机械设计疲劳强度
机械零件的疲劳强度与疲劳断裂

机械零件的疲劳强度与疲劳断裂什么是疲劳强度和疲劳断裂?疲劳强度是指材料在反复受到应力载荷作用下,发生疲劳断裂之前的最大应力强度。
疲劳断裂是指材料在反复应力作用下发生的突然断裂,它是一种重要的机械零件失效模式。
为什么要研究疲劳强度与疲劳断裂?在机械设计中,许多工作条件会引起局部应力集中,导致机械零件受到疲劳应力的作用。
如果机械零件的疲劳强度不够高,就会发生疲劳断裂,导致机械零件失效。
因此,研究疲劳强度和疲劳断裂是为了保证机械零件的可靠性和安全性。
影响机械零件疲劳强度与疲劳断裂的因素机械零件的疲劳强度和疲劳断裂受到许多因素的影响,以下是一些常见的因素:1.材料特性:材料的强度、韧性和疲劳寿命等特性会影响机械零件的疲劳强度和疲劳断裂。
一些金属材料具有较高的疲劳强度和疲劳韧性,而一些非金属材料则较低。
2.载荷特性:载荷的频率、幅值和载荷类型(拉伸、压缩、扭转等)对机械零件的疲劳强度和疲劳断裂有着重要影响。
高频率和大幅度的载荷容易导致疲劳断裂。
3.制造工艺:制造过程中的缺陷(如裂纹和夹杂物)会使机械零件的疲劳强度降低,从而增加疲劳断裂的风险。
4.工作环境:工作环境中的温度、湿度和腐蚀等因素也会影响机械零件的疲劳强度和疲劳断裂。
如何评估机械零件的疲劳强度与疲劳断裂?评估机械零件的疲劳强度和疲劳断裂是一个复杂的过程,通常需要借助实验和数值模拟等方法。
1.实验方法:通过设计和进行疲劳试验,可以获取机械零件在不同应力载荷下的疲劳寿命和断裂情况。
实验方法可以帮助工程师确定不同材料和设计方案的疲劳强度,并提供实际应用中的可靠性数据。
2.数值模拟:利用计算机仿真方法,可以预测机械零件在特定工况下的疲劳强度和疲劳断裂情况。
数值模拟方法可以节省时间和成本,并帮助工程师在设计阶段优化零件的几何形状和材料选择。
如何提高机械零件的疲劳强度?为了提高机械零件的疲劳强度,可以从以下几个方面进行优化:1.材料选择:选择具有较高疲劳强度和疲劳韧性的材料,例如高强度钢、铝合金等。
机械零件的疲劳强度设计

累积循环次数
疲劳寿命
--寿命损伤率
显然,在 的单独 作用下,
当 , 寿命损伤率=1 时,就会发生疲劳破坏。
受变幅循环应力时零件的疲劳强度
Minger法则:在规律性变幅循环应力中各应力的作用下,损伤是独 立进行的,并且可以线性地累积成总损伤。当各应力的寿命损伤率 之和等于1时,则会发生疲劳破坏。
即:
上式即为Miner法则的数学表达式,亦即疲劳损伤线性累积假说。
注:在计算时,对于小于 的应力,可不考虑。
二、疲劳强度设计
损伤等效
根据Miner法则,将规律性变幅循环应力 等效恒幅循环应力
(简称等效应力)
--等效应力的大小 --等效循环次数
受变幅循环应力时零件的疲劳强度
在计算中,上述三个系数都只计在应力幅上,故可将三个系数 组成一个综合影响系数:
零件的疲劳极限为:
用表面状态系数 、 计入表面质量的影响。
( 、 的值见教材或有关手册 )
屈服强度线
§2-4 受恒幅循环应力时零件的疲劳强度
疲劳强度设计的主要内容之一是计算危险剖面处的安全系数,以 判断零件的安全程度。安全条件是:S ≥ 。
概 述
C)疲劳破坏是一个损伤累积的过程,需要时间。寿命可计算。 d) 疲劳断口分为两个区:疲劳区和脆性断裂区。
二、循环应力的类型
脆性断裂区
疲劳区
疲劳源
疲劳纹
循环应力可用smax 、 smin 、 sm 、 sa 、 这五个参数中的任意两个参 数表示。
概 述
规律性变幅循环应力
按最大应力计算的安全系数为:
≥
受恒幅循环应力时零件的疲劳强度
