第二章 遥感的物理基础

合集下载

第03讲 遥感物理基础之二_太阳辐射

第03讲 遥感物理基础之二_太阳辐射

19/22
20/22
地球大气对太阳辐射传输特性的遥感应用:
1.选择大气窗口。 2.认识大气传输对遥感图像判读的影响: ①大气散射使短波波段(如0.5-0.6μm)的地物 影像增加亮度,使景物反差减小; ②大气的吸收使长波波段(如0.8-1.1μ m)减低 亮度。 3.为图像恢复或辐射校正提供依据。
返 回
22/22
思考题
1、大气的散射现象有几种类型?根据不同散射类 型的特点分析可见光遥感与微波遥感的区别,说 明为什么微波具有穿云透雾能力而可见光不能? 2、综合论述太阳辐射传播到地球表面又返回到遥 感器这一整个过程中所发生的物理现象。
3、什么是大气窗口?大气窗口有哪些波段区间?
1/22
河北工程大学 资源学院
遥感地质学
Remote Sensing Geology 遥感物理基础(2) -地球大气对太阳辐射传输的影响
2/22
遥感地质学章节内容
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章 绪论 遥感物理基础(电磁波谱与电磁辐射) 遥感成像原理与图像特征 遥感图像处理 遥感图像地质解译标志 遥感图像地貌解译 遥感图像的岩性解译 遥感图像构造解译 遥感应用
3)中红外波段3.0-5.0μm,3.5-4.2μm和4.6-5.0μm; •( 地球大气对太阳辐射的传输影响有吸收作用、散 1、选择大气窗口。 电磁波通过地球大气层时较少被反射、吸收或散射,透 2 、认识大气传输对遥感图像判读的影响:①大气散射使短 射作用、反射作用和折射作用。 ( 4 )远红外波段8.0-14.0μm; 过率较高的波段,称为大气窗口。
折射角度大。
返回
18/22
大气窗口
• 大气窗口 • 主要大气窗口和遥感波谱通道(波段):P13表2-4 电磁波通过地球大气层时较少被反射、吸收或散射,透过率 ( 1) 0.3-1.3μm:紫外波段、可见光波段、近红外波段 较高的波段,称为大气窗口。 微波波段:其常用的波段为0.8cm,3cm,5cm,10cm等等, (2) 1.5-2.5μm:近红外波段 包括部分紫外( 电磁波信息来自地面目标物的反射光谱;可以用摄影方式来获 0.3-0.38μm )、全部可见光( 0.38-0.76μm) 有时也可将该窗口扩展为 0.05cm 至300cm波段。 (3) 3.0-5.0μm:中红外波段 及近红外波段( 得和记录地物的电磁波信息 0.76-1.3μm ;电磁波的透射率在 ),是摄影成像的最佳波段,也 90%以上。 近红外窗口,在白天日照条件好的时候扫描成像常用这些波段, 电磁波信息仍来自地面目标物的反射光谱,但不能用胶片摄影, 其特点是:微波穿云透雾的能力强,这一区间可以全天候工作; 是许多卫星传感器扫描成像的常用波段,比如, Landsat 卫星 比如 TM 的 5 、 7 波段等用以探测植物含水量以及云、雪或用于 只能用扫描仪和光谱仪以及射线测试仪来测量和记录;由于水 ( 4 ) 814μm:远红外波段 中红外波段电磁波信息由地面物体反射太阳辐射和地面物体自 主要用于主动遥感,如侧视雷达。 中红外波段,物体的热辐射较强。如NOAA卫星的AVHRR传 的 TM 的1-4 波段,SPOT 卫星的 HRV 波段等。 地质制图等。 汽、二氧化碳等的作用, 1.8μm 附近有一个吸收带,因此使此 身的发射辐射混合而成,用扫描仪和光谱仪探测和记录;也分 ( 5 ) 0.8-100cm :微波波段 感器用 3.553.93μm 探测海面温度,获得昼夜云图。 远红外波段:主要来自物体热辐射的能量,适于夜间成像,测 远红外波段:探测或记录目标物的发射光谱,利用扫描仪和热 窗口又分为两个小窗口 1.5-透过率为 1.75μm和 2.1 -2.4μm 。 透过率 为两个小窗口: 3.5 - 4.2μm 95 %, 4.6 - 5μm 量探测目标的地物温度。 辐射计、光谱计;是地表物体在常温下辐射能量最强的波段; 约为 60- 70%。 在9.6μm 附近处,分为两个小窗口,透射率约在 60-80%。

