九年级数学不等式组及其应用

合集下载

2021年中考数学复习第8讲 不等式(组)的解法及不等式的应用(教学课件)

2021年中考数学复习第8讲 不等式(组)的解法及不等式的应用(教学课件)
由①得,x≥-3, 由②得,x<2, 不等式组的解集是-3≤x<2, 它的整数解为:-3,-2,-1,0,1, 所以,所有整数解的和为-5.
重点题型
1.(2020·吉林)不等式3x+1>7的解集为
3x-2<x,① 2.(2020·湖州)解不等式组13x<-2.②
x>2
3x-2<x,① 解:13x<-2.② 解①得 x<1; 解②得 x<-6. 所以,不等式组的解集为 x<-6.
(1)求这两种书的单价;
(2)若购买《北上》的数量不少于所购买《牵风记》数量的一半 ,且购买两种书的总价不超过1600元.请问有哪几种购买方案 ?哪种购买方案的费用最低?最低费用为多少元?
重点题型
题题组组训训练练
解:(1)购买《北上》的单价为35元,《牵风记》的单价为30元;
(2)设购买《北上》的数量 n 本,则购买《牵风记》的 数量为(50-n)本,
题题组组训训练练

重重点点题题型型
题 型 二 应用一元一次不等式(组)解决问题
题组训练
例3.(2020·哈尔滨)昌云中学计划为地理兴趣小组购买大、小两种 地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买 2个大地球仪和1个小地球仪需用132元. (1)求每个大地球仪和每个小地球仪各多少元? (2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960 元,那么昌云中学最多可以购买多少个大地球仪?
精讲释疑
重重点点题题型型
题组训练
题 型 一 解一元一次不等式(组)
例1.(2020·嘉兴)不等式3(1-x)>2-4x的解在数轴上表示正确的 是( A )
重重点点题题型型
题组训练
4(x+1)≤7x+13,
例 2.(2020·枣庄)解不等式组x-4<x-3 8,

2021年九年级数学中考复习——方程专题:不等式与不等式组实际应用(二)

2021年九年级数学中考复习——方程专题:不等式与不等式组实际应用(二)

2021年九年级数学中考复习——方程专题:不等式与不等式组实际应用(二)1.列方程组或不等式解决实际问题某汽车专卖店销售A,B两种型号的新能源汽车,上周和本周的销售情况如下表:A型B型销售额时间型号上周1辆2辆70万元本周3辆1辆80万元(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?2.某网店销售甲、乙两种书包,已知甲种书包每个售价比乙种书包每个售价2倍少30元,网购2个甲种书包和3个乙种书包共花费255元(免运费).请解答下列问题:(1)该网店甲、乙两种书包每个售价各是多少元?(列方程组解答此问)(2)根据消费者需求,该网店决定用不超过8900元购进甲、乙两种书包共200个,且甲种书包的数量超过87个,已知甲种书包每个进价为50元,乙种书包每个进价为40元,该网店有哪几种进货方案;(3)在(2)条件下,若该网店推出促销活动:一次性购买同一种书包超过10个,赠送1个相同的书包,该网店这次所购进书包全部售出,共赠送了4个书包,获利1250元,直接写出该网店甲、乙两种书包各赠送几个.3.北流市某初中为了改善教师办公条件,计划采购A、B两种型号空调,已知采购2台A 型空调和1台B型空调需要费用24000元,3台A型空调比4台B型空调的费用多3000元.(1)求A型空调和B型空调每台各需多少元?(2)若学校计划采购A、B两种型号空调共30台,B型空调的台数不多于A型空调台数的2倍,两型号空调的采购总费用不超过218000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?4.养牛场的李大叔分三次购进若干头大牛和小牛,其中有一次购买大牛和小牛的价格同时打折,其余两次均按原价购买,三次购买的数量和总价如表:大牛(头)小牛(头)总价(元)第一次439900第二次269000第三次678550(1)李大叔以折扣价购买大牛和小牛是第次;(2)每头大牛和小牛的原价分别为多少元?(3)如果李大叔第四次购买大牛和小牛共10头(其中小牛至少一头),仍按之前的折扣(大牛和小牛的折扣相同),且总价不低于8100元,那么他共有哪几种购买方案?5.在新冠肺炎疫情期间,为保证孩子们的身心健康发展,各级各类学校都进行了“停课不停学”活动,某校七年级开展了网上教学,并对学生的学习情况进行了调查.