分析气体动力循环方法
工程热力学第8-9章

∂w c =0 ∂p2
p2 = p1 p3 p2 p3 = p1 p2
pm+1 pm
π1 = π2 =⋅⋅⋅ = πi =⋅⋅⋅ = πm = m
第八、 第八、九章 气体压缩及动力循环
优 点:
(1)减小耗功; 减小耗功; 每级功耗相等,利于曲轴平衡; (2)每级功耗相等,利于曲轴平衡; 每级气体进出温度相同,可以采用相同的材料; (3)每级气体进出温度相同,可以采用相同的材料; 每级排热相同; (4)每级排热相同; 提高容积效率。 (5)提高容积效率。
第八、 第八、九章 气体压缩及动力循环
wC,s h2s − h1 QηC,s = = ′ wC h2 − h1 1 h2 = h1 + h2s − h1
′ ∴wC =
1
QηT =
′ wt,T
ηC,s
(
)
ηC,s
(h
2s
− h1
)
wt,T
′ ∴ wt,T = ηT h3 − h4s
(
h3 − h4 = h3 − h4s
h4 = h3 − ηT h3 − h4s
(
)
)
第八、 第八、九章 气体压缩及动力循环
′ wnet ηi = ′ q1
′ ′ ′ wnet = wt,T − wC = ηT h3 − h4s −
(
)
1
ηCs
(h
2s
− h1
)
′ q1 = h3 − h2 = h3 − h1 −
整理
ηi = ηT ( h3 − h4 ) −
燃烧室 废 气
燃 燃 气 空 气 气 轮 机
第八、 第八、九章 气体压缩及动力循环
动力循环_热效率计算及提高热效率的方法和途径

•
让自己更加强大,更加专业,这才能 让自己 更好。2021年1月上午 2时21分21.1.202:21January 2, 2021
•
这些年的努力就为了得到相应的回报 。2021年1月2日星期 六2时21分5秒02:21:052 January 2021
•
科学,你是国力的灵魂;同时又是社 会发展 的标志 。上午2时21分 5秒上 午2时21分02:21:0521.1.2
忽略泵功
t
h1 h2 h1 h3
4 3
1 2
s
朗肯循环与卡诺循环比较
T 4'
9 5
4 3 8 12
1 10
6
11 7 2
对比同温限1234’ • q2相同; • q1卡诺> q1朗肯
• 卡诺> 朗肯; •等温
吸热4’1难实现
对比5678
• 卡诺< 朗肯;
• wnet卡诺< wnet 朗肯
对比9-10-11-12
吸热量: q1,RG h1 h5 h1 ha' 放热量:
q2,RG 1 h2 h2'
3
2
净功:
wRG h1 ha
热效率:
s
1 ha h2
t,RG
h1
ha
1
h1 ha'
ha
h2
为什么抽汽回热热效率提高?
T
1
教材P.256推导
6
1kg kg
t,RGa 1
•
人生得意须尽欢,莫使金樽空对月。02:21:0502:21: 0502:211/2/2021 2:21:05 AM
•
做一枚螺丝钉,那里需要那里上。21.1.202:21:0502:21Jan- 212-Jan-21
工程热力学-09 气体动力循环

气体动力循环
能源与动力工程学院 新能源科学与工程系
吉恒松
混和加热循环 活塞式内燃机 定容加热循环
定压加热循环
燃气轮机装置
定压加热燃气轮机循环 回热循环 采用多级压缩中间冷却的回热循环
目的
按照循环过程性质,确定参数间的关系 写出循环热效率关系式 分析参数变化对循环热效率的影响
能源与动力工程学院 新能源科学与工程系
T2
T1
(
v1 v2
) k 1
T1 k1
T3
T2
p3 p2
T2
T1 k1
T4
T3
v4 v3
T3
T1 k1
T5
T4
(
v4 v5
)k 1
T4
(
v3 v1
)k 1
T4
(
)k
1
T1 k
t
1
1
k 1
(
k 1 1) k(
3 Ws
汽轮机 4
燃气轮机装置示意图
闭式燃气轮机装置示意图
能源与动力工程学院 新能源科学与工程系
13