遥感原理与应用_第2章_2遥感物理基础-辐射传输基础

遥感原理与应用_第2章_2遥感物理基础-辐射传输基础
a小于入射电磁波波长的十分 之一;(气体分子)
• 米氏散射:如果介质中不均匀
颗粒的直径a与入射波长同数 量级;(气溶胶)
• 非选择性散射(均匀散射):
当不均匀颗粒的直径a>>λ时
发生。(大粒子尘埃)
C o p y r i g h t © 2 0 1 5, G u o l i n C a i & L i S h e n
遥感影像判读
遥感平台特点
遥感
影像识别分类
遥感物理基础
遥感技术应用
C o p y r i g h t © 2 0 1 5, G u o l i n C a i & L i S h e n
SWJTU
遥 1 2感 3物 4 5理 6基 7 础
遥感电磁辐射基础 辐射传输基础
地物波谱特性与遥感光学基础
C o p y r i g h t © 2 0 1 5, G u o l i n C a i & L i S h e n
SWJTU
大 大气成分 气 不变成分:氮、氧、氩、二氧化碳、甲烷、氧化氮、氢; 对 这些气体在80km以上的相对比例保持不变,称为不变气体。 1 2 电 可变成分:臭氧、水蒸气、液态和固态水(雨、雾、雪、 3磁 4 冰等)、盐粒、尘烟;这些气体的含量随高度、温度、位置 5辐 6 射 而变,称为可变成分。 7 的 气溶胶:固体或液体分散在气体中的分散体系叫做气溶胶。 影 比如,烟、尘、雾、云等都是气溶胶 。气溶胶是气体和在重 响 力场中具有一定稳定性和较小沉降速度的物质颗粒组成的混
散射影响:使原传播方向的辐射强度减弱,而增加向其他各方向
的辐射。尽管强度不大,但太阳辐射在照到地面又反射到传感器的 过程中,二次通过大气,在照射地面时,由于增加了漫入射的成分, 使地物反射的成分有所改变。 对遥感图像来说,增加了信号中的噪声成分,降低了传感器接收 数据的质量,造成图像模糊不清。 不同于吸收作用,只改变传播方向,不能转变为内能。 大气的散射是太阳辐射衰减的主要原因。

遥感物理基础

遥感物理基础

X
10-6m 1nm 0.38m 0.76m 3m 6m 15m 1mm 1m
紫可近中远超微无
射射 外 见 红 红 红 远 波线
线线 线 光 外 外 外 红



1mm=1000 m;1m=1000nm
电磁波谱的划分
紫外波段 可见光波段
紫色光 蓝色光 青色光 绿色光 黄色光 橙 色光 红色光 近红外(摄影红外)波段 近红外(反射红外)波段 中红外波段(热红外)
❖ 灰体:0< α <1,α不随波长而变 化。
❖ 选择性辐射体: 0< α <1,α随 波长而变化。
概念——辐射度量
❖ 辐射能量(W):电磁辐射的能量,单位J。 ❖ 辐射通量(Φ):单位时间内通过某一面积的
辐射能量,Φ=dW/dt,单位W。辐射通量是波长 的函数,总辐射通量是各谱段辐射通量之和或 辐射通量的积分值。 ❖ 辐射通量密度(E):单位时间内通过单位面 积的辐射能量,E=dΦ/dS,单位W/M2,S为面 积。
普朗克公式表示出了黑体辐射通量密度与温 度的关系及按波长分布的情况。反映黑体 辐射的三个特性:
E0
6000K 3000K
❖ 辐射通量密度随波长连续变化,温度一定 时,辐射通量密度随波长变化的曲线只有 一个最大值
1000K 200K
❖ 温度越高,辐射通量密度也越大,不同温
度下的曲线不相交。
❖ 随着温度的升高,辐射最大值所对应的波 长向短波方向移动。
由上式可见(在遥感技术上的意义): ❖ 绝对黑体表面上,单位面积发出的总辐射能
与绝对温度的四次方成正比,对于一般物体, 可用上式概略推算出总辐射能与绝对温度的 关系。 ❖ 黑体总辐射通量密度与温度的四次方成正比, 因而随温度的增加迅速增大——红外测温的 理论依据。

