性质:
在直角三角形中,如果一个锐角等于30°,那么它所对的
直角边等于斜边的一半.
A
应用格式:
∵ 在Rt△ABC 中,∠C =90°,∠A =30°,

BC
=
1 2
AB.
B
C
探究新知
素养考点 1 利用含30°角的直角三角形的性质求线段的值
例1 如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB
课堂检测
拓广探索题
如图,已知△ABC是等边三角形,D,E分别为BC,AC上的点,且 CD=AE,AD、BE相交于点P,BQ⊥AD于点Q,求证:BP=2PQ.
证明:∵△ABC为等边三角形, ∴ AC=BC=AB ,∠C=∠BAC=60°, ∵CD=AE, ∴△ADC≌△BEA.
课堂检测
∴∠CAD=∠ABE. ∵∠BAP+∠CAD=60°, ∴∠ABE+∠BAP=60°. ∴∠BPQ=60°. 又∵ BQ⊥AD, ∴∠BQP=90°, ∴∠PBQ=30°, ∴BP=2PQ.
课堂检测
3.在△ABC中,∠A: ∠B: ∠C=1:2:3,若AB=10,则BC = 5 .
4.如图,Rt△ABC中,∠A= 30°, B
8
AB+BC=12cm,则AB=______cm.
C
A
第4题图
课堂检测
能力提升题
1.在△ABC中,∠C=90°,∠B=15°,DE是AB的垂直平分线,
BE=5,则求AC的长.
∵ ∠A= 30°,
∴ ∠ECA=∠BEC–∠A=60°–30° = 30°.
∴ AE=EC, ∴ AE=BE=BC,

等边三角形教案

等边三角形教案

13.3.2等边三角形(2)教案——直角三角形的一个性质13.3.2等边三角形(2)教案一、教学目标(一)知识目标1.探索──发现──猜想──证明直角三角形中有一个角为30°的性质.2.有一个角为30°的直角三角形的性质的简单应用.(二)过程与方法1.经历“探索──发现──猜想──证明”的过程,•引导学生体会合情推理与演绎推理的相互依赖和相互补充的辩证关系.2.培养学生用规范的数学语言进行表达的习惯和能力.(三)情感与价值观要求1.鼓励学生积极参与数学活动,激发学生的好奇心和求知欲.2.体验数学活动中的探索与创新、感受数学的严谨性.二、教学重难点教学重点:含30°角的直角三角形的性质定理的发现与证明.教学难点:1.含30°角的直角三角形性质定理的探索与证明.2.引导学生全面、周到地思考问题.三、教学过程问题情境师生活动设计意图活动一:提出问题.创设情境1、已知△ABC,∠A=60°,()。

请你在括号内补充一个条件,使△ABC能成为等边三角形。

2、我们学习过直角三角形,直角三角形的角之间都有什么数量关系?今天,我们先来看一个特殊的直角三角形,看它的边具有什么性质.活动二:探究直角三角形的性质1.拼一拼:你能用两个含有30°角的三角板摆放在一起构成一个等边三角形吗?你能借助这个图形,找到30°角所对的直角边与斜边之间的数量关系吗?组内交流自己的想法。

(如图1)图(1)2.说一说:你能利用数学语言说一说你的发现吗?学生活动:学生补充条件并说明。

教师活动:教师找学生补充条件,根据学生的叙述板书。

学生思考:直角三角形的两个锐角互余,三个角之和等于180°板书课题:13.3.2等边三角形——直角三角形的性质学生两人一组拼并观察图形,分析数量关系,发现∠BAD=60°, 而∠B=∠D=60°,所以△ABD是等边三角形,所以AB=BD=2BC,进而得到:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

