大学物理化学公式集(傅献彩-南京大学第五版)
5物理化学第五版(南京大学.傅献彩)相平衡

当系统达平衡时 d A d A d A 0
d A p d V p d V 0
dVdV
p p
当系统达平衡时,两相的压力相等。
同理,可以推广到多相平衡系统
(3) 相平衡条件
设多组分系统中只有 和 两相,并处于平
衡状态。在定温、定压下,
有 d n B 的物质B从 相转移到了 相
根据偏摩尔量加和公式
S 1 d T V 1 d p S 2 d T V 2 d p
dpS2S1 H dT V2V1 TV
单组分系统的两相平衡——Clapeyron方程
dp H dT T V
这就是Clapeyron方程,可应用于任何纯物质的 两相平衡系统
设有1 mol物质,则气-液、固-液和气-固平衡 的Clapeyron方程分别为
p /Pa
C
水f
A
冰
P
610.62 D O
q
B
水蒸气
273.16
T C T /K
临界点: T647.4K p2.2107Pa 临界温度时,气体与液体的密度相等,气-液
界面消失。
高于临界温度,不能用加压的方法使气体液化
OB 是气-固两相平衡线 即冰的升华曲线,理论
上可延长至0 K附近。
OC 是液-固两相平衡线 OC线不能任意延长
单相区,物系点与相点重合;两相区中,只有 物系点,它对应的两个相的组成由对应的相点表示
单组分系统的两相平衡——Clapeyron方程
在一定温度和压力下,任何纯物质达到两相平 衡时,在两相中Gibbs自由能相等
G1 G2
若温度改变dT,则压力改变dp,达新的平衡时
dG1 dG2
根据热力学基本公式,有
【考研必备】物理化学公式集(傅献彩_南京大学第5版)

热力学第一定律功:δW =δW e +δW f(1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。
(2)非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。
如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。
热 Q :体系吸热为正,放热为负。
热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。
热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T )p (2)等容热容:C v =δQ v /dT = (∂U/∂T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V )T ](∂V/∂T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=11-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1nR-δ(T 1—T 2) 热机效率:η=212T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=121T T T -焦汤系数: μJ -T =H p T ⎪⎪⎭⎫⎝⎛∂∂=-()pT C p H ∂∂ 实际气体的ΔH 和ΔU :ΔU =dT T U V ⎪⎭⎫ ⎝⎛∂∂+dV V U T ⎪⎭⎫ ⎝⎛∂∂ ΔH =dT T H P ⎪⎭⎫⎝⎛∂∂+dp p H T ⎪⎪⎭⎫ ⎝⎛∂∂ 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑BB γRT化学反应热效应与温度的关系:()()()dT B C T H T H 21T T m p B1m r 2m r ⎰∑∆∆,+=γ热力学第二定律Clausius 不等式:0TQS BAB A ≥∆∑→δ—熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2)Maxwell 关系:T V S ⎪⎭⎫⎝⎛∂∂=VT p ⎪⎭⎫ ⎝⎛∂∂Tp S ⎪⎪⎭⎫ ⎝⎛∂∂=-p T V ⎪⎭⎫ ⎝⎛∂∂ (3)热容与T 、S 、p 、V 的关系:C V =T V T S ⎪⎭⎫ ⎝⎛∂∂ C p =T pT S ⎪⎭⎫⎝⎛∂∂Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()pT /G ⎥⎦⎤⎢⎣⎡∂∆∂T =-2T H ∆ 单组分体系的两相平衡: (1)Clapeyron 方程式:dT dp=mX m X V T H ∆∆ 式中x 代表vap ,fus ,sub 。
《物理化学》第五版-(傅献彩主编)复习题答案(全)