2遥感物理基础

2遥感物理基础

遥感的基本出发点
河南农业大学资源与环境学院 冯新伟 河南农业大学资源与环境学院
冯新伟
河南农业大学资源与环境学院 冯新伟 河南农业大学资源与环境学院
冯新伟
河南农业大学资源与环境学院 冯新伟 河南农业大学资源与环境学院
冯新伟
河南农业大学资源与环境学院 冯新伟 河南农业大学资源与环境学院
冯新伟
2、地物的发射光谱特性 黑体 普朗克公式 斯蒂芬-玻尔兹曼定律(Stephen Boltzmann Law) 维恩位移定律(Wien’s Displacement Law) 基尔霍夫定律 地物的发射光谱
100-106cm >106cm
用于无线电通讯,分超短波、短波、中波、长波
冯新伟
常用的遥感波段有:紫外线、可见光、红外线、微波
紫外线:波长范围0.1---0.38μm,太阳辐射只有0.3--0.4μm到达地面,能量较少;可探测的高度在2000m以 下,目前多用于探测碳酸岩分布,油污染的监测,能提 供土壤水份和作物病类信息。 可见光:波长范围0.38---0.76μm,人眼对该波段具有 敏锐的分辨能力,是鉴别物质的主要波段。遥感技术中 主要用摄影和扫描方式接收和纪录地物对可见光的反射 特征,是现在遥感中最常用的波段。

河南农业大学资源与环境学院 冯新伟 河南农业大学资源与环境学院
冯新伟
太阳
太阳是太阳系唯一的恒星,它集中了太阳系99.865%的质量。 太阳是一个炽热的气体星球,没有固体的星体或核心。太阳从 中心到边缘可分为核反应区、辐射区、对流区和大气层。其能 量的99%是由中心的核反应区的热核反应产生的。太阳中心的 密度和温度极高。太阳大气的主要成分是氢(质量约占71%) 与氦(质量约占27%)。

遥感导论 电磁波及电磁辐射特性.

遥感导论 电磁波及电磁辐射特性.
《遥感技术与应用》武汉大学资源与环境学院
1.电磁波及其特性 2.电磁波谱 3.电磁波的传播特性 4.物质的电磁辐射特性 5.电磁辐射的物理和化学效应 6.电磁辐射度量 7. 光度的基本物理量 8. 辐射交换过程中的物理量 9. 辐射度与光度中的基本定律 10. 基尔霍夫定律的导出 11. 物体的温度
《遥感技术与应用》武汉大学资源与环境学院
实验室条件下的光谱测试分析技术与遥感电磁辐 射探测分析技术的异同: ¾ 基本物理原理相同。
但遥感是远距离探测,而且是对野外实地目标的探测, 因此二者在对目标物光谱探测的精细程度上有很大的 差别。此外,远距离探测还存在尺度效应(探测单元的 尺度不同引起的辐射特性的变化)、大气效应(大气层对 辐射传输的影响)等现象,由此带来电磁辐射的某些物 理规律、定理的适应性的变化,需要研究一些新的理 论和分析方法以适应这种变化。
《遥感技术与应用》武汉大学资源与环境学院
《遥感技术与应用》武汉大学资源与环境学院
介质吸收
散射效应 在不均匀介质中(存在微粒质点、分子涨落等), 电磁波偏离原来传播方向而向各个方向散开的 现象称为散射。
在遥感中电磁辐射要通过厚厚的大气层,产生严重的散 射。因此散射是遥感的一个非常重要的概念。 散射的成因与介质的不均匀性 有关。介质的不均匀性可以是 由胶体(如大气中的气溶胶)、 烟、雾、灰尘等悬浮质点导 致,也可以是由分子热运动造 成的密度局部涨落产生。后者 引起的散射称为分子散射。
《遥感技术与应用》武汉大学资源与环境学院
干涉:两列或两列以上(离散)的波,因波的迭加 而引起传播的交迭区域内振动强度重新分布 (加强或削弱)的现象称为波的干涉。
相干条件:两列波的频率相同、存在相互平行的振动矢 量以及相位差稳定。稳定的相位差这一条只对微观客 体发射的电磁波是必要的。微波遥感中的SAR和InSAR (干涉雷达)都用到干涉。