经过统计,我们发现:大约有二分之一的孩子是通过电脑进行学习,约四分之一的孩子是利用手机进行学习,约六分之一的孩子是利用P AD等其他电子设备进行学习,而在受访班级中,平均每个班都有不超过4名同学没有进行线上学习;若该校七年级每个班的学生总数都超过了40人,请你分析一下,该所学校七年级每个班学生人数的范围.6.便利店老板从厂家购进A、B两种香醋,A种香醋每瓶进价为5元,B种香醋每瓶进价为6元,共购进70瓶,花了390元,且该店A种香醋售价7元,B种香醋售价9元.(1)该店购进A、B两种香醋各多少瓶?(2)将购进的70瓶香醋全部售完可获利多少元?(3)老板计划再以原来的进价购进A、B两种香醋共150瓶,且投资不超过850元,仍以原来的售价将这150瓶香醋售完,且确保获利不少于398元,请问有哪几种购货方案?7.近日来,长江中下游连降特大暴雨.沿江两岸的群众受灾很严重.“一方有难、八方支援”我校某班准备捐赠一批帐篷和食品包共360个,其中帐篷比食品包多120个.(1)求帐篷和食品包各有多少个?(2)现计划租用甲、乙两种型号的货车共8辆.一次性将这批帐篷和食品包运往受灾地区,已知每辆甲种货车最多可装帐篷40个和食品包10个,每辆乙种货车最多可装帐篷30个和食品包20个.运输部门安排甲、乙两种型号的货车时,有几种方案?请你帮助设计出来.(3)在(2)的条件下.如果甲种型号的货车每辆需付运费1000元,乙种型号的货车每辆需付运费900元.假设你是决策者,应选择哪种方案可使运费最少?最少运费是多少元?8.在六一儿童节到来之际,某校特举行书画大赛活动,准备购买甲、乙两种文具作为奖品,奖励在活动中获得优秀的同学.已知购买2个甲种文具、3个乙种文具共需花费45元;购买3个甲种文具、1个乙种文具共需花费50元.(1)问:购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共100个,投入资金不少于995元又不多于1050元,设购买甲种文具x个,则有多少种购买方案?(3)设学校投入资金w元,在(2)的条件下,哪种购买方案需要的资金最少?最少是多少元?9.随着新能源汽车的发展,某公交公司将用新能源公交车淘汰某一条线路上“冒黑烟”较严重的燃油公交车,计划购买A型和B型新能源公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需280万元;若购买A型公交车2辆,B型公交车1辆,共需260万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆车的年均载客量分别为60万人次和80万人次.若该公司购买A型和B型公交车的总费用不超过900万元,且确保这10辆公交车在该线路的年均载客量总和不少于670万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?10.基金会计划购买A、B两种纪念册共50册,已知B种纪念册的单价比A种的单价少10元,买3册A种纪念册与买4册B种纪念册的总费用310元.(1)求A、B两种纪念册的单价分别是多少元?(2)如果购买的A种纪念册的数量要大于B种纪念册数量的,但又不大于B种纪念册数量的,设购买A种纪念册m册.①有多少种不同的购买方案?②购买时A种纪念册每册降价a元(12≤a≤15),B种纪念册每册降价b元.若满足条件的购买方案所需的总费用一样,求总费用的最小值.参考答案1.解:(1)设每辆A型车的售价为x万元,B型车的售价为y万元,依题意,得:,解得:.答:每辆A型车的售价为18万元,B型车的售价为26万元.(2)设购进A型车m辆,则购进B型车(7﹣m)辆,依题意,得,解得:2≤m≤3.5,∵m为整数,∴m=2或3.∴有两种购车方案:购进A型车2辆,则购进B型车5辆;购进A型车3辆,则购进B型车4辆.答:有两种购车方案:购进A型车2辆,则购进B型车5辆;购进A型车3辆,则购进B型车4辆.2.解:(1)设甲种书包每个售价x元,乙种书包每个售价y元.根据题意得.解得.答:该网店甲种书包每个售价60元,乙种书包每个售价45元;(2)设购进甲种书包m个,则购进乙种书包(200﹣m)个,根据题意可得50m+40(200﹣m)≤8900.解得m≤90.∵m>87,∴87<m≤90.∵m为整数,∴m=88、89、90,200﹣m=112,111,110.