第一章气体1.两种不同的理想气体,如果它们的平均平动能相同,密度也相同,则它们的压力是否相同?为什么?答:由于两种气体均为理想气体,根据理想气体的状态方程式pV=nRT式中n是物质的量,p是压力,V是气体的体积,T是热力学温度,R是摩尔气体常数.又因为"=崙=聳式中川为气体的质量,M为气体分子的摩尔质量,p为气体的密岌pV^RT两边同除以V,则得p=常我们已知气体分子的平均动能是温度的函数,即Et=*hBT所以气体分子的平均平动能仅与温度有关.由题目中已知两种不同的理想气体,平均平动平动能相同,因此它们的温度相同,又因为它们的密度相同.则通过上式力=醫可知压力力仅与M有关.因此得出结论,两种不同的理想气体在它们具有相同的平均平动能,相同密度的条件下,它们的压力不同.压力与M成反比,M越大则p越小.2.在两个体积相等、密封、绝热的容器中,装有压力相等的某理想气体,试问这两个容器中温度是否相等?答:根据理想气体的状态方程式pV^nRT假设在第一个容器中某种理想气体符合向则在第二个容器中存在p2V2^mRT2. 又因为两容器的体积相等,装有的理想气体的压力也相等所以pif Vi=V2则得niRTi =厄夫丁2,两边同除以R则得n\ Ti —«2 T?若两容器中装有相同物质的量的该理想气体,则两个容器中温度相等;否则,两容器中温度不相等.3.Dalton分压定律能否用于实际气体?为什么?答:根据气体分子动理论所导出的基本方程式pV^mNu2式中P是N个分子与器壁碰撞后所产生的总效应,它具有统计平均的意义.平均压力是一个定值,是一个宏观可测的物理量.对于一定量的气体,当温度和体积一定时,它具有稳定的数值.因为通过气体分子动理论所导岀的Dalton分压定律学=直或%=心是摩尔分数)适用于实际气体,经得起实验的考验.4.在273 K时,有三种气体,H Z,O2和CQ,试判别哪种气体的根均方速率最大?哪种气体的最概然速率最小?答:根据:根均方程率"=弟呼或最概然速率Vm或可推知根均方速率、最概然速率与质量的平方根成反比因此,在相同温度273 K的条件下,M HJ= 2X10_3kg • mol-1 =32X10_3kg • mol-1 =44X10~3kg • mol-1H2的根均方速率最大;CO Z的最概然速率最小•5.最概然速率、根均方速度和数学平均速率,三者的大小关系如何?各有什么用处?答:在Maxwell速率分布曲线上有一最高点,该点表示具有这种速率的分子所占的分数最大,这个最高点所对应的速率称之为最概然速率(編或缶分子的数学平均速率(q)为所有分子速率的数学平均值根均方速率(Q是一个统计平均值,它与各个分子的速率有关,但又不等于任务单个分子的速率.三种速率之比在三者中,最概然速率最小,根均方速率最大,数学平均速率居中.6. 气体在重力场中分布的情况如何?用什么公式可以计算地球上某一高度的压力?这样的压力差能 否用来发电?答:在重力场中,气体分子受到两种互相相反的作用.无规则热运动将使气体分子均匀分布于它们所能达到的空间,而重力的作用则要使重的气体分子向下 聚集.由于这两种相反的作用,达到平衡时,气体分子在空间中并排均匀的分布,密度随高度的增加而减少•假定在。
物理化学傅献彩版知识归纳

物理化学傅献彩版知识归纳一、热力学第一定律1、内容:能量守恒定律在化学反应中的应用,内容为:封闭系统中发生的能量转化等于该系统内所有物体能量的总和。
2、公式:ΔU = Q + W,其中ΔU为系统内能的变化,Q为系统吸收的热量,W为系统对外做的功。
3、应用:判断反应是否自发进行;计算反应过程中的焓变等。
二、热力学第二定律1、内容:熵增加原理,即在一个封闭系统中,自发进行的反应总是向着熵增加的方向进行。
2、公式:ΔS = Σ(δQ/T),其中ΔS为系统熵的变化,δQ为系统热量的变化,T为热力学温度。
3、应用:判断反应是否自发进行;计算反应过程中的熵变等。
三、化学平衡1、定义:在一定条件下,可逆反应达到平衡状态时,反应物和生成物的浓度不再发生变化,各组分的浓度之比等于系数之比。
2、公式:K = [C]^n/[D]^m,其中K为平衡常数,C和D分别为反应物和生成物的浓度,n和m分别为反应物和生成物的系数。
3、应用:判断反应是否达到平衡状态;计算平衡常数;计算反应物的转化率等。
四、电化学基础1、原电池:将化学能转化为电能的装置。
主要由正极、负极、电解质和隔膜组成。
2、电解池:将电能转化为化学能的装置。
主要由电源、电解液、电极和导线组成。
3、电池的电动势:E = E(标准) - (RT/nF)ln(a(正)/a(负)),其中E为电池的电动势,E(标准)为标准状况下的电动势,R为气体常数,T为热力学温度,n为电子转移数,F为法拉第常数,a(正)和a(负)分别为正极和负极的活度。