遥感物理基础电磁波与电磁波谱

遥感物理基础电磁波与电磁波谱

第二章遥感物理基础遥感技术是建立在物体电磁波辐射理论基础上的。

由于不同物体具有各自的电磁波反射或辐射特性,才可能应用遥感技术探测和研究远距离的物体。

理解并掌握地物的电磁波发射、反射、散射特性,电磁波的传输特性,大气层对电磁波传播的影响是正确解释遥感数据的基础。

本章重点是掌握可见光近红外、热红外和微波遥感机理,以及地物波谱特征。

图2-1第一节电磁波与电磁波谱2.1.1 电磁波与电磁波谱1. 电磁波一个简单的偶极振子的电路,电流在导线中往复震荡,两端出现正负交替的等量异种电荷,类似电视台的天线,不断向外辐射能量,同时在电路中不断的补充能量,以维持偶极振子的稳定振荡。

当电磁振荡进入空间,变化的磁场激发了涡旋电场,变化的电场又激发了涡旋磁场,使电磁振荡在空间传播,这就是电磁波。

2. 电磁辐射电磁场在空间的直接传播称为电磁辐射。

1887 年德国物理学家赫兹由两个带电小球的火花放电实验,证实了电磁场在空间的直接传播,验证了电磁辐射的存在。

装载在遥感平台上的遥感器系统,接收来自地表、地球大气物质的电磁辐射,经过成像仪器,形成遥感影像。

3. 电磁波谱γ射线、X 射线、紫外线、可见光、红外线和无线电波(微波、短波、中波、长波和超长波等)在真空中按照波长或频率递增或递减顺序排列,构成了电磁波谱。

目前遥感技术中通常采用的电磁波位于可见光、红外和微波波谱区间。

可见光区间辐射源于原子、分子中的外层电子跃迁。

红外辐射则产生于分子的振动和转动能级跃迁。

无线电波是由电容、电感组成的振荡回路产生电磁辐射,通过偶极子天线向空间发射。

微波由于振荡频率较高,用谐振腔及波导管激励与传输,通过微波天线向空间发射。

由于它们的波长或频率不同,不同电磁波又表现出各自的特性和特点。

可见光、红外和微波遥感,就是利用不同电磁波的特性。

电磁波与地物相互作用特点与过程,是遥感成像机理探讨的主要内容。

图2-2电磁辐射的性质4. 电磁辐射的性质电磁辐射在传播过程中具有波动性和量子性两重特性。

遥感原理与方法习题库

遥感原理与方法习题库

遥感原理与方法习题集第一章遥感概述1、阐述遥感的基本概念。

2、遥感探测系统包括哪几个部分?3、与传统对地观测手段比较,遥感有什么特点?举例说明。

4、遥感有哪几种分类?分类依据是什么?5、试述当前遥感发展的现状及趋势。

第二章遥感的物理基础1、大气对通过其中传播的电磁波的散射有哪几类?他们各有什么特点。

2、什么是大气窗口?常用于遥感的大气窗口有哪些?3、综合论述太阳辐射传播到地球表面又返回到遥感传感器这一整个过程中所发生的物理现象。

4、请绘出小麦、湿地、沙漠、雪的典型光谱曲线图,并分别对这些光谱反射率曲线的特征及其成因作出说明。

5、遥感某火电厂冷却水的热污染(温度梯度为90-50度),试问在哪个波段、选用何种传感器,在每天什么时刻及天气状况下,遥感最为有利,为什么(b=2.898×10-3m.K,计算精确到0.1um)。