∴该网店有3种进货方案:方案一、购进甲种书包88个,乙种书包112个;方案二、购进甲种书包89个,乙种书包111个;方案三、购进甲种书包90个,乙种书包110个;(3)分三种情况:①购进甲种书包88个,乙种书包112个时:设该网店甲书包赠送了m个,则乙书包赠送了(4﹣m)个,根据题意得,88×(60﹣50)﹣m×50+112×(45﹣40)﹣(4﹣m)×40=1250,解得,m=3,4﹣m=1,故甲书包赠送3个,乙书包赠送1个;②购进甲种书包89个,乙种书包111个时;设该网店甲书包赠送了m个,则乙书包赠送了(4﹣m)个,根据题意得,89×(60﹣50)﹣m×50+111×(45﹣40)﹣(4﹣m)×40=1250,解得,m=3.5,∵m是整数,故此种情况不成立;③购进甲种书包90个,乙种书包110个时;设该网店甲书包赠送了m个,则乙书包赠送了(4﹣m)个,根据题意得,90×(60﹣50)﹣m×50+110×(45﹣40)﹣(4﹣m)×40=1250,解得,m=4,4﹣m=0,故甲书包赠送4个,乙书包赠送0个.3.解:(1)设A型空调每台需x元,B型空调每台需y元,依题意,得:,解得:.答:A型空调每台需9000元,B型空调每台需6000元.(2)设购买A型空调m台,则购买B型空调(30﹣m)台,依题意,得:,解得:10≤m≤12.∵a为正整数,∴a可以取10,11,12,∴共有三种采购方案,方案1:采购A型空调10台,B型空调20台;方案2:采购A型空调11台,B型空调19台;方案3:采购A型空调12台,B型空调18台.(3)方案1所需费用为:9000×10+6000×20=210000(元);方案2所需费用为:9000×11+6000×19=213000(元);方案3所需费用为:9000×12+6000×18=216000(元).∵210000<213000<216000,∴采用方案1,采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.4.解:(1)第三次购买大牛和小牛的数量较多,但花费较少,所以李大叔以折扣价购买大牛和小牛是第三次;13230÷(9900+9000)=13230÷18900=0.7.故是打七折.故答案为:三.(2)设大牛的单价为x元,小牛单价为y元.根据题意得:,解得.故大牛的单价为1800元,小牛单价为900元.(3)设大牛买m头,小牛买(10﹣m)头.根据题意得:900m+450(10﹣m)≥8100,解得:m≥8.所以m=8或9.当m=8时,10﹣m=2;当m=9时,10﹣m=1;所以他共有两种购买方案.方案一:大牛买8头,小牛买2头;方案二:大牛买9头,小牛买1头.5.解:设该所学校七年级每个班学生人数为x,依题意,得:,解得:40<x≤48.答:该所学校七年级每个班学生人数的范围为40<x≤48.6.解:(1)设该店购进A种香醋X瓶,购进B种香醋Y瓶,根据题意得…..(1分)…………..(2分)解得.答:该店购进A种香醋30瓶,购进B种香醋40瓶;(2)(7﹣5)×30+(9﹣6)×40=60+120=180(元).答:70瓶香醋全部售完可获利180元;(3)设该店购进A种香醋a瓶,购进B种香醋(150﹣a)瓶,根据题意得,解得:50≤a≤52,因为a取正整数,所以a取50、51、52.购货方案为:(1)A种香醋购进50瓶,B种香醋购进100瓶.(2)A种香醋购进51瓶,B种香醋购进99瓶.(3)A种香醋购进52瓶,B种香醋购进98瓶.7.解:(1)设帐篷有x个,食品包有y个,依题意,得:,解得:.答:帐篷有240个,食品包有120个.(2)设安排甲种货车m辆,则安排乙种货车(8﹣m)辆,依题意,得:,解得:0≤m≤4.又∵m为非负整数,∴m可以取0,1,2,3,4,相对应的8﹣m为8,7,6,5,4,∴共有5种运输方案,方案1:安排8辆乙种货车;方案2:安排1辆甲种货车,7辆乙种货车;方案2:安排1辆甲种货车,7辆乙种货车;方案3:安排2辆甲种货车,6辆乙种货车;方案4:安排3辆甲种货车,5辆乙种货车;方案5:安排4辆甲种货车,4辆乙种货车.(3)设总运费为w元,则w=1000m+900(8﹣m)=100m+7200,∵k=100>0,∴w随m的增大而增大,∴当m=0时,w取得最小值,最小值=100×0+7200=7200.∴选择方案1,可使运费最少,最少运费是7200元.8.解:(1)设购买一个甲种文具a元,一个乙种文具b元,由题意得:,解得.答:购买一个甲种文具需15元,一个乙种文具需5元;(2)根据题意得:995≤15x+5(100﹣x)≤1050,解得49.5≤x≤55,∵x是整数,∴x=50,51,52,53,54,55,∴有6种购买方案;(3)w=15x+5(100﹣x)=10x+500,∵10>0,∴W随x的增大而增大,当x=50时,W=10×50+500=1000(元),最小∴100﹣50=50.答:购买甲种文具50个,乙种文具50个时需要的资金最少,最少是1000元.9.