13.3.2等边三角形第二课时

13.3.2等边三角形第二课时
(2)引导学生全面、周到地思考问题.
六、教学流程
教具准备:
三角板
教学方法:
探索发现法
教学过程
一、提出问题,创设情境
[师]我们学习过直角三角形,今天我们先来看一个特殊的直角三角形,看它具有什么性质.大家可能已猜到,我让大家准备好的含30°角的直角三角形,它有什么不同于一般的直角三角形的性质呢?
问题:用两个全等的含30°角的直角三角尺,你能拼出一个怎样的三角形?能拼出一个等边三角形吗?说说你的理由.
证明:在△ABC中,∠ACB=90°,∠BAC=30°,则∠B=60°.
延长BC至D,使CD=BC,连接AD(如下图)
∵∠ACB=60°,∴∠ACD=90°.
∵AC=AC,
∴△ABC≌△ADC(SAS).
∴AB=AD(全等三角形的对应边相等).
∴△ABD是等边三角形(有一个角是60°的等腰三角形是等边三角形).
[师生共析]这位同学能结合前后知识,把问题思路解释得如此清晰,很了不起.下面我们一同来完成这个定理的证明过程.
定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
已知:如图,在Rt△ABC中,∠C=90°,∠BAC=30°.
求证:BC= AB.
分析:从三角尺的摆拼过程中得到启发,延长BC至D,使CD=BC,连接AD.
∴BC= BD= AB.
[师]这个定理在我们实际生活中有广泛的应用,因为它由角的特殊性,揭示了直角三角形中的直角边与斜边的关系,下面我们就来看一个例题.
[例5]右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,立柱BD、DE要多长?
分析:观察图形可以发现在Rt△AED与Rt△ACB中,由于∠A=30°,所以DE= AD,BC= AB,又由D是AB的中点,所以DE= AB.

人教版-数学-八年级上册《13.3.2等边三角形(2)》教案

人教版-数学-八年级上册《13.3.2等边三角形(2)》教案

年级八年级课题等边三角形(2)课型新授教学媒体多媒体教学目标知识技能1.掌握含30°角的直角三角形的边角性质.2.了解直角三角形边角性质定理的逆定理.3.会用上面性质证明简单的线段倍分问题.过程方法通过探究30°角直角三角形的性质,增强学生对特殊直角三角形的认识,培养分析问题、解决问题的能力.情感态度通过学习30°角直角三角形的性质,了解等边三角形与30°角直角三角形相互转化的事实,培养学生用发展变化的思想看问题的价值观.教学重点含30°角的直角三角形的性质.教学难点含30°角的直角三角形性质的推导.教学过程设计教学程序及教学内容师生行为设计意图一、情境引入我们见过那些特殊形状的三角形(即三角形每个内角度数不变)?二、探究新知探究:1.将两个含30°角的三角尺按如图所示摆放在一起,观察并回答下面的问题:(1)判断△ABD的形状,依据是什么?(2)BC与CD大小有什么关系关系?为什么?(3)BC与AB大小有什么关系?为什么?你能归纳含30°角的直角三角形性质吗?归纳:含30°角的直角三角形的边角性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

事实上,上述定理的逆命题也是真命题:在直角三角形中,如果一条直角边等于斜边的一半,那么它对的角等于30°。

含30°角的直角三角形是半个等边三角形,除了具有上述边角的特殊关系外,它的三个角度数分别为30°、60°、90°所以它是一个特殊的直角三角形.学生列举特殊形状的三角形,老师引出本节课的课题,并板书课题。

学生观察、思考、猜测、证明、归纳结论。

教师给出含30°角的直角三角形性质的准确描述,并板书性质。

对以前所学的特殊形状的三角形进行归纳,增强学生对特殊直角三角形的认识。

学生通过观察、思考、猜测、证明、归纳,培养学生的语言表达能力、观察能力、归纳能力、养成良好的自觉探索几何命题的习惯。

人教版八年级数学上册13.3.2《等边三角形(2)》教学设计

人教版八年级数学上册13.3.2《等边三角形(2)》教学设计

人教版八年级数学上册13.3.2《等边三角形(2)》教学设计一. 教材分析等边三角形是初中数学的重要内容,人教版八年级数学上册13.3.2《等边三角形(2)》一节,主要让学生掌握等边三角形的性质,以及等边三角形在实际生活中的应用。

本节内容是在学生已经掌握了三角形的基本概念、三角形的分类、三角形的基本性质等知识的基础上进行讲解的,为后续学习正多边形和圆的知识打下基础。

二. 学情分析学生在学习本节内容前,已经掌握了三角形的基本概念、三角形的分类、三角形的基本性质等知识,但对等边三角形的性质的理解可能还比较模糊,需要通过实例和操作来进一步理解和掌握。