一、定压加热燃气轮机循环
2
1、循环的四个过程
①可逆绝热压缩过程1-2 (压气机) 压气机 ②可逆定压加热过程2-3 (燃烧室) ③可逆绝热膨胀过程3-4 (燃气轮机)1 ④可逆定压放热过程4-1 (大气中) 空气
能源与动力工程学院 新能源科学与工程系
20
1)
能源与动力工程学院 新能源科学与工程系
5
t
1
1
k 1
(
空气动力学实验方法的介绍

空气动力学实验方法的介绍空气动力学实验方法是用来研究气体在运动中的力学规律以及与固体表面相互作用的科学方法。
这种方法在航空航天、汽车工程、建筑设计等领域具有重要的应用价值。
下面将介绍几种空气动力学实验方法的原理和应用。
1. 风洞实验风洞实验是最常见和常用的空气动力学实验方法之一。
其原理是利用风洞设备模拟真实环境中的气流,通过对模型进行测试,以了解在真实条件下物体受到的气流冲击力、升力、阻力等参数。
风洞实验可以提供精确的气动力数值,用于飞行器的设计和改进,汽车的空气动力学性能评估等。
2. 射流实验射流实验是一种基于喷气原理的空气动力学实验方法。
它通过将高速气流喷射到模型表面,观察气流与模型表面及周围介质的相互作用,研究气体流动的特性。
射流实验广泛应用于燃烧室设计、火箭发动机喷口设计等领域,可以提供有关射流边界层、射流分离和循环等问题的重要实验数据。
3. 液晶法测量液晶法测量是一种利用液晶分子的光学特性来研究气体流动的方法。
液晶是一种特殊的有机分子材料,具有光学各向异性特性。
当液晶分子受到外界作用力时,其分子排列会发生变化,从而改变光的传播路径和颜色。
通过将液晶材料涂覆在模型表面上,可以实时观测流场中的压力分布和气流的流动状态。
液晶法测量在飞行器外形优化、风能利用等领域具有广泛的应用前景。
4. 数值模拟方法数值模拟是在计算机上运用数学模型和物理方程对流体流动进行仿真的方法。
空气动力学领域的数值模拟方法主要有有限元法、有限差分法和有限体积法等。
这些方法通过离散化方程组,模拟气体的流动情况并计算相关的气动参数。
数值模拟方法具有高效、灵活、经济的特点,广泛应用于气动力学研究和工程实践中。
综上所述,空气动力学实验方法包括风洞实验、射流实验、液晶法测量和数值模拟方法等多种形式。
通过这些实验方法可以研究气体在运动中的力学规律,获得相关的气动力参数,为航空航天、汽车工程等领域的设计和改进提供有力支持和指导。
随着科学技术的不断发展,这些实验方法将继续在未来的空气动力学研究中发挥重要作用。
第7章燃气轮机装置循环

·增压比 一定时,增温比 越大,循 环的热效率t越高
·增温比 一定时,循环热效率t随增 压比增大而变化有一极大值;增温比 越大该极大值越大,相应的增压比也
越大
实际燃气轮机装置循环的热效率 (c,s =c,s =0.85;T1=290K;k=1.4)
t,B 1
1
k 1
k
增压比 对实际循环热效率的影响与对布
21
⑵ 燃气轮机定压加热-回热循环
①理想回热循环
回热循环可理想化为:
12s——可逆绝热(定熵)压缩
回热器 废气 6
燃料
5
燃烧室
3 燃气
2 压缩机
4
2s5——定压回热 (回热器) 53——定压加热 (燃烧室)
1 空气
T
燃气轮机
3
34s——可逆绝热(定熵)膨胀 4s6——定压回热 (回热器)
5 2s
4s 6
⑵ 对实际气体动力循环所作的理想化处理 ①实际的气体动力循环中,在循环的不同阶段工质成份不同,有
时是空气,有时是燃气
燃气的热物性与空气相近 理论分析中视工质为类同空气的某种定比热容理想气体
②实际装置的工作循环是开放式的,每个工作循环后均将废气排
弃,更换新的工质
理论分析时抽象成闭式循环 燃烧过程视为对工质的加热过程 排气过程视为工质的放热过程
第7章燃气轮机装置循环
点击此处可添加副标题
第7章 燃气轮机装置循环
2021/2/9
2
§7.1 循环分析的目的和一般方法
分析动力循环的目的在于评价该循环在热能对机械能的连续转 换及能量有效利用方面的工作性能,并探讨影响该循环特性的主 要因素。