解:(1)设购买A型新能源公交车每辆需x万元,购买B型新能源公交车每辆需y万元,由题意得:,解得,答:购买A型新能源公交车每辆需80万元,购买B型新能源公交车每辆需100万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:5≤a≤6.5,因为a是整数,所以a=5,6;则共有两种购买方案:①购买A型公交车5辆,则B型公交车5辆:80×5+100×5=900(万元);②购买A型公交车4辆,则B型公交车6辆:80×4+100×6=920(万元);购买A型公交车5辆,则B型公交车5辆费用最少,最少总费用为900万元.10.解:(1)设A种纪念册的单价为x元,B种纪念册的单价为y元,依题意,得:,解得:.答:A种纪念册的单价为50元,B种纪念册的单价为40元.(2)①设购买A种纪念册m册,则购买B种纪念册(50﹣m)册,依题意,得:,解得:<m≤.又∵m为正整数,∴m可取15,16,17,18,∴共有4种不同的购买方案.②设总费用为w元,则w=(50﹣a)m+(40﹣b)(50﹣m)=(10﹣a+b)m+2000﹣50b.∵满足条件的购买方案所需的总费用一样,∴10﹣a+b=0,∴b=a﹣10.∵12≤a≤15,∴2≤b≤5.∵﹣50<0,∴w随b的增大而减小,∴当b=5时,w取得最小值,最小值=2000﹣50×5=1750,即总费用的最小值为1750元.。

2021年九年级数学中考复习——方程专题:不等式与不等式组实际应用(一)

2021年九年级数学中考复习——方程专题:不等式与不等式组实际应用(一)

2021年九年级数学中考复习——方程专题:不等式与不等式组实际应用(一)1.为加快复工复产,某企业需运输一批物资.据调查得知,2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱.(1)求1辆大货车和1辆小货车一次可以分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用5000元,每辆小货车一次需费用3000元.若运输物资不少于1500箱,且总费用小于54000元.请你列出所有运输方案,并指出哪种方案所需费用最少.最少费用是多少?2.某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n元,售价每千克18元.(1)该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元.求m,n的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克(x为整数),求有哪几种购买方案.(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的利润率不低于20%,求a的最大值.3.七年级1班计划购买若干本课外读物奖励在数学竞赛中获奖的同学.若每人送4本,则还余5本;若每人送6本,则最后一人得到的课外读物不足3本,求该班级需购买课外读物的本数.4.在近几年的两会中,有多位委员不断提出应在中小学开展编程教育,2019年3月教育部公布的《2019年教育信息化和网络安全工作要点》中也提出将推广编程教育.某学校的编程课上,一位同学设计了一个运算程序,如图所示.按上述程序进行运算,程序运行到“判断结果是否大于23”为一次运行.(1)若x=5,直接写出该程序需要运行多少次才停止;(2)若该程序只运行了2次就停止了,求x的取值范围.5.某校在校园艺术节期间举行学生书画大赛活动,准备购买甲、乙两种文具,奖励在活动中表现优秀的学生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,问有多少种购买方案?6.为报答当年5.12汶川地震各地的驰援深情,四川某农产品公司决定将本公司农业基地生产的蔬菜水果全部运到湖北武汉,支援武汉人民抗击新冠疫情.为了运输的方便,将蔬菜和水果分别打包成件,蔬菜和水果共260件,蔬菜比水果多40件.(1)求打包成件的蔬菜和水果各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批物资全部运往武汉.已知甲种货车最多可装蔬菜30件和水果13件,乙种货车最多可装蔬菜和水果各15件.如果甲种货车每辆需付运输费3000元,乙种货车每辆需付运输费2400元.则公司安排甲、乙两种货车时有几种方案?并说明公司选择哪种方案可使运输费最少?7.列方程(组)或不等式(组)解应用题:(1)甲工人接到240个零件的任务,工作1小时后,因要提前完成任务,调来乙和甲合作,合做了5小时完成.已知甲每小时比乙少做4个,那么甲、乙每小时各做多少个?(2)某工厂准备购进A、B两种机器共20台用于生产零件,经调查2台A型机器和1台B型机器价格为18万元,1台A型机器和2台B型机器价格为21万元.①求一台A型机器和一台B型机器价格分别是多少万元?