此外,学生可能对等边三角形在实际生活中的应用有所了解,但需要通过课堂讲解和练习来加深理解。

三. 教学目标1.让学生掌握等边三角形的性质。

2.让学生能够应用等边三角形的性质解决实际问题。

3.培养学生的观察能力、操作能力和解决问题的能力。

四. 教学重难点1.等边三角形的性质。

2.等边三角形在实际生活中的应用。

五. 教学方法采用讲授法、演示法、实践法、讨论法等多种教学方法,以激发学生的学习兴趣,提高学生的学习效果。

六. 教学准备1.准备相关的教学PPT和教学素材。

2.准备等边三角形的模型或图片。

3.准备黑板和粉笔。

七. 教学过程1.导入(5分钟)通过复习三角形的基本概念、三角形的分类、三角形的基本性质等知识,引出等边三角形的性质。

2.呈现(10分钟)用PPT展示等边三角形的性质,让学生初步了解等边三角形的性质。

3.操练(15分钟)让学生分组合作,用准备好的等边三角形模型或图片,进行观察和操作,验证等边三角形的性质。

4.巩固(10分钟)用PPT呈现一些有关等边三角形的练习题,让学生独立完成,巩固对等边三角形性质的理解。

5.拓展(10分钟)让学生举例说明等边三角形在实际生活中的应用,分享给其他同学。

6.小结(5分钟)让学生总结本节课所学的内容,教师进行补充和讲解。

7.家庭作业(5分钟)布置一些有关等边三角形的练习题,让学生回家做。

人教版八年级数学上册13.3.2《等边三角形(2)》说课稿

人教版八年级数学上册13.3.2《等边三角形(2)》说课稿

人教版八年级数学上册13.3.2《等边三角形(2)》说课稿一. 教材分析等边三角形是初中数学中的重要内容,它既有三角形的普遍性质,又有自身独特的性质。

人教版八年级数学上册13.3.2《等边三角形(2)》这一节,主要让学生进一步理解等边三角形的性质,并学会运用等边三角形的性质解决一些实际问题。

教材通过一些典型的例题和练习,让学生在实践中掌握等边三角形的性质,培养学生的数学思维能力和解决问题的能力。

二. 学情分析八年级的学生已经学过三角形的性质,对三角形有一定的了解。

但是,对于等边三角形的性质,他们可能还不是很清楚,需要通过实例来进一步理解和掌握。

同时,学生在学习过程中可能存在对等边三角形性质的认识误区,需要教师进行引导和纠正。

三. 说教学目标1.知识与技能目标:让学生掌握等边三角形的性质,并能够运用这些性质解决一些实际问题。

2.过程与方法目标:通过观察、实践、探究等方法,让学生学会发现和总结等边三角形的性质。

3.情感态度与价值观目标:培养学生对数学的兴趣,培养学生的团队合作意识和问题解决能力。

四. 说教学重难点1.教学重点:等边三角形的性质及其运用。

2.教学难点:等边三角形性质的推导和应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。

2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学。

六. 说教学过程1.导入:通过复习三角形的相关知识,引入等边三角形的概念,激发学生的学习兴趣。

2.讲解:讲解等边三角形的性质,引导学生通过观察、实践、探究等方法,发现和总结等边三角形的性质。

3.练习:给出一些练习题,让学生运用所学的等边三角形的性质进行解答,巩固所学知识。

4.拓展:给出一些综合性的问题,让学生进行思考和讨论,培养学生的解决问题能力和团队合作意识。

5.总结:对本节课的内容进行总结,强调等边三角形的性质及其应用。

七. 说板书设计板书设计要清晰、简洁,能够突出等边三角形的性质。

13.3.2 等边三角形(2)教案-人教版八年级数学上册

13.3.2 等边三角形(2)教案-人教版八年级数学上册