受恒幅循环应力时零件的疲劳强度
注:1)应力增长规律为 时,按应力幅计算的安全系数 等与按最大应力计算的安全系数。
机械设计中的疲劳强度分析

机械设计中的疲劳强度分析在机械设计领域,疲劳强度是一个至关重要的考量因素。
当机械零部件在循环载荷作用下工作时,即使所承受的应力远低于材料的屈服强度,经过一定的循环次数后,也可能会发生突然的断裂,这种现象被称为疲劳失效。
疲劳失效是机械零件和结构失效的主要形式之一,它往往会带来严重的后果,如设备损坏、生产停滞甚至人员伤亡。
因此,在机械设计过程中,对疲劳强度进行准确的分析和评估具有极其重要的意义。
要理解疲劳强度,首先需要了解疲劳破坏的特点。
与静态载荷下的破坏不同,疲劳破坏具有以下几个显著特征。
其一,疲劳破坏是在循环载荷作用下逐渐发展的,其破坏过程通常经历了裂纹萌生、裂纹扩展和最终断裂三个阶段。
在初始阶段,微观裂纹在材料表面或内部的缺陷处形成,随着循环次数的增加,裂纹逐渐扩展,直到达到临界尺寸时发生突然的断裂。
其二,疲劳破坏时,零件所承受的最大应力通常远低于材料的抗拉强度,甚至可能低于屈服强度。
这是因为疲劳破坏是由循环应力引起的累积损伤导致的,而不是一次性的过载。
其三,疲劳破坏对零件的表面状态和内部缺陷非常敏感。
零件表面的粗糙度、划痕、腐蚀等都会加速疲劳裂纹的萌生和扩展,而内部的夹杂物、气孔等缺陷也会降低材料的疲劳强度。
那么,如何对机械零件的疲劳强度进行分析呢?目前,常用的方法主要有两种:试验法和分析法。
试验法是通过对实际零件或试样进行疲劳试验来确定其疲劳强度。
这种方法直观可靠,但成本较高,且试验周期长。
在疲劳试验中,通常将试样或零件在特定的加载条件下进行循环加载,直到发生疲劳破坏。
通过记录加载次数和应力水平,可以得到零件的疲劳寿命曲线,即 SN 曲线。
SN 曲线反映了应力水平与疲劳寿命之间的关系,是评估零件疲劳强度的重要依据。
然而,由于试验条件的限制,试验法往往难以完全模拟零件在实际工作中的复杂载荷和环境条件。
分析法则是基于材料的力学性能和零件的几何形状、载荷条件等,通过理论计算或数值模拟来预测零件的疲劳强度。
机械疲劳强度的计算公式

机械疲劳强度的计算公式引言。
机械疲劳强度是指材料在受到交变载荷作用下所能承受的最大应力,是评价材料抗疲劳性能的重要指标之一。
在工程设计中,准确计算机械疲劳强度对于保证产品的可靠性和安全性至关重要。
本文将介绍机械疲劳强度的计算公式及其相关知识。
机械疲劳强度的概念。
机械疲劳强度是指材料在受到交变载荷作用下所能承受的最大应力。
在实际工程中,材料往往会受到交变载荷的作用,例如机械零件在运转过程中会受到交变载荷的作用,这时就需要考虑材料的疲劳强度。
疲劳强度与材料的抗拉强度、屈服强度等力学性能密切相关,但又有所不同。
疲劳强度是在交变载荷作用下,材料发生疲劳破坏的最大应力,而抗拉强度、屈服强度是在静态载荷作用下,材料发生破坏的最大应力。
机械疲劳强度的计算公式。
机械疲劳强度的计算公式是根据材料的疲劳试验数据和疲劳寿命曲线来确定的。
根据疲劳试验数据,疲劳强度与静态强度之比的数值在0.3~0.9之间。
常用的机械疲劳强度计算公式有双曲线法、极限应力法、应力循环法等。
双曲线法是一种常用的机械疲劳强度计算方法,其计算公式如下:\[ S_e = S_u \cdot (1 k \cdot \log(N_f)) \]其中,\( S_e \)为机械疲劳强度,\( S_u \)为材料的抗拉强度,\( k \)为常数,\( N_f \)为疲劳寿命。