②已知1台A型机器每月可加工零件400个,1台B型机器每月可加工零件800个,经预算购买两种机器的价格不超过140万元,每月两种机器加工零件总数不低于12400个,那么有哪几种购买方案,哪种方案最省钱?8.某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件400元,乙种奖品每件300元.(1)如果购买甲、乙两种奖品共花费了6500元,求甲、乙两种奖品各购买了多少件;(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过6800元,求该公司有哪几种不同的购买方案.9.某学校在疫情期间利用网络组织了一次防“新冠病毒”知识竞赛,评出特等奖10人,优秀奖20人.学校决定给所有获奖学生各发一份奖品,同一等次的奖品相同.(1)(列方程组解应用题)若特等奖和优秀奖的奖品分别是口罩和温度计,口罩单价的2倍与温度计单价的3倍相等,购买这两种奖品一共花费700元,求口罩和温度计的单价各是多少元?(2)(利用不等式或不等式组解应用题)若两种奖品的单价都是整数,且要求特等奖单价比优秀奖单价多20元.在总费用不少于440元而少于500元的前提下,购买这两种奖品时它们的单价有几种情况,请分别求出每种情况特等奖和优秀奖奖品的单价.10.A市准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的提示牌和垃圾箱,若购买2个提示牌和3个垃圾箱共需550元,且垃圾箱的单价是提示牌单价的3倍.(1)求提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案.参考答案1.解:(1)设1辆大货车一次运输x箱物资,1辆小货车一次运输y箱物资,由题意可得:,解得:,答:1辆大货车一次运输150箱物资,1辆小货车一次运输100箱物资,(2)设有a辆大货车,(12﹣a)辆小货车,由题意可得:,∴6≤a<9,∴整数a=6,7,8;当有6辆大货车,6辆小货车时,费用=5000×6+3000×6=48000元,当有7辆大货车,5辆小货车时,费用=5000×7+3000×5=50000元,当有8辆大货车,4辆小货车时,费用=5000×8+3000×4=52000元,∵48000<50000<52000,∴当有6辆大货车,6辆小货车时,费用最小,最小费用为48000元.2.解:(1)依题意,得:,解得:.答:m的值为10,n的值为14.(2)设购买甲种蔬菜x千克,则购买乙种蔬菜(100﹣x)千克,依题意,得:,解得:58≤x≤60.∵x为正整数,∴x=58,59,60,∴有3种购买方案,方案1:购买甲种蔬菜58千克,乙种蔬菜42千克;方案2:购买甲种蔬菜59千克,乙种蔬菜41千克;方案3:购买甲种蔬菜60千克,乙种蔬菜40千克.(3)设超市获得的利润为y元,则y=(16﹣10)x+(18﹣14)(100﹣x)=2x+400.∵k=2>0,∴y随x的增大而增大,∴当x=60时,y取得最大值,最大值为2×60+400=520.依题意,得:(16﹣10﹣2a)×60+(18﹣14﹣a)×40≥(10×60+14×40)×20%,解得:a≤1.8.答:a的最大值为1.8.3.解:设该班在数学竞赛中获奖的有x人,则该班级需购买课外读物(4x+5)本,依题意,得:,解得:4<x≤.又∵x为正整数,∴x=5,∴4x+5=25.答:该班级需购买课外读物25本.4.解:(1)5×2﹣3=7,7×2﹣3=11,11×2﹣3=19,19×2﹣3=35,∵19<23,35>23,∴若x=5,该程序需要运行4次才停止.(2)依题意,得:,解得:8<x≤13.答:若该程序只运行了2次就停止了,x的取值范围为8<x≤13.5.解:(1)设购买一个甲种文具需要x元,购买一个乙种文具需要y元,依题意,得:,解得:.答:购买一个甲种文具需要15元,购买一个乙种文具需要5元.(2)设购买m个甲种文具,则购买(120﹣m)个乙种文具,依题意,得:,解得:35.5≤m≤40.∵m是整数,∴m=36,37,38,39,40,∴有5种购买方案.6.解:(1)设打包成件的蔬菜有x件,水果有y件,依题意,得:,解得:.答:打包成件的蔬菜有150件,水果有110件.(2)设租用甲种货车a辆,则租用乙种货车(8﹣a)辆,依题意,得:,解得:2≤a≤5.∵a为正整数,∴a的可能值为2,3,4,5,∴该公司有4种安排方案,方案1:租用2辆甲种货车,6辆乙种货车,总运费=3000×2+2400×6=20400(元);方案2:租用3辆甲种货车,5辆乙种货车,总运费=3000×3+2400×5=21000(元);方案3:租用4辆甲种货车,4辆乙种货车,总运费=3000×4+2400×4=21600(元);方案4:租用5辆甲种货车,3辆乙种货车,总运费=3000×5+2400×3=22200(元).