4、电解的电压:V = (RT/nF)ln[(a(正)·a(阴))/(a(阴)·a(阳))],其中V为电解电压,R为气体常数,T为热力学温度,n为电子转移数,F为法拉第常数,a(正)、a(阴)和a(阳)分别为正极、阴极和阳极的活度。
《物理化学》第五版是南京大学傅献彩等编著的教材,该教材是化学、化工类专业本科生的基础课教材,也可作为从事化学、化工领域科研和工程技术人员的参考书。
傅献彩物理化学-第五版总结

0K
偏摩尔量、化学势及化学势判据:
Z nB Z B ,m T ,P ,nc
Z U , H ,V , A, G , S
B
G nB
G B ,m T ,P ,nc
B
B 0
有可能发生过程 可逆过程
3. 基本过程、基本公式
P A 115 kPa , PB 60 . 0 kPa
* *
3. 298.15K,反应
1 2
N
2
3 2
H
2
NH
3
的 rG m ( 298 . 15 K ) 16 . 46 kJ . mol
1
求①物质的量之比为
n N : n H : n NH
2 2
3
1:3:2
的混合气体在总压力为101325Pa下的压
m
rH
( 298 K ) C H
m
( H 2 , 298 K )
f H m ( H 2 O , l , 298 K )
反应的恒压热效应与恒容热效应的关系:
rH
m
( 298 K ) r U m ( 298 K )
B
( g ) RT
如反应
H 2 ( g ) 0 .5 O 2 ( g ) H 2 O (l )
B f H m ( B , 298 K )
1
241 52 ( 235 ) kJ . mol
58 kJ . mol
1
B C P , m ( B ) ( 30 4 . 2 19 . 1) J . K
物化公式总结(傅献彩第五版)

物理化学(第五版)公式总结傅献彩版专业:化学姓名:XXX学号:XXX物化公式总结第五章 相平衡一、主要概念组分数,自由度,相图,相点,露点,泡点,共熔点,(连)结线,三相线,步冷(冷却)曲线,低共熔混合物(固相完全不互溶)二、重要定律与公式本章主要要求掌握相律的使用条件和应用,单组分和双组分系统的各类典型相图特征、绘制方法和应用,利用杠杆规则进行有关计算。
1、相律: F = C - P + n , 其中: C=S-R-R’ (1) 强度因素T ,p 可变时n =2 (2) 对单组分系统:C =1, F =3-P(3) 对双组分系统:C =2,F =4-P ;应用于平面相图时恒温或恒压,F =3-P 。
Clapeyron 方程(任何纯物质的两相平衡):m vap m vap V T H dT dp ∆∆=(气-液),mfus mfus V T H dT dp ∆∆=(液-固)Clausius -Clapeyron 方程:2ln RT H dT p d mvap ∆=(Δvap H 与T 无关,气体参与,V 凝聚相体积忽略)2、相图(1)相图:相态与T ,p ,x 的关系图,通常将有关的相变点联结而成。
(2)实验方法:实验主要是测定系统的相变点。
常用如下四种方法得到。
对于气液平衡系统,常用方法蒸气压法和沸点法; 液固(凝聚)系统,通常用热分析法和溶解度法。
3、单组分系统的典型相图对于单组分系统C =1,F =C -P +2=3-P 。
当相数P =1时,自由度数F =2最大,即为双变量系统,通常绘制蒸气压-温度(p-T )相图,见下图。
pT lBC AOsgC 'pTlBCA Os gFGD单斜硫pT液体硫BCAO正交硫硫蒸气(a) 正常相图 (b) 水的相图 (c) 硫的相图图6-1 常见的单组分系统相图B Apx B (y B )B Apx B (y B)BApx B (y B )(a) 理想混合物 (b) 最大负偏差的混合物 (c) 最大正偏差的混合物图6-2 二组分系统恒温下的典型气液p -x 相图BAtx B (y B )BAtx B (y B)BAtx B (y B )(a) 理想或偏差不大的混合物 (b) 具有最高恒沸点(大负偏差) (c) 具有最低恒沸点(大正偏差)BAtxBBAtx B DCGFOgg + l g + ll 1 + l 2p = 常数lBAtx B (y B )(d) 有最高会溶点的部分互溶系统 (e)有最高和最低会溶点的部分互溶系统 (f) 沸点与会溶点分离x B (y B )BAtx B (y B )BAtBAtx B (y B )(g) 液相部分互溶的典型系统 (h)液相有转沸点的部分互溶系统 (i) 液相完全不互溶的系统图6-3 二组分系统恒压下的典型气液相图(2)液-固系统相图: 通常忽略压力的影响而只考虑t -x 图。
大学物理化学公式集(傅献彩_南京大学第五版) 下册

电解质溶液法拉第定律:Q =nzF m =M zFQ dE r U dl ++= dE r U dl--= t +=-+I I =-++r r r +=-+U U U ++=∞∞+Λm,m λ=()F U U FU ∞∞+∞+-+r +为离子移动速率,U +( U -)为正(负)离子的电迁移率(亦称淌度)。