极限应力法是另一种常用的机械疲劳强度计算方法,其计算公式如下:\[ S_e = \frac{1}{2} \cdot S_u \cdot (1 + \frac{1}{n}) \]其中,\( n \)为材料的应力循环指数。
应力循环法是根据材料在交变载荷下的应力循环曲线来计算疲劳强度的方法。
其计算公式如下:\[ S_e = \frac{1}{2} \cdot S_u \cdot (1 + R \cdot K_f) \]其中,\( R \)为载荷比,\( K_f \)为应力比例系数。
以上三种方法都是根据材料的疲劳试验数据和疲劳寿命曲线来确定机械疲劳强度的计算公式,不同的方法适用于不同的材料和载荷情况。
机械设计-疲劳强度

前边提到的各疲劳极限 ,实际上是材料的力学性能指标,是用 §2-3影响 疲劳强度的 试件通过试验测出的。 因素 而实际中的各机械零件与标准试件,在形体,表面质量以及绝 对尺寸等方面往往是有差异的。因此实际机械零件的疲劳强度与用 试件测出的必然有所不同。
影响零件疲劳强度的主要因素有以下三个: 一、应力集中的影响
第二章 机械零件的疲劳强度设计
§2-1 概 述
§2-2 疲劳曲线和极限应力图 §2-3 影响零件疲劳强度的主要因素
§2-4 受稳定循环应力时零件的疲劳强度
§2-5 受规律性不稳定循环应力时零件的疲劳强度
§2-1
一、疲劳破坏
概
述
脆性断裂区
§2-1 概 述
机械零件在变应力作用下,应力的每次 作用对零件造成的损伤累积到一定程度时, 首先在零件的表面或内部将出现(萌生)裂
疲劳强度线
§2-4 受稳定循环应力时
a
A
1
K D 2 K D
A0, 1
B(
0 0
2 ,
D
2
)
注:由于DG段
属于静强度,而 静强度不受
B
屈服强度线
D
0
KD
的影响,故不需修正。
o
G s ,0
0
2
m
受稳定循环应力时零件的疲劳强度
疲劳强度线 AD 的方程为:
机械零件上的应力集中会加快疲劳裂纹的形成和扩展。从而导致零件 的疲劳强度下降。
响 。( K
用疲劳缺口系数 K σ 、 K τ (也称应力集中系数)计入应力集中的影
σ
、 K τ 的值见教材或有关手册)
影响零件疲劳强度的主要因素
影响疲劳强 注:当同一剖面上同时有几个应力集中源时,应采用其中最大的疲劳缺 度的主要因 口系数进行计算。 素2 二、尺寸的影响 零件的尺寸越大,在各种冷、热加工中出现缺陷,产生微观裂纹等疲 劳源的可能性(机会)增大。从而使零件的疲劳强度降低。 用尺寸系数 εσ 、ε τ ,计入尺寸的影响。 ( εσ 、ε τ 见教材或有关手册 ) 三、表面质量的影响 表面质量:是指表面粗糙度及其表面强化的工艺效果。表面越光滑, 疲劳强度可以提高。强化工艺(渗碳、表面淬火、表面滚压、喷丸等)可 显著提高零件的疲劳强度。
章机械设计疲劳强度

A’ D’ G’
潘存云教授研制
45˚
45˚
O
σ0 /2
σm
C
σS
m 中的参数σ为试件受循环弯曲应 公式 1 a 力时的材料常数,其值由试验及下式决定: 2 1 0 0
对于碳钢,σ≈0.1~0.2,对于合金钢,σ≈0.2~0.3。
q σ (qτ )
350
有效应力集中系数kσ
0.5
1.0 1.5 2.0 2.5 3.0 几何不连续处的圆角半径 r/mm
3.5
4.0
新疆大学专用
作者: 潘存云教授
ε σ 附图 3-2
1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5
h h h D/mm 0 20
βσ 1.0
0.8
钢材的尺寸与截面形状