∵20400<21000<21600<22200,∴选择租用2辆甲种货车,6辆乙种货车总运费最少.7.解:(1)设甲每小时做x个零件,则乙每小时做(x+4)个零件,依题意,得:(1+5)x+5(x+4)=240,解得:x=20,∴x+4=24.答:甲每小时做20个零件,乙每小时做24个零件.(2)①设一台A型机器的价格是a万元,一台B型机器的价格是b万元,依题意,得:,解得:.答:一台A型机器的价格是5万元,一台B型机器的价格是8万元.②设购买m台A型机器,则购买(20﹣m)台B型机器,依题意,得:,解得:≤m≤9.∵m为正整数,∴m的可以为7,8,9,∴共有三种购买方案,方案1:购买7台A型机器、13台B型机器;方案2:购买8台A型机器、12台B型机器;方案3:购买9台A型机器、11台B型机器.方案1所需费用为5×7+8×13=139(万元),方案2所需费用为5×8+8×12=136(万元),方案3所需费用为5×9+8×11=133(万元).∵139>136>133,∴方案3购买9台A型机器、11台B型机器,总费用最少.8.解:(1)设甲种奖品购买了a件,乙种奖品购买了(20﹣a)件,根据题意得400a+300(20﹣a)=6500,解得a=5,则20﹣a=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得,解得≤x≤8,∵x为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.9.解:(1)设口罩的单价是y元,温度计的单价是z元,根据题意得,解得.答:口罩的单价是30元,温度计的单价是20元.(2)设优秀奖单价为x元,则特等奖的单价为(x+20)元.根据题意得440≤20x+10(x+20)<500,解得8≤x<10.因为两种奖品的单价都是整数,所以x=8或x=9.当x=8时,x+20=28;当x=9时,x+20=29.答:购买两种奖品时它们的单价有它们的单价有两种情况:第一种情况中:优秀奖单价为8元,特等奖的单价为28元;第二种情况中:优秀奖单价为9元,则特等奖的单价为29元.10.解:(1)设提示牌单价是x元,垃圾箱单价y元,由题意得:,解得:,答:提示牌单价是50元,垃圾箱单价150元;(2)设购买提示牌m个,则购买垃圾箱(100﹣m)个,由题意得:,解得:50≤m≤52,∵m为非负整数,∴m=50或51或52,答:购买方案有3种,①购买提示牌50个,则购买垃圾箱50个;②购买提示牌51个,则购买垃圾箱49个;③购买提示牌52个,则购买垃圾箱48个.。

2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解

2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解

2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解(试题部分)一、单选题1.(2024·河北·中考真题)下列数中,能使不等式516x −<成立的x 的值为( ) A .1B .2C .3D .42.(2024·湖北·中考真题)不等式12x +≥的解集在数轴上表示为( ) A . B . C .D .3.(2024·广东广州·中考真题)若a b <,则( ) A .33a b +>+B .22a b −>−C .a b −<−D .22a b <4.(2024·四川乐山·中考真题)不等式20x −<的解集是( ) A .2x <B .2x >C .<2x −D .2x >−5.(2024·内蒙古赤峰·中考真题)解不等式组()322211x x x x −<⎧⎪⎨+≥−⎪⎩①②时,不等式①和不等式②的解集在数轴上表示正确的是( ) A .B .C .D .6.(2024·四川南充·中考真题)若关于x 的不等式组2151x x m −<⎧⎨<+⎩的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m ≤7.(2024·内蒙古包头·中考真题)若21m −,m ,4m −这三个实数在数轴上所对应的点从左到右依次排列,则m 的取值范围是( ) A .2m <B .1m <C .12m <<D .513m <<8.(2024·上海·中考真题)如果x y >,那么下列正确的是( ) A .55x y +<+B .55x y −<−C .55x y >D .55x y −>−9.(2024·四川内江·中考真题)不等式34x x ≥−的解集是( ) A .2x ≥−B .2x ≤−C .2x >−D .2x <−10.