13.3.2 等边三角形(2)【课标内容】《数学课程标准》指出:“数学是人们对客观世界定性把握和定量刻画,逐渐抽象概括,形成方法和理论,并进行广泛应用的过程”,“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式”.本节主要内容是探索、发现、猜想、证明直角三角形中有一个角为30°的性质,体验数学活动中的探索与创新、感受数学的严谨性.【教材分析】等边三角形是新人教八年级数学上册12.3.2第2课时的内容,主要内容是等边三角形的性质定理和判定定理以及判定定理的推理证明和初步应用.本教材是学生学习了轴对称图形和等腰三角形有关知识后学习的,本课学习探索、发现、猜想、证明直角三角形中有一个角为30°的性质.【学情分析】学生学习了轴对称图形和等腰三角形、等边三角形有关知识后学习的,本课学习是对于30°角的直角三角形的性质定理的探索与严密证明,这个性质是解决线段之间倍半关系的重要依据,要求学生探索、发现、猜想、证明直角三角形中有一个角为30°的性质,体验数学活动中的探索与创新、感受数学的严谨性,体会数学与实际的密切联系.【教学目标】1. 探索、发现、猜想、证明直角三角形中有一个角为30°的性质.2. 有一个角为30°的直角三角形的性质的简单应用.体验数学活动中的探索与创新、感受数学的严谨性【教学重点】含30°角的直角三角形的性质定理的发现与证明..【教学难点】含30°角的直角三角形性质的探究.【教学方法】五步教学法演示法、直观教学法讲练结合法.【课前准备】三角板学案多媒体课件【课时设置】二课时【教学过程】一、预学自检互助点拨1.阅读课本P80 ~81 页,思考下列问题:(1)直角三角形中有一个角为30°的性质是什么?.填空:如右图,在△ABC中,∵∠C=90o,∠A=30o∴BC=()1 2二、合作互学 探究新知用两个全等的含30°角的直角三角尺,你能拼出一个怎样的三角形?•能拼出一个等边三角形吗?说说你的理由.由此你能想到,在直角三角形中,30°角所对的直角边与斜边有怎样的大小关系?你能证明你的结论吗?已知:如图,在Rt △ABC 中,∠C=90°,∠BAC=30°.求证:BC=AB .分析:从三角尺的摆拼过程中得到启发,延长BC 至D ,使CD=BC ,连接AD .证明:在△ABC 中,∠ACB=90°,∠BAC=30°则∠B=60°.延长BC 至D ,使CD=BC ,连接AD∵∠ACB=60°, ∴∠ACD=90°.∵AC=AC , ∴△ABC ≌△ADC (SAS )知识点的归纳总结:★定理:在直角三角形中,如果一个锐角等于30°,•那么它所对的直角边等于斜边的一半.三、自我检测 成果展示右图是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC ,AB=7.4m ,∠A=30°,立柱BD 、DE要多长? 12C BD C B DCA E B分析:观察图形可以发现在Rt △AED 与Rt △ACB 中,由于∠A=30°,所以DE=AD ,BC=AB ,又由D 是AB 的中点,所以DE=AB . 解:因为DE ⊥AC ,BC ⊥AC ,∠A=30°,由定理知BC=AB ,DE=AD ,所以BD=×7.4=3.7(m ).又AD=AB , 所以DE=AD=×3.7=1.85(m ). 答:立柱BC 的长是3.7m ,DE 的长是1.85m .四、应用提升 挑战自我已知:如图,△ABC 中,∠ACB=90°,CD 是高,∠A=30°. 求证:BD=AB .证明:五、经验总结 反思收获本节课你学到了什么?写出来【板书设计】在直角三角形中,如果一个锐角等于30°,•那么它所对的直角边等于斜边的一半.【备课反思】12121412121212121214D C AE B D C AB纵观整节课,感觉优点能够做到环节紧凑,思路清晰,从而形成一个较好的教学框架;能够利用电脑多媒体的优势,练讲结合,从学生感兴趣的问题入手,主动进入到学习的情境中去.但不足之处更多:只备教材,而对学生却备得不够,学情把握不到位,内容设置较多,没有让学生做到很好的练习巩固.在以后的教学中,我会努力进取,从而逐步提高自己的教学水平.。

13.3.2 等边三角形(第二课时)说课稿-2022-2023学年人教版八年级上册数学

13.3.2 等边三角形(第二课时)说课稿-2022-2023学年人教版八年级上册数学

13.3.2 等边三角形(第二课时)说课稿-2022-2023学年人教版八年级上册数学一、教学目标1.知识与技能:–掌握等边三角形的性质和判定定理;–能够应用等边三角形的性质解决相关问题。