7~20 30~40 7~20 30~40 1.3~1.6 1.2~1.5 1.6~2.8 1.5~5
化学热处理方法
氮化,膜厚 0.1~0.4mm 硬度>HRC64 渗炭,膜厚 0.2~0.6mm
新疆大学专用
表3-10 化学热处理的强化系数βq
试件种类 试件直径/mm
5~15 30~40 5~15 30~40 8~15 30~40 8~15
σa
σ
r =+1 r =-1 σmax σa 潘存云教授研制 σa σmin 对称循环变应力
σ
t o
σmin
σm
σ
t
作者: 潘存云教授
脉动循环变应力
疲劳断裂----变应力。 疲劳断裂过程: ▲零件表层产生微小裂纹; ▲随着循环次数增加,微裂 纹逐渐扩展; ▲当剩余材料不足以承受载 荷时,突然脆性断裂。
第2章机械零件的疲劳强度计算机械设计课件

作σ
自用盘编号JJ321002
r∞
,通常用N0次数下的σ r取代,σ r值由实验得到。
σ
rN
轻合金材料的循环基数通常取为: N0≈2.5×108 σ
r
0
N0
N
图2—5 轻合金材料的σ—N曲线 N0称为循环基数,对应的疲劳极限σ r称为该材料的疲
劳极限。 对于钢材:当HB≤350时:N0≈106~107;
α
σ
、α
τ
——理论应力集中系数,查教材P39 ~ P41附表
自用盘编号JJ321002
3—1 ~ 附表3—3或查手册和其它资料。 若一个剖面上有几个不同的应力集中源,则零件的疲劳 强度由各kσ (kτ )中的最大值决定。
3、尺寸效应的影响 材料的疲劳强度极限是对一定尺寸的光滑试件进行实验 得出的,考虑到零件尺寸和试件的尺寸不同,其疲劳强度 也不一样,故引入一个尺寸系数ε: 1d 1d 直径d的 ; 1 1 标准试件的 εσ 、ετ的值可查教材P42 ~ P43附图3—2、3—3,附 表3—7或查手册及有关资料。 4、表面质量的影响 零件表面的加工质量,对疲劳强度也有影响,加工表面 的粗糙度值越小,应力集中越小,疲劳强度越高。因此引 入一个表面质量系数β 来考虑零件表面的加工质量不同对 疲劳强度的影响。 β可查教材P44附图3—4
max
自用盘编号JJ321002
min r max
称r为应力循环特性,表示了变应力 的变化性质。
σa σ r=-1
r=-1 t
σ
r=0 t t r=+1 t + σm
t 左边区域: σ 压应力为主, Ⅱ区: 零件在压缩 - 1 < r <0 变应力时破 σ 坏的情况较 Ⅰ区: 少,故不予 0 <r <+ 1 以分析。 45° - σm σ 0 0
机械设计之机械零件的疲劳强度

机械设计之机械零件的疲劳强度引言在机械设计中,疲劳强度是评估机械零件是否能够在长时间使用过程中承受载荷和弯曲等作用力的重要指标之一。
疲劳强度不仅关乎机械零件的寿命和可靠性,还直接影响到机械装置的安全性能。
本文将介绍机械零件的疲劳强度分析方法,包括疲劳寿命预测、疲劳极限分析、疲劳强度评估等内容。
疲劳寿命预测疲劳寿命是机械零件在特定载荷下能够承受的循环次数。
疲劳寿命预测的目的是为了确定机械零件在特定工作条件下的可靠性。
常用的疲劳寿命预测方法有下面几种:1. 基于SN曲线的方法SN曲线(Stress Number Curve)揭示了应力与循环次数之间的关系。
通过测试材料在不同应力水平下的循环寿命,并绘制SN曲线图,可以预测不同应力水平下的寿命。
这种方法适用于不同材料在常温下的疲劳寿命预测。
2. 基于应力途径的方法应力途径是指机械零件在循环载荷下的相对应力历程和持续时间。
通过测量机械零件在不同应力途径下的寿命,并绘制应力途径图,可以预测不同应力途径下的寿命。