⑴ 分析动力循环的一般方法
工程热力学思考题答案

第九章气体动力循环1、从热力学理论看为什么混合加热理想循环的热效率随压缩比ε和定容增压比λ的增大而提高,随定压预胀比ρ的增大而降低答:因为随着压缩比ε和定容增压比λ的增大循环平均吸热温度提高,而循环平均放热温度不变,故混合加热循环的热效率随压缩比ε和定容增压比λ的增大而提高.混合加热循环的热效率随定压预胀比ρ的增大而减低,这时因为定容线比定压线陡,故加大定压加热份额造成循环平均吸热温度增大不如循环平均放热温度增大快,故热效率反而降低.2、从内燃机循环的分析、比较发现各种理想循环在加热前都有绝热压缩过程,这是否是必然的答:不是必然的,例如斯特林循环就没有绝热压缩过程.对于一般的内燃机来说,工质在气缸内压缩,由于内燃机的转速非常高,压缩过程在极短时间内完成,缸内又没有很好的冷却设备,所以一般都认为缸内进行的是绝热压缩.3、卡诺定理指出两个热源之间工作的热机以卡诺机的热效率最高,为什么斯特林循环的热效率可以和卡诺循环的热效率一样答:卡诺定理的内容是:在相同温度的高温热源和相同温度的低温热源之间工作的一切可逆循环,其热效率都相同,与可逆循环的种类无关,与采用哪一种工质无关.定理二:在温度同为T1的热源和同为T2的冷源间工作的一切不可逆循环,其热效率必小于可逆循环.由这两条定理知,在两个恒温热源间,卡诺循环比一切不可逆循环的效率都高,但是斯特林循环也可以做到可逆循环,因此斯特林循环的热效率可以和卡诺循环一样高.4、根据卡诺定理和卡诺循环,热源温度越高,循环热效率越大,燃气轮机装置工作为什么要用二次冷却空气与高温燃气混合,使混合气体降低温度,再进入燃气轮机答:这是因为高温燃气的温度过高,燃气轮机的叶片无法承受这么高的温度,所以为了保护燃气轮机要将燃气降低温度后再引入装置工作.同时加入大量二次空气,大大增加了燃气的流量,这可以增加燃气轮机的做功量.5、卡诺定理指出热源温度越高循环热效率越高.定压加热理想循环的循环增温比τ高,循环的最高温度就越高,但为什么定压加热理想循环的热效率与循环增温比τ无关而取决于增压比π答:提高循环增温比,可以有效的提高循环的平均吸热温度,但同时也提高了循环的平均放热温度,吸热和放热均为定压过程,这两方面的作用相互抵消,因此热效率与循环增温比无关.但是提高增压比,p不变,即平均放1提高,即循环平均吸热温度提高,因此循环的热效率提高.热温度不变,p26、以活塞式内燃机和定压加热燃气轮机装置为例,总结分析动力循环的一般方法.答:分析动力循环的一般方法:首先,应用“空气标准假设”把实际问题抽象概括成内可逆理论循环,分析该理论循环,找出影响循环热效率的主要因素以及提高该循环效率的可能措施,以指导实际循环的改善;然后,分析实际循环与理论循环的偏离程度,找出实际损失的部位、大小、原因及提出改进办法.7、内燃机定容加热理想循环和燃气轮机装置定压加热理想循环的热效率分别为111--=κεηt 和κκπη111--=t .若两者初态相同,压缩比相同,他们的热效率是否相同为什么若卡诺循环的压缩比与他们相同,则热效率如何为什么答:若两者初态相同,压缩比相同,它们的热效率相等.因为21v v =ε,12p p =π. 对于定压加热理想循环来说κ⎪⎪⎭⎫ ⎝⎛=2112v v p p ,将其带入定压加热理想循环热效率的公式可知,二者的效率相等.对于卡诺循环来说,112121--=⎪⎪⎭⎫ ⎝⎛=κκεv v T T ,又因为卡诺循环的热效率为1211211111--=-=-=κεηT T T T ,所以卡诺循环和它们的效率相等.8、活塞式内燃机循环理论上能否利用回热来提高热效率实际中是否采用为什么答:理论上可以利用回热来提高活塞式内燃机的热效率,原因是减少了吸热量,而循环净功没变.在实际中也得到适当的应用.如果采用极限回热,可以提高热效率但所需的回热器换热面积趋于无穷大,无法实现9、燃气轮机装置循环中,压缩过程若采用定温压缩可减少压缩所消耗的功,因而增加了循环净功如图8-1,但在没有回热的情况下循环热效率为什么反而降低,试分析之.