近似:+∞+≈,m ,m λλ +∞+≈,m ,m U U m m Λ≈Λ∞(浓度不太大的强电解质溶液)离子迁移数:t B =I I B=QQ B∑B t =∑+t +∑-t =1电导:G =1/R =I/U =kA/l 电导率:k =1/ρ 单位:S·m -1 莫尔电导率:Λm =kV m =k/c 单位S·m 2·mol -1cell l R K A ρρ== c e l l 1K R k R ρ== 科尔劳乌施经验式:Λm =()c 1m β-∞Λ 离子独立移动定律:∞Λm =()m,m,+U U F λλ∞∞∞∞+--+=+ m U F λ∞∞+,+=奥斯特瓦儿德稀释定律:Φc K =()mm m 2m c c ΛΛΛΛ∞∞Φ-平均质量摩尔浓度:±m =()v1v v m m --++平均活度系数:±γ=()v1v v --+γγ+ 平均活度:±a =()v1v v a a --++=m mγ±±Φ 电解质B 的活度:a B =va ±=vm m ⎪⎭⎫ ⎝⎛Φ±±γ+v v v B +a a a a ±--== m +=v +m B m -=v -m B ()1v v v B m v v m +±+--=离子强度:I =∑i2i i z m 21德拜-休克尔公式:lg ±γ=-A|z +z --|I可逆电池的电动势及其应用(Δr G )T,p =-W f,max (Δr G m )T,p =zEFNernst Equation :若电池反应为 cC +dD =gG +hHE =E φ-d Dc C hHg G a a a a ln zF RT标准电动势E φ与平衡常数K φ的关系:E φ=φlnK zFRT还原电极电势的计算公式:ϕ=氧化态还原态-a a lnzF RT φϕ 计算电池反应的有关热力学函数变化值:m r S ∆=p T E zF ⎪⎭⎫⎝⎛∂∂m r H ∆=-zEF +p T E zFT ⎪⎭⎫ ⎝⎛∂∂ Q R =T m r S ∆=pT E zFT ⎪⎭⎫⎝⎛∂∂zF ⎪⎪⎭⎫ ⎝⎛∆⎪⎪⎭⎫ ⎝⎛21m r 1122T 1T 1H T E T E -=- zF ⎰⎪⎭⎫ ⎝⎛T2E2E 11T E d =dT T H 21T T 2mr ⎰∆ 电极书面表示所采用的规则:负极写在左方,进行氧化反应(是阳极),正极写在右方,进行还原反应(是阴极) 电动势测定的应用:(1) 求热力学函数变量Δr G m 、Δr G m Φ、m r H ∆、m r S ∆及电池的可逆热效应Q R 等。
(完整版)傅献彩物理化学主要公式及使用条件总结

第一章 气体的pVT 关系1. 理想气体状态方程式nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。
m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。
R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。
此式适用于理想气体,近似地适用于低压的真实气体。
2. 气体混合物 (1) 组成摩尔分数 y B (或x B ) = ∑AA B /n n体积分数 /y B m,B B *=V ϕ∑*AV y A m ,A式中∑AA n 为混合气体总的物质的量。
A m,*V 表示在一定T ,p 下纯气体A 的摩尔体积。
∑*AA m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。
(2) 摩尔质量∑∑∑===BBBB B BB mix //n M n m M y M式中 ∑=BB m m 为混合气体的总质量,∑=BB n n 为混合气体总的物质的量。
上述各式适用于任意的气体混合物。
(3) V V p p n n y ///B B B B *===式中pB 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。
*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。
3. 道尔顿定律p B = y B p ,∑=BB p p 适用于任意气体。
V RT n p /B B = 适用于理想气体4. 阿马加分体积定律V RT n V /B B =* 此式只适用于理想气体。