这种方法适用于复杂加载情况下的疲劳寿命预测。
3. 基于损伤积分的方法损伤积分是指在单位时间内损伤累积的指标。
通过测量机械零件在不同加载条件下的损伤积分,并与材料的损伤裕度相比较,可以预测机械零件的寿命。
这种方法适用于快速变化的加载情况下的疲劳寿命预测。
疲劳极限分析疲劳极限是指机械零件在循环载荷下的最大承载能力。
疲劳极限分析的目的是为了确定机械零件能够承受的最大载荷和疲劳寿命。
常用的疲劳极限分析方法有如下几种:1. 基于拉伸试验的方法拉伸试验是测量材料在拉伸载荷下的应变和应力变化的试验。
通过拉伸试验和应力-应变曲线,可以确定材料的疲劳极限。
这种方法适用于静态或低周疲劳加载条件下的疲劳极限分析。
冲击试验是测量材料在动态或高速加载条件下的力学性能的试验。
通过冲击试验和载荷-位移曲线,可以确定材料的疲劳极限。
这种方法适用于动态或高速加载条件下的疲劳极限分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
a
O t
O t
一定学会判断应力类型
一、疲劳破坏
§2-1 概 述
疲劳破坏是循环应力作用下零件的主要失效形式。
1、疲劳破坏 (Fatigue failure)
疲劳破坏: 变应力、多次作用下,材料发生破坏
§2-1 概 述
疲劳破坏 过 程:
①裂纹萌生 ②裂纹扩展 ③最终瞬断
曲轴断裂 实例 内源断裂
疲劳破坏 特 征:
曲轴疲劳断裂断口特征 裂纹源区
概述
概述2
返回
§2-2 疲劳曲线和极限应力图 §2-2 疲劳曲线和极限应力图
一、疲劳曲线( rN- N 曲线)
N
( N
)
——疲劳极限,循环特征为r的循环变应力下应力循环
N次后材料不发生疲劳破坏时的最大应力 材料的疲劳极限。
称ma为x ( max )
疲劳寿命(N)——材料疲劳失效前所经历的应力循环次数N
σ
σmin =0 ;σm =σa
r= σmin /σmax =0
t
σ
σm =0 ;
t σmax =σa= -σmin r= σmin /σmax= -1
恒幅循环应力 循环应力分为:
变幅循环应力
概述
概述3
对称循环应力 脉动循环应力 非对称循环应力
规律性变幅循环应力
随机循环应力
规律性变幅循环应力
随机循环应力
1、疲劳曲线:应力循环特性一定时,材料的疲劳极限与应力循环次数之
间关系的曲线
No —循环基数
—持久极限
N
有限寿命区
无限寿命区
A
N
B
O
103N
N0
N
§2-2 疲劳曲线和极限应力图 §2-2 疲劳曲线和极限应力图
材料的疲劳曲线σrN –N(Curve of fatigue )
σrN A 有限寿命区
§2-1 概 述
σ (1)非对称循环变应力
σa
(-1≤ r ≤+1)
最大应力: σmax 最小应力: σmin (2) 脉动循环变应力
(3)对称循环变应力
σmax σmin
σm
t
平均应力:σm=(σmax+σmin)/2
应 力 幅:σa=(σmax-σmin)/2
应力循环特性:r= σmin /σmax
有限寿命区
当 103 (104 ) 时N 随 循N0环次数↑疲
A
劳极限↓
无限寿命区
N
2)无限寿命区
B
N N0
N ——持久极限
O
103N
N0
N
对称循环: 1 1
脉动循环: 0 0
注意:有色金属和高强度合金钢无无限寿命区。
3)疲劳曲线方程 (103 (104 ) N N0 )
N
N
≥
N,0 则取 N= 。 N 0
2)工程中常用的是对称循环应力( =-1)下的疲劳极限,计
算时,只须把
和
换成N 和
1即可。 1N