2.过程与方法:–引导学生理解等边三角形的性质,通过观察与推理探究等边三角形的特点;–培养学生的观察和推理能力,培养学生应用数学方法解决问题的能力。

3.情感态度与价值观:–培养学生爱好数学、善于思考和探索的兴趣和态度;–培养学生合作学习、发现问题和解决问题的能力和习惯。

二、教学重难点1.教学重点:–掌握等边三角形的定义和性质;–能够应用等边三角形的性质解决相关问题。

2.教学难点:–理解等边三角形的定义和性质,并能够应用到解题中。

三、教学过程1. 导入新课可通过一些生活中的例子导入新课,例如:拿出一张纸、一支笔等,让学生观察并发现其中可能存在的等边三角形,并引导学生讨论等边三角形的特点。

2. 学习新知1.引入知识:–提出问题:什么是等边三角形?有哪些特点?–学生进行思考,并进行讨论。

2.引入概念:–通过观察等边三角形的示意图,引入等边三角形的概念和性质。

–示意图中标记等边三角形的边和角,并引导学生找出其中的关键特点。

3.展示定理:–将“等边三角形的边相等,角都是60°”的定理展示给学生,并引导学生进行理解和记忆。

3. 拓展练习1.巩固概念与性质:–让学生实际操作,通过调整纸张的形状,观察等边三角形在平面上的表现,并发现与定理的吻合。

–提供一些实例,让学生判断是否为等边三角形,并给出理由。

2.解决问题:–出示一些与等边三角形相关的问题,引导学生运用所学知识解决问题。

4. 总结归纳通过与学生的互动讨论,引导学生总结等边三角形的性质和判定定理,并进行板书整理,帮助学生形成系统的知识结构。

5.小结与展望对本节课的重点和难点进行小结,并对下节课的内容进行展望。

四、教学资源•教材《人教版八年级上册数学》•纸张•笔五、板书设计等边三角形- 定义:三边相等、三角形为等边三角形- 性质:三边相等,三个角都是60°六、课后作业1.完成课堂练习册上与等边三角形相关的练习题;2.思考并记录生活中的实例,判断是否为等边三角形,并给出理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AB。
方 法 2 : 如 图 (3), △ ABC 中 , 延 长 BC 到 D 使 BD=AB , 连 接 AD , 则 △ ABD 是
三角形,BC= 1
=1

A
A
2
2
BLeabharlann CD图(2)
由问题 2,我们得到下面的性质定理:
B
D
C
图(3)
________________________________________________________
B
________. C
A
三、 解答题已知△ABC 中,AB=AC,∠C=30°,AB⊥AD,AD=2cm,求 BC 的长。
A
B
四、拓展提升 已知:等腰三角形的底角为 150,腰长为 20.求:腰上的高.
D C
探究(一)
1、如图(1),将两个含有 30°角的三角形放在一起,你能借助这个图形,找到 Rt△ABC
的直角边 BC 与斜边 AB 之间的数量关系吗?
A
2、你能用所学的知识验证以上结论吗?
B C D 图(1)
方法 1:如图(2),△ABC 是等边三角形,AD⊥BC 于 D,∠BAD= °,BD= BC=
2.等边三角形的每个内角都等于____度.
3.等边三角形有____条对称轴.
二、自学讨论:
1.用两个全等的含 30°角的直角三角尺你能拼出一个等边三角形吗?说说你的理由.
2.量一量含 30°角的直角三角尺的最短直角边与斜边你有什么发现?
3.学习例 5
三、交流提升:
在直角三角形中,30°角所对的直角边与斜边有怎样的大小关系?
课题
第九课时:13.3.2 等边三角形(第二课时)
学习 目标
重点 难点
1、理解含 30°锐角的直角三角形的性质;
2、能利用含 30°锐角的直角三角形的性质解决简单的实际问题。 重点:了解直角三角形的概念,掌握直角三角形的性质; 难点:会运用直角三角形性质解决相关问题。
学习内容
纠错反思
一、复习引入:
1.三边都相等的三角形叫做____三角形.
几何语言: ∵∠C=90o,∠A=30o
1
∴BC=
(
)
2
探究(二)
例题:如图(4)是屋架设计图的一部分,点 D 是斜梁 AB 的中点,立柱 BC、DE 垂直于
横梁 AC,AB=7.4m,∠=A=30°,立柱 BC、DE 要多长?
分析:观察图形可以发现在 Rt△AED 与 Rt△ACB 中,由于∠A=30°,所以 DE=

BC=
,又由 D 是 AB 的中点,所以 DE=

B
D
AEC
图(4)
四、精讲释疑 五、检测达标 一、判 断题 1)直角三角形中 30°角所对的直角边等于另一直角边的一半.( ) 2)三角形中 30°角所对的边等于最长边的一半。( )
3)直角三角形中最小的直角边是斜边的一半。( ) 4)直角三角形的斜边是 30°角所对直角边的 2 倍.( ) 二、填空(2008 上海中考)如图在 Rt△ABC 中∠C=90 ,∠B=2 ∠A,AB=6cm,则 BC=
相关文档
最新文档