(2024·山东烟台·中考真题)实数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .3b c +>B .0a c −<C .a c >D .22a b −<−11.(2024·江苏苏州·中考真题)若1a b >−,则下列结论一定正确的是( )A .1a b +<B .1a b −<C .a b >D .1a b +>12.(2024·四川眉山·中考真题)不等式组212321x x x x +>+⎧⎨+≥−⎩的解集是( )A .1x >B .4x ≤C .1x >或4x ≤D .14x <≤13.(2024·贵州·中考真题)不等式1x <的解集在数轴上的表示,正确的是( )A .B .C .D .14.(2024·河南·中考真题)下列不等式中,与1x −>组成的不等式组无解的是( )A .2x >B .0x <C .<2x −D .3x >−15.(2024·陕西·中考真题)不等式()216x −≥的解集是( )A .2x ≤B .2x ≥C .4x ≤D .4x ≥16.(2024·浙江·中考真题)不等式组()211326x x −≥⎧⎨−>−⎩的解集在数轴上表示为( )A .B .C .D .17.(2024·山东·中考真题)根据以下对话,给出下列三个结论:①1班学生的最高身高为180cm ; ②1班学生的最低身高小于150cm ;③2班学生的最高身高大于或等于170cm . 上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③18.(2024·安徽·中考真题)已知实数a ,b 满足10a b −+=,011a b <++<,则下列判断正确的是( )A .102a −<< B .112b << C .2241a b −<+< D .1420a b −<+<二、填空题19.(2024·山东·中考真题)写出满足不等式组21215x x +≥⎧⎨−<⎩的一个整数解 .20.(2024·广西·中考真题)不等式7551x x +<+的解集为 .21.(2024·黑龙江大兴安岭地·中考真题)关于x 的不等式组420102x x a −≥⎧⎪⎨−>⎪⎩恰有3个整数解,则a 的取值范围是 .22.(2024·吉林·中考真题)不等式组2030x x −>⎧⎨−<⎩的解集为 .23.(2024·上海·中考真题)一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有 个绿球.24.(2024·福建·21x −<的解集是 .25.(2024·广东·中考真题)关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是 .26.(2024·四川内江·中考真题)一个四位数,如果它的千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称该数为“极数”.若偶数m 为“极数”,且33m是完全平方数,则m = ; 27.(2024·山东烟台·中考真题)关于x 的不等式12xm x −≤−有正数解,m 的值可以是 (写出一个即可). 三、解答题28.(2024·江苏盐城·中考真题)求不等式113xx +≥−的正整数解. 29.(2024·四川凉山·中考真题)求不等式3479x −<−≤的整数解.30.(2024·江苏连云港·中考真题)解不等式112x x −<+,并把解集在数轴上表示出来. 31.(2024·甘肃·中考真题)解不等式组:()223122x x x x ⎧−<+⎪⎨+<⎪⎩ 32.(2024·四川眉山·中考真题)解不等式:12132x x+−−≤,把它的解集表示在数轴上.33.(2024·天津·中考真题)解不等式组213317x x x +≤⎧⎨−≥−⎩①② 请结合题意填空,完成本题的解答. (1)解不等式①,得______; (2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______.34.(2024·北京·中考真题)解不等式组:()3142,92.5x x x x ⎧−<+⎪⎨−<⎪⎩35.(2024·湖北武汉·中考真题)求不等式组3121x x x +>⎧⎨−≤⎩①②的整数解.36.(2024·江西·中考真题)如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本; (2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?37.