6、熟悉颜色的三个属性。

明度、色调、饱和度,选取自然界的某些颜色例如:树叶、鲜花、土地等,比较它们三种属性区别。

7、光的合成怎样推算新颜色?用色度图说明。

8、加色法和减色法在原理上有什么不同?举例说明什么时候用加色法,什么时候用减色法?9、利用标准假彩色影像并结合地物光谱特征,说明为什么在影像中植被呈现红色,湖泊、水库呈蓝偏黑色,重盐碱地呈偏白色。

第三章遥感图象获取原理1、主要遥感平台有哪些,各有何特点?2、摄影成像的基本原理是什么?其图像有何特征?3、扫描成像的基本原理是什么?扫描图像与摄影图像有何区别?4、如何评价遥感图像的质量?第四章航空遥感与航空像片1、按摄影机主光轴与铅垂线的关系,航空摄影可公为哪几类?2、影响航空像片比例尺的因素有哪些?怎样测定像片的比例尺?3、比较航空摄影像片与地形图的投影性质有什么差别?4、什么是像点位移?引起像点位移的主要原因是什么?第五章航天遥感与卫星图像1、试从技术特性和应用两方面,对航天(卫星)遥感与航空遥感作一比较。

2、航天遥感平台主要有哪些?各有什么特点?3、地球资源卫星主要有哪些?常用的产品有哪几类?4、简述卫星图像的主要特征。

遥感的物理基础

遥感的物理基础


反射现象:电磁波在传播过程中,通过两种介 质的交界面时会出现反射现象,反射现象出要 出现在云顶(云造成噪声)。
遥感基础与应用
大气窗口

不同波段的电磁波受到大气的衰减作用轻重不 同。

电磁波通过大气层时较少被反射,吸收和 散射的,透射率较高的波段称为大气窗口。
遥感传感器选择的探测波段应包含在大气窗口 之内。
(2) 地物的发射光谱特性

同一地物,其表面粗糙或颜色较深的,发射率 往往较高,反之,发射率则较小。

比热大,热惯量大,以及具有保温作用的地物, 一般发射率大,反之发射率就小。
例如水体,在白天水面光滑明亮,表面反射强 而温度较低,发射率亦较低;而夜间,水的比 热大,热惯量也高,故而发射率较高。

遥感基础与应用
结果输出(图、表)
接收 预处理
用户处 理应用
遥感基础与应用
太阳辐射曲线
太阳辐射的能量主要集中 在可见光,其中0.38 ~ 0.76 µ m的可见光能量占太阳辐射 总能量的46%,最大辐射强 度位于波长0.47 µ m左右; 到达地面的太阳辐射主要 集中在0.3 ~ 3.0 µ m波段,
包括近紫外、可见光、近

土壤含水量增加,土壤的反射率就会下降,在 水的各个吸收带(1.4um、1.9um、2.7um处附近 区间),反射率的下降尤为明显。
遥感基础与应用
三种不同类型土壤在干燥环境下的光谱曲线
水的吸收带(1.4um、1.9um、2.7um) 干燥土壤的波谱特征主要 与土壤物质组成(成土矿 物和土壤有机质)有关。 土壤含水量增加,土壤的 反射率就会下降,
遥感基础与应用
不同地物的反射波谱特征
遥感基础与应用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遥感概论_____第二章电磁波及遥感物理基础遥感技术是建立在物体电磁波辐射理论基础上的。