答:采用定温压缩后,显然循环的平均吸热温度T 1降低,而循环的平均放热温度T 2却没有变化,121T T -=η,因此整个循环的热效率反而降低. 10、燃气轮机装置循环中,膨胀过程在理想极限情况下采用定温膨胀,可增大膨胀过程作出的功,因而增加了循环净功如图8-2,但在没有回热的情况下循环热效率反而降低,为什么图 8-2答:在膨胀过程中采用定温膨胀,虽然增加了循环净功,但是却提高了循环的平均放热温度T 2,而整个循环的平均吸热温度T 1没有变化,热效率121T T -=η因此循环的热效率反而降低. 11、燃气轮机装置循环中,压气机耗功占燃气轮机输出功的很大部分约60%,为什么广泛应用于飞机、舰船等场合答:因为燃气轮机是一种旋转式热力发动机,没有往复运动部件以及由此引起的不平衡惯性力,故可以设计成很高的转速,并且工作是连续的,因此,它可以在重量和尺寸都很小的情况下发出很大的功率.而这正是飞机、舰船对发动机的要求.12、加力燃烧涡轮喷气式发动机是在喷气式发动机尾喷管入口前装有加力燃烧用的喷油嘴的喷气发动机,需要突然提高飞行速度是此喷油嘴喷出燃油,进行加力燃烧,增大推力.其理论循环1-2-3-6-7-8-1如图8-3的热效率比定压燃烧喷气式发动机循环1-2-3-4-1的热效率提高还是降低为什么答:理论循环1-2-3-6-7-8-1的热效率小于定压燃烧喷气式发动机循环1-2-3-4-1的热效率.因为由图中可以看出循环6-7-8-4-6的压缩比小于循环1-2-3-4-1,因此循环6-7-8-4-6的热效率小于循环1-2-3-4-1,因此理论循环1-2-3-6-7-8-1虽然增大了循环的做功量,但是效率却降低了.13、有一燃气轮机装置,其流程示意图如图8-4 所示,它由一台压气机产生压缩空气,而后分两路进入两个燃烧室燃烧.燃气分别进入两台燃气轮机,其中燃气轮机Ⅰ发出的动力全部供给压气机,另一台燃气轮机Ⅱ发出的动力则为输出的净功率.设气体工质进入让汽轮机Ⅰ和Ⅱ时状态相同,两台燃气轮机的效率也相同,试问这样的方案和图9-16、图9-17所示的方案相比较压气机的s C ,η和燃气轮机的T η都相同在热力学效果上有何差别装置的热效率有何区别答:原方案:循环吸热量:t cm Q ∆=1循环功量:()()][1243h h h h m w w w c T net ---=-=题中方案:循环吸热量:t cm t cm t cm Q B A ∆=∆+∆='1 1 循环净功:()43'h h m w B net -= 2对于此方案,m A h 3-h 4=mh 2-h 1 3由123可以得到()()[]1243'h h h h m w net ---=所以这两种方案的循环吸热量和循环净功均相等,因此它们的热力学效果和热效率均相等.。
气体动力循环

1
T3
1
T4 T3
T2
(1
)
代入参数间的关系式 T2 T3 ,( 可1)/得
T1 T4
t
(
1)
/
1 ( 1)/
1
1
( 1) /
(1
)
( 1) /
2024年5月31日
第九章 气体动力循环
9
热效率影响因素分析
由 可见:
t
(
1)
/
1( ( 1)/
1)
1
( 1) /
(1
平均放热温度。因此,由等效卡诺循环的热效率公 式可知,采用回热措施能提高燃气轮机装置循环的 热效率。
2024年5月31日
燃气轮机回热循环热效率可表示为
t
1
w0 q1
(ws )T
(ws )c q1
(h3 h4 ) (h2 h1) h3 h6
比热容为定值时,有 t
T4
T3 T4
1
T1
T2 T1
3 b b' 2' 2 3代表燃气轮机所输出的轴功,根据喷气发动机
的工作原理,两轴功的数值相等,故两面积相等。 显然,喷气式发动机的热力循环和定压加热燃气轮机循环相同,
故可引用有关的结论来对其进行分析。
2024年5月31日
第九章 气体动力循环
15
9-3 活塞式热气发动机及其循环