5. 范德华方程RT b V V a p =-+))(/(m 2m nRT nb V V an p =-+))(/(22式中a 的单位为Pa · m 6 · mol -2,b 的单位为m 3 · mol -1,a 和b 皆为只与气体的种类有关的常数,称为范德华常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热力学第一定律功:δW =δW e +δW f(1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。
(2)非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。
如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。
热 Q :体系吸热为正,放热为负。
热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。
热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T )p (2)等容热容:C v =δQ v /dT = (∂U/∂T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V )T ](∂V/∂T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=11-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1nR-δ(T 1—T 2) 热机效率:η=212T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=121T T T -焦汤系数: μJ -T =H p T ⎪⎪⎭⎫⎝⎛∂∂=-()pT C p H ∂∂ 实际气体的ΔH 和ΔU :ΔU =dT T U V ⎪⎭⎫ ⎝⎛∂∂+dV V U T ⎪⎭⎫ ⎝⎛∂∂ ΔH =dT T H P ⎪⎭⎫⎝⎛∂∂+dp p H T ⎪⎪⎭⎫ ⎝⎛∂∂ 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑BB γRT化学反应热效应与温度的关系:()()()dT B C T H T H 21T T m p B1m r 2m r ⎰∑∆∆,+=γ热力学第二定律Clausius 不等式:0TQS BAB A ≥∆∑→δ—熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2)Maxwell 关系:T V S ⎪⎭⎫⎝⎛∂∂=V T p ⎪⎭⎫ ⎝⎛∂∂Tp S ⎪⎪⎭⎫ ⎝⎛∂∂=-p T V ⎪⎭⎫ ⎝⎛∂∂ (3)热容与T 、S 、p 、V 的关系:C V =T VT S ⎪⎭⎫⎝⎛∂∂ C p =T p T S ⎪⎭⎫ ⎝⎛∂∂Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()pT /G ⎥⎦⎤⎢⎣⎡∂∆∂T =-2T H ∆ 单组分体系的两相平衡: (1)Clapeyron 方程式:dT dp=mX m X V T H ∆∆ 式中x 代表vap ,fus ,sub 。
(2)Clausius -Clapeyron 方程式(两相平衡中一相为气相):dT dlnp=2m vap RTH ∆ (3)外压对蒸汽压的影响:()()**g e m gg p p RTl V p p ln-= p g 是在惰性气体存在总压为p e 时的饱和蒸汽压。
吉不斯-杜亥姆公式:SdT -Vdp +∑BB B d n μ=0dU =TdS -pdV +∑BB B d n μ dH =TdS +Vdp +∑BB B d n μdF =-SdT -pdV +∑BB B d n μ dG =-SdT +Vdp +∑BB B d n μ在等温过程中,一个封闭体系所能做的最大功等于其Helmbolz 自由能的减少。
等温等压下,一个封闭体系所能做的最大非膨胀功等于其Gibbs 自由能的减少。
溶液-多组分体系体系热力学在溶液中的应用溶液组成的表示法:(1)物质的量分数:BB n x n=(2)质量摩尔浓度:BB A n m W =(3)物质的量浓度:BB n c V=(4)质量浓度B ω 拉乌尔定律 A A A p p x *= 亨利定律:x m B c B p k x k m k c === 化学势的各种表示式和某些符号的物理意义: 气体:(1)纯理想气体的化学势()()T,p T RTln p p μμΦΦ=+ 标准态:任意温度,p=p φ=101325Pa 。
μφ(T )为标准态时的化学势(2)纯实际气体的化学势()()T,p T RTlnf p μμΦΦ=+ 标准态:任意温度,f=p φ且复合理想气体行为的假想态(即p =p φ,γ=1),μφ(T )为标准态时的化学势。