应用遥感技术探测和研究远距离的物体,依赖于不同物体具有各自的电磁波反射或辐射特性。

理解并掌握地物的电磁波发射、反射、散射特性,电磁波的传输特性,大气层对电磁波传播的影响是正确解释遥感数据的基础。

第二章电磁波及遥感物理基础1.电磁波与电磁波谱2.电磁辐射源3.地物波谱1电磁波与电磁波谱电磁波交互变化的电磁场在空间的传播。

描述电磁波特性的指标波长、频率、振幅、相位电磁波的特性电磁波是横波,传播速度为3×108m/s ,不需要媒质也能传播,与物质发生作用时会有反射、吸收、透射、散射等,并遵循同一规律。

1.1电磁波与电磁波谱电磁波谱按电磁波波长的长短,依次排列制成的图表叫电磁波谱。

依次为:γ射线—X射线—紫外线—可见光—红外线—微波—无线电波。

电磁波谱示图1.1电磁波与电磁波谱1.1电磁波与电磁波谱——遥感应用谱段❖紫外线:波长范围为0.01~0.38μm,太阳光谱中,只有0.3~0.38μm波长的光到达地面,对油污染敏感,但探测高度在2000m以下。

❖可见光:波长范围:0.38~0.76μm,人眼对可见光有敏锐的感觉,是遥感技术应用中的重要波段。

❖红外线:波长范围为0.76~1000μm,根据性质分为近红外、中红外、远红外和超远红外。

❖微波:波长范围为1mm~1m,穿透性好,不受云雾的影响。

1.1电磁波与电磁波谱——红外划分◼近红外:0.76~3.0 µm,与可见光相似。

◼中红外:3.0~6.0 µm,地面常温下的辐射波长,有热感,又叫热红外。

◼远红外:6.0~15.0 µm,地面常温下的辐射波长,有热感,又叫热红外。

◼超远红外:15.0~1 000 µm,多被大气吸收,遥感探测器一般无法探测。

1.2 电磁辐射的度量单位在遥感探测过程中,需要测量从目标地物反射或辐射的电磁波能量,为了定量描述电磁辐射,需要了解下面一些辐射度量的术语及其定义。

◼辐射能量(W):电磁辐射的能量,单位是J。

◼辐射通量(φ):在单位时间内传送的辐射能量(W),是辐射能流的单位。

◼辐射通量密度(E):单位面积所截取的辐射能量。

◼辐照度(I):被辐照的物体单位面积上的入射辐射通量。

◼辐射出射度(M):被辐照的物体单位面积上出射的辐射通量。

辐照度与辐射出射度都是描述辐射能量的密度,前者描述物体接受的辐射,后者为物体发出的辐射。

◼辐射亮度(L):在单位立体角、单位时间内,从外表面的单位面积上辐射出的辐射能量。

1.3电磁波特性的遥感应用--衍射衍射:光通过有限大小的障碍物时偏离直线路径的现象。

电磁波特性的遥感应用--衍射电磁波特性的遥感应用--衍射电磁波特性的遥感应用--衍射(1)研究电磁波的衍射现象对设计遥感仪器和提高遥感图像几何分辨率具有重要意义。

(2)在数字影像的处理中也要考虑光的衍射现象。

2、电磁辐射源◼自然界中一切物体都是辐射源,也是遥感探测中被动遥感的主要辐射源。

◼太阳辐射是可见光及近红外遥感的主要辐射源。

◼地球是远红外遥感的主要辐射源。

◼主动式遥感采用人工辐射源,是微波遥感的主要辐射源。

2.1太阳辐射太阳辐射:太阳是被动遥感主要的辐射源,又叫太阳光,在大气上界和海平面测得的太阳辐射曲线如图所示。

太阳常数:不受大气影响,在距太阳一个天文单位内,垂直于太阳辐射方向,单位面积单位时间黑体所接受的太阳辐射能量。

(1.360×103W/m2)2.1太阳辐射——太阳辐射特点◼太阳表面温度为6000K,光谱相当于5800K的黑体辐射;◼太阳辐射的能量主要集中在可见光,其中0.38~0.76µm 的可见光能量占太阳辐射总能量的43.5%,最大辐射强度位于波长0.48 µm左右;◼到达地面的太阳辐射主要集中在0.3~3.0µm波段,包括近紫外、可见光、近红外和中红外;◼经过大气层的太阳辐射有很大的衰减;◼各波段的衰减是不均衡的。