活塞式热气发动机又称斯特林发动机,是一种外部加热的 闭式循环的发动机,只是在近几十年来才取得较大的进展。 突出优点: 采用外部加热,故废气的污染少,可以采用多种 燃料特别是劣质燃料,还可以利用核能。
过程的不可逆损失较大。
压气燃气轮机轴功:(ws )T T (h3 h4 )
工程热力学-10气体动力循环

柴油机的实际示功图
实际循环:
0-1 进气过程 1-2 压缩过程 2-3-4 燃烧过程 4-5 膨源自(作功)过程 5-1 自由排气过程
+强制排气过程
2020年8月4日
第九章 气体动力循环
2
实际循环的理想化: 1. 把热力过程理想化→理论示功图 ①进气过程→0-1定压吸气 ②压缩过程→1-2定熵压缩 ③燃烧过程→2-3定容加热+3-4定压加热 ④膨胀过程→4-5定熵膨胀 ⑤排气过程→5-1定容排气+1-0定压排气
2020年8月4日
第九章 气体动力循环
6
w0 q23 34 q51
p1v1 { 1[( 1) ( 1)] ( 1)} 1
可见 , , w0
混合加热循环热效率 thermal efficiency
t
1
q2 q1
1
cp0 (T5 T1)
cV 0 (T3 T2 ) cp0 (T4 T3)
2020年8月4日
第九章 气体动力循环
3
2. 把工质看做理想气体 3. 把开口系统简化为闭口系统 (进排气功近似相等,相互抵消)
混合加热循环 (萨巴特循环)
混合加热循环的热效率:
t
1
q2 q1 q1
cV 0 (T3
cV 0 (T5 T1) T2 ) cp0 (T4
T3 )
2020年8月4日
ρ
T4 T3 T1k1
T5
T4
(
)k 1
T1
k1(
)k 1
T1 k
能量分析:
吸热量 q23 u23 cV 0(T3 T2) q34 h34 cp0(T4 T3)
q1 q23 q34
放热量 q2 q51 u51 cV 0(T1 T5)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8
分析动力循环的一般方法 活塞式内燃机实际循环的简化 活塞式内燃机的理想循环 活塞式内燃机各种理想循环的比较 斯特林循环 埃里克森循环 燃气轮机装置循环 燃气轮机装置的定压加热实际循环
课件目录
本章作业
10-1 分析动力循环的一般方法
(10-2)
当两个相同尺寸发动机比较时,MEP大的比MEP小的可 产生更多净输出功。
10-3 活塞式内燃机的理想循环
一、混合加热理想循环(Sabathe循环)
v1
p 3
4
T
4
v2
3
v4
2
v3
2 5
5
p3
p2
11
o
vo
s
图10-4 混合加热理想循环的p-v图和T-s图
混合加热循环的热效率为:
解: 由已知条件:p1 = 0.17 MPa,T1 = 333.15 K
点1:
v1
R gT1 p1
0.562
m3 / kg
点2:
v2
v1
0.0387
m 3 / kg
1 – 2 是定熵过程,有
p2
p
1
(
v v
1 2
)
p1
7.18
kPa
T2
p2v2 Rg
968
K
点3:p3 = 10.3 MPa,v3 = v2 = 0.038 7 m3/kg
1
O
V
图10-2 定压燃烧柴油机示功图
2 +
- 4
0
1’ 1
O
V
图10-3 定容燃烧汽油机示功图
三、实际循环的理想化过程
<1> 燃烧过程 →可逆定容或(和)定压吸热过程; <2> 工质→比热为定值的理想气体(空气); <3> 膨胀和压缩过程→可逆绝热(等熵)过程; <4> 忽略摩擦阻力及节流损失,认为进、排气过程的
T3
p3v3 Rg
1389
K
p 3 1.43 p2
q1v = cv(T3 – T2) = 302 kJ/kg q1p = q1 – q1v = 598 kJ/kg
点4:p4 = p3 = 10.3 MPa,因q1p = cp(T4 – T3),所以
T4
T3
q1p cp
1985
t
1
k1
k 1
1 k(
(10-3)
1)