(3)混合理想气体中组分B 的化学势()()B B B T,p T,RTln x μμ*=p + 因为()()B B T,p T RTln p p μμ*ΦΦ=+ 所以()B T,p μ*不是标准态时的化学势,是纯B气体在指定T 、p 时的化学势。
溶液:(1) 理想溶液组分的化学势()()B B B T,p T,RTln x μμ*=p + ()()pB B B,m p T,p T V dp μμΦ*Φ⎰=+所以()B T,p μ*不是标准态时的化学势而是温度为T 、溶液上方总压为p 时,纯液体B 的化学势。
(2) 稀溶液中各组分的化学势溶剂:()()A A A T,p T,RTln x μμ*=p + ()A T,μ*p 不是标准态时的化学势而是温度为T 、溶液上方总压为p 时,纯溶剂A 的化学势。
溶质:()()B B B T,p T,RTln x μμ*=p + ()()()BB x T,p T RTln k p μμ*ΦΦ=+ ()()B B B T,p T,RTln m m μμΦ=p + ()()()B B m T,p T RTln k m p μμΦΦΦ⋅=+()()B B B T,p T,RTlnc c μμ∆Φ=p + ()()()B B c T,p T RTln k c p μμ∆ΦΦΦ⋅=+ ()B T,μ*p ,()B T,μp ,()B T,μ∆p 均不是标准态时的化学势,均是T ,p 的函数,它们分别为:当x B =1,m B =1molkg -1,c B =1moldm -3时且服从亨利定律的那个假想态的化学势。
(4)非理想溶液中各组分的化学势溶剂:()()A A A,x T,p T,RTlna μμ*=p + ()A T,μ*p 不是标准态的化学势,而是a A,x=1即x A =1,γA =1的纯组分A 的化学势。
溶质:()()B B B,x T,p T,RTlna μμ*=p + B,x B,x B a x γ=()()B B B,m T,p T,RTlna μμ=p + B,m m B a m m γΦ=()()B B B,C T,p T,RTlna μμ∆=p + B,c c B a c γΦ=()B T,μ*p ,()B T,μp ,()B T,μ∆p 均不是标准态时的化学势,均是T ,p 的函数,它们分别为:当a B,x =1,a B,m =1,a B,c =1时且服从亨利定律的那个假想态的化学势。
(4)活度a 的求算公式:✓ 蒸汽压法:溶剂a A =γA x A =p A /p A * 溶质:a B =γB x B =p A /k c✓ 凝固点下降法:溶剂()fus m A f fH A 11ln a R T T *∆⎛⎫⎪⎝⎭=- ✓ Gibbs -Duhem 公式从溶质(剂)的活度求溶剂(质)的活度。
B A B A x d ln a d ln a x =-B A B Axd ln d ln x γγ=- (5)理想溶液与非理想溶液性质:理想溶液:mix V 0∆= mix H 0∆= mix B B BS R n lnx ∆∑=-mix B B BG RT n lnx ∆∑=非理想溶液:mix V 0∆≠ mix H 0∆≠ re mix B B B B BBG n RTlnx n RTln γ∆∑∑=+超额函数:E re id mix mix Z Z Z ∆∆=- 溶液热力学中的重要公式: (1) Gibbs -Duhem 公式(2) Duhem -Margule 公式:BBx dln p 0∑= 对二组分体系:A B A B T Tln p ln p ln x ln x ⎛⎫⎛⎫∂∂ ⎪ ⎪∂∂⎝⎭⎝⎭= 稀溶液依数性:(1)凝固点降低:f f B T K m ∆= ()()2f f A fus m R T K M H A *∆=(2)沸点升高: b b B T K m ∆= ()()2bb A vap m R TK M H A *∆=(3)渗透压: B V n RT ∏=化平衡学化学反应亲和势:A =-r m B B BG γμ∆∑=-化学反应等温式:r m r m a G G RT ln Q Φ∆∆=+平衡常数的表达式:()B B g hG Hfpd e D Ep p K K p p p γΦΦΦ∑-== ()B B p p K K p γΦΦ∑-=()BBf p K K K p γγΦΦ∑-=BBBBx p p p K K K pp γγΦΦ∑∑⎛⎫ ⎪⎝⎭--== ()BBBBc p p RT K K K RT p γγΦΦ∑⎛⎫∑ ⎪⎝⎭--== 温度,压力及惰性气体对化学平衡的影响:r m 2d ln K H dT RT ΦΦ∆= C r m2d ln K U dT RT ΦΦ∆= B B p C c RT K K p γΦΦΦΦ∑⎛⎫ ⎪⎝⎭=。