太阳辐射与地表的相互作用◼太阳辐射到达地表后,一部分反射,一部分吸收,一部分透射,即:到达地面的太阳辐射能量=反射能量+吸收能量+透射能量◼地表反射的太阳辐射成为遥感记录的主要辐射能量。

◼一般而言,绝大多数物体对可见光都不具备透射能力,而有些物体如水,对一定波长的电磁波则透射能力较强,特别是0. 45~0.56μm的蓝绿光波段。

一般水体的透射深度可达10~20 m,清澈水体可达100 m的深度。

◼地表吸收太阳辐射后具有约300 K的温度,从而形成自身的热辐射,其峰值波长为9.66 μm,主要集中在长波,即6μm以上的热红外区段。

太阳辐射与地物的作用——反射类型地物的反射类型:根据地表目标物体表面性质的不同,物体反射大体上可以分为三种类型,即镜面反射、漫反射、实际物体的反射1)镜面反射:发生在光滑物体表面的一种反射。

物体的反射满足反射定律,反射波和入射波在同一平面内,入射角等于反射角。

只有在反射波射出的方向才能探测到电磁波。

例子:水面是近似的镜面反射,在遥感图像上水面有时很亮,有时很暗,就是这个原因造成的。

2)漫反射:发生在非常粗糙的表面上的一种反射现象。

不论入射方向如何,其反射出来的能量在各个方向是一致的。

即当入射辐照度I一定时,从任何角度观察反射面,其反射辐照亮度是一个常数,这种反射面又叫朗伯面。

3)方向反射:介于镜面和朗伯面(漫反射)之间的一种反射。

自然界种绝大多数地物的反射都属于这种类型的反射,又叫非朗伯面反射。

对太阳短波辐射的反射具有各向异性,即实际物体面在有入射波时各个方向都有反射能量,但大小不同。

实际物体反射从空间对地面观察时,对于平面地区,并且地面物体均匀分布,可以看成漫反射;对于地形起伏和地面结构复杂的地区,为可以看成方向反射。

太阳辐射与地物的作用地物的反射率反射率(ρ):地物的反射能量与入射总能量的比,即ρ=(P ρ/ P 0)×100%。

➢地物在不同波段的反射率是不同的。

➢反射率是可以测定的。

➢反射率也与地物的表面颜色、粗糙度和湿度等有关。

➢地物的反射光谱曲线:反射率随波长变化的曲线。

2.2地球的辐射◼地球的辐射主要是指地球自身的热辐射,是远红外遥感的主要辐射源。

◼地球表面的平均温度大约是300K。

地球辐射的能量分布在从近红外到微波这一很宽的范围内,但大部分集中在6~30um。

地球辐射最强的波长是9.66um,属于远红外波段。

由于这种辐射与地表热有关,所以也称为热红外遥感。

热红外遥感被广泛应用于地表地热异常的探测、城市热岛效应及水体热污染等方面的研究。

地球辐射的分段特性波长/um波段名称辐射特性0.3~2.5可见光和近红外地表反射太阳辐射为主2.5~6中红外地表反射太阳辐射和地表物体自身的热辐射>6热红外地表物体自身的热辐射为主地球辐射的分段特性❖在0.3~2.5um波段(主要在可见光和近红外波段),地表以反射太阳辐射为主,地球自身的辐射可以忽略。