上式说明:
<1>η t随ε和λ的增大而提高。 <2> ηt随ρ的增大而降低。
二、定压加热理想循环(Diesel 循环)
又称荻塞尔 循环,相当 于λ=1时的 混合加热循 环情况。
热效率公式 (略)
p2 3
T
3
2 4
4
1 1
一、实际工作循环理想化成可逆循环; 二、找出影响循环热效率的主要因素及提高
循环效率的措施; 三、分析实际循环与理论循环的偏离程度,
找出实际损失的部位、大小、原因以及 改进方法。
循环的经济性评价(内部热效率):
itT coT (10-1)
其中:ηc为卡诺循环热效率;
ηt为内部可逆循环的热效率, η0为相对热效率, ηT为循环相对内部效率。
10-2 活塞式内燃机实际循环的简化 一、几种活塞式内燃机简介
船用柴油机
车用柴油机
建筑用柴油机
发电用柴油机
固定动力用柴油机
增压柴油机
农用柴油机
工程机械用柴油机Biblioteka 柴油发电机组直喷柴油机
二、实际循环的示功图(p-V图)
右图是四冲程柴油机 p
(混合加热)的示功图,
34
包括:0-1吸气冲程、1-3
压缩冲程、3-1’ 膨胀冲程、 1’-0排气冲程。
其中:0、3是上死点;
2 +
2’
Q(-)
1、1’是下死点;
-
5
2’-3-4是注燃过程。 2-3-4:燃烧过程; 5-1’-0:排气过程。
0
1’ 1
O
V
图10-1 四冲程柴油机的示功图
p 2
3 高增压柴油机 船用柴油机
p 3
煤气机 汽油机
+
-
4
0
1’
或
t
wnet q1
0.644 1
t 1 1[( 1) ( 1)] 0.639
在吸热过程中空气熵增为
s 24
cp
ln T4 T2
R
g
ln
p4 p2
0.6174
kJ /(kg K)
所以平均吸热温度为
T1m
q1 s 24
1457.6
上式说明,η t随压缩比ε的增加而提高。
例 10-1
某柴油机混合加热理想循环(见幻灯片6中的
图) 的p1=0.17MPa,t1=60℃,压缩比ε =14.5, 气缸中气 体最大压 力 p3=10.3MPa,循环 加热量 q1=900kJ/kg 。 设 工 质 为 空 气 , 比 热 容 为 定 值 并 取 cp=1004 J/(kg·K) 、 cv=718J/(kg·K) , κ =1.4 ; 环境温度t0=20℃,压力p0=0.1MPa。试分析该循 环并求循环热效率及 效率。
推动功抵消,两个过程重合,进而把开式循环抽 象成闭式循环。
通过上述简化,实际循环可理想化为以空气为工质的 可逆循环,且按加热方式可分为:
Otto循环(定容加热) Diesel循环(定压加热) Sabathe循环(混合加热)
这三种循环的图示 见下节相关内容。
有效压力:
MEP
循环净功= 循环净功 活塞排量 活塞面积 冲程
K
循环吸热量q1中的可用能为
ex,Q
(1
T0 T1m
)q1
719.1
kJ / kg
循环
效率
ex
wnet ex,Q
0.806
例题索引
本例中,循环是内部可逆的,且只是放热过程中 系统(工质)与环境有温差,从而有作功能力损失:
i
T0 s g
T0 (s24
q2 ) T0
139.1
o
vo
v
图10-5 定压加热理想循环的p-v图和T-s图
其η t随ε的增大而提高,随ρ的增大而降低。
三、定容加热理想循环(Otto循环)
定容加热理想循 环又称奥托循环, p 3
相当于预胀比ρ
=1时的混合加
热循环。
2
T
T3 3
4
2
4
热效率:
1
1
t
1
1
k 1
o (10-4)
图10-6
vo
s
定容加热理想循环的p-v图和T-s图
kJ / kg
K
v4
R gT4 p4
0.055
m3 / kg
v 4 1.42 v3
点5: v5 = v1 = 0.562 m3/kg
p5
p
4
(
v v
4 5
)
0.398
MPa
T5
p5v5 Rg
779
K
q2 cv (T5 T1) 320kJ / kg
wnet q1 q2 580kJ / kg