3)对于受切应力的情况,则只需将各式中的 换成 即可。
4)当N <(103 ~ 10)4 时,因 N 较小,可按静强度计算。
5)无限寿命设计: N ≥ N0 时的设计。取 =lim 。
区 ② m—指数与应力与材料的种类有关。
钢 m=9——拉、弯应力、剪应力 m=6——接触应力
青铜 m=9——弯曲应力
m=8——接触应力
材料疲劳曲线和极限应力图
疲劳曲线2
③ 应力循环特性越大,材料的疲劳极限与持久极限越大,对零 件强度越有利。 对称循环(应力循环特性=-1)最不利
注:1)计算
N
C
σrN2 σrN0
o 103 N1 N2
B
r N0
C
N
m、C—系数
N0—循环基数
1)有限寿命区
当N<103(104)—低周循环,疲劳极限接近于屈服极限,按
静强度计算
§2-2 疲劳曲线和极限应力图 §2-2 疲劳曲线和极限应力图
当N>103(104)——高周循环疲劳 N
2
, m
max min
2
静应力
r 1
a 0, m min max
当零件受变切应力作用时,只需将公式中的 改成
why
零件的破坏形式及材料的极限应力与零件所受的变 应力类型有关,所以弄清零件所受的变应力的规律。
§2-1 概 述
§2-1 概 述
材料疲劳的两种类别
注意:静应力只能由静载荷产生,而变应力可能由变载荷产生, 也可能由静载荷产生
第二章 机械零件的疲劳强度设计
§2-1 概 述 §2-2 材料疲劳曲线和极限应力图 §2-3 影响(part)零件疲劳强度的主要因素 §2-4 受稳定循环应力时零件的疲劳强度 §2-5 受规律性不稳定循环应力时零件的疲劳强度
§2-1 概 述
一、交变应力的描述(Parameters of variable stress) 材料疲劳的两种类别
§2-1 概 述
§2-1 概 述
材料疲劳的两种类别
表2-1 几种典型变应力的循环特征和应力特点
循环应力类型
循环特征
应力特点
对称循环应力 脉动循环应力
r 1
r0
m 0, a max min
min 0,a m max / 2
非对称循环应力
1 r 1(r 0)
a
max
min
①小应力: ②持续性:
③敏感性:
变应力最大值低于材料静强度限 变应力多次作用 对材料、几何形状敏感
④突发性: 突然断裂
疲劳断口特征:疲劳区和脆性断裂区。 脆性断裂区
概述
概述2
疲劳区
疲劳纹
疲劳源
疲劳破坏的机理:疲劳破坏是一个损伤累积的过程,需要 时间,寿命可计算。 影响因素:不仅与材料性能有关,变应力的循环特性, 应力循环次数,应力幅都对疲劳极限有很大影响。
m N
N
m
N0
C
§2-2 疲劳曲线和极限应力图 §2-2 疲劳曲线和极限应力图
∴疲劳极限
N
m
N0 N
KN
KN
m
N0 N
——寿命系数
几点说明:
① No 硬度≤350HBS钢, No=107
≥350HBS钢, No=(10 - 25)x107
有色金属(无水平部分),规定当No>25x107时,近似为无限寿命
How
对任何材料(标准试
a
件),对不同的应力循环特 a
性下有不同的持久极限,即
该材料的最大应力
,
再由应max力、循环极特、限性min可求出 max m a
o
A0, 1
45
B( 0 , 0 )
22
6)有限寿命设计: N < N0 时的设计。取
= 。
lim
rN
材料疲劳曲线和极限应力图
极限应力图3
事1
N
材料疲劳曲线和极限应力图
极限应力图
二、材料 m a 极限应力图
定义:在疲劳寿命N 一定时,表示疲劳极限 N与应力比 之 间关系的
线图。
下图为疲劳寿命为 N(0 无限寿命)时的极限应力图 m a