即在该波段范围内,对地观测遥感主要以太阳的短波辐射对地表进行探测和成像。

可见光和近红外波段遥感图像上的信息来自地物反射特性。

❖在2.5~6.0um波段(主要在中红外波段),地表反射太阳辐射和地球自身的热辐射均为被动遥感的辐射源。

中红外波段遥感图像上,既有地表反射太阳辐射的信息,也有地球自身的热辐射的信息。

❖在6.0um以上的热红外波段,以地球自身的热辐射为主,地表反射太阳辐射可以忽略。

(热红外成像)热红外波段遥感图像上的信息来自地球自身的热辐射特性。

2.3太阳辐射与地球辐射的关系❖太阳辐射近似5800K的黑体辐射,能量集中在0.3~2.5um 波段之间,最强辐射波长为0.48um。

(可见光和近红外)❖地球自身热辐射近似300K的黑体辐射,能量集中在6.0~30um的波段,最强辐射波长9.66um。

(热红外遥感,探测地表地热异常、城市热到效应和水体热污染等)3.地物波谱❖地物波谱:地物的电磁波响应特性随电磁波长改变而变化的规律,称为地表物体波谱,简称地物波谱。

❖地物波谱特性:地物波谱随波长变化而变化的特性,是电磁辐射与地物相互作用的一种表现。

❖地物波谱的作用:不同类型的地物,其电磁波响应的特性不同,因此地物波谱特征是遥感识别地物的基础。

3.1不同电磁波段中地物波谱特性❖可见光和近红外波段:主要表现地物反射作用和地物的吸收作用。

❖热红外波段:主要表现地物热辐射作用。

(热红外灵敏遥感器夜间成像河流为亮色条带,但热红外白天成像河流为暗色条带)❖微波波段:主动遥感利用地物后向散射;被动遥感利用地物微波辐射。

反射波谱曲线❖地物反射波谱——研究可见光至近红外波段上地物反射率随波长的变化规律。

❖表示方法:一般采用二维几何空间内的曲线表示,横坐标表示波长,纵坐标表示反射率。

3.2常见的几种地物类型波谱特征❖植被❖土壤❖水体❖岩石植被的波谱特征可见光波段❖在0.45um附近(蓝色波段)有一个吸收谷;❖在0.55um附近(绿色波段)有一个反射峰;❖在0.67um附近(红色波段)有一个吸收谷。

近红外波段❖从0.76um处反射率迅速增大,形成一个爬升的“陡坡”,至1.1um附近有一个峰值,反射率最大可达50%,形成植被的独有特征。

❖1.5~1.9um光谱区反射率增大;❖以1.45um,1.95um,2.70um为中心是水的吸收带,其附近区间受到绿色植物含水量的影响,反射率下降,形成低谷。

影响植被波谱特征的主要因素❖植物类型❖植物生长季节❖病虫害影响等❖营养状态❖含水量变化❖阴面、阳面植被波谱特征大同小异,根据这些差异可以区分植被类型、生长状态等。

不同植被类型的光谱曲线比较不同湿度下的植被的波谱特性曲线水体的波谱特征水体的反射主要在蓝绿光波段,其它波段吸收率很强,特别在近红外、中红外波段有很强的吸收带,反射率几乎为零。

水中其它物质对波谱特征的影响❖水中含有泥沙,在可见光波段的反射率会增加,峰值出现在黄红区。

❖水中含有水生植物叶绿素时,近红外波段反射率明显抬高。

叶绿素含量不同时水体的光谱特性曲线。

但是当水中含有其他物质时,反射光谱曲线会发生变化。

上图不同浊度下的水体的波谱特性曲线受海藻、浮游生物等影响,叶绿素含量增加,水体的反射率发生变化岩石矿物的光谱曲线❖岩石的反射波谱主要由矿物成分、矿物含量、物质结构等决定。

❖影响岩石矿物波谱曲线的因素包括岩石风化程度、岩石含水状况、矿物颗粒大小、岩石表面光滑程度、岩石色泽等。

岩石的光谱曲线土壤的波谱特征❖自然状态下土壤表面的反射曲线呈比较平滑的特征,峰-谷变化较弱。

❖反射率一般随着波长的增加而增加,此趋势在可见光和近红外波段较明显。

❖影响土壤反射率的因素:水分含量、有机质含量、氧化铁的存在、土壤颜色、结构、表明粗糙度以及太阳-目标物-传感器之间的几何关系。

相关文档
最新文档