(2024·黑龙江牡丹江·中考真题)牡丹江某县市作为猴头菇生产的“黄金地带”,年总产量占全国总产量的50%以上,黑龙江省发布的“九珍十八品”名录将猴头菇列为首位.某商店准备在该地购进特级鲜品、特级干品两种猴头菇,购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元.请解答下列问题:(1)特级鲜品猴头菇和特级干品猴头菇每箱的进价各是多少元?(2)某商店计划同时购进特级鲜品猴头菇和特级干品猴头菇共80箱,特级鲜品猴头菇每箱售价定为50元,特级干品猴头菇每箱售价定为180元,全部销售后,获利不少于1560元,其中干品猴头菇不多于40箱,该商店有哪几种进货方案?(3)在(2)的条件下,购进猴头菇全部售出,其中两种猴头菇各有1箱样品打a(a为正整数)折售出,最终获利1577元,请直接写出商店的进货方案.38.(2024·江苏扬州·中考真题)解不等式组260412xxx−≤⎧⎪⎨−<⎪⎩,并求出它的所有整数解的和.39.(2024·山东威海·中考真题)定义我们把数轴上表示数a的点与原点的距离叫做数a的绝对值.数轴上表示数a,b的点A,B之间的距离()AB a b a b=−≥.特别的,当0a≥时,表示数a的点与原点的距离等于0a−.当a<0时,表示数a的点与原点的距离等于0a−.应用如图,在数轴上,动点A从表示3−的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A,B之间的距离等于3个单位长度?(2)求点A,B40.(2024·湖南·中考真题)某村决定种植脐橙和黄金贡柚,助推村民增收致富,已知购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元.(1)求脐橙树苗和黄金贡柚树苗的单价;(2)该村计划购买脐橙树苗和黄金贡柚树苗共1000棵,总费用不超过38000元,问最多可以购买脐橙树苗多少棵?41.(2024·贵州·中考真题)为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解(答案详解)一、单选题1.(2024·河北·中考真题)下列数中,能使不等式516x −<成立的x 的值为( ) A .1 B .2 C .3 D .42.(2024·湖北·中考真题)不等式12x +≥的解集在数轴上表示为( ) A . B . C .D .【答案】A【分析】本题考查了一元一次不等式的解法及在数轴上表示不等式的解集.根据一元一次不等式的性质解出未知数的取值范围,在数轴上表示即可求出答案. 【详解】解:12x +≥,1x ∴≥.∴在数轴上表示如图所示:故选:A .3.(2024·广东广州·中考真题)若a b <,则( ) A .33a b +>+ B .22a b −>− C .a b −<− D .22a b <【答案】D【分析】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.根据不等式的基本性质逐项判断即可得.【详解】解:A .∵a b <,∴33a b +<+,则此项错误,不符题意; B .∵a b <,∴22a b −<−,则此项错误,不符题意; C .∵a b <,∴a b −>−,则此项错误,不符合题意; D .∵a b <,∴22a b <,则此项正确,符合题意; 故选:D .4.(2024·四川乐山·中考真题)不等式20x −<的解集是( ) A .2x < B .2x > C .<2x − D .2x >−【答案】A【分析】本题考查了解一元一次不等式.熟练掌握解一元一次不等式是解题的关键. 移项可得一元一次不等式的解集. 【详解】解:20x −<, 解得,2x <, 故选:A .5.(2024·内蒙古赤峰·中考真题)解不等式组()322211x x x x −<⎧⎪⎨+≥−⎪⎩①②时,不等式①和不等式②的解集在数轴上表示正确的是( ) A .B .C .D .【答案】C【分析】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,先求出不等式组的解集,再在数轴上表示出不等式组的解集即可. 【详解】解:()322211x x x x −<⎧⎪⎨+≥−⎪⎩①② 解不等式①得,2x <, 解不等式②得,3x ≥−,所以,不等式组的解集为:32x −≤<,在数轴上表示为:故选:C .6.(2024·四川南充·中考真题)若关于x 的不等式组2151x x m −<⎧⎨<+⎩的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m ≤【答案】B【分析】本题考查根据不等式组的解集求参数的范围,先解不等式组,再根据不等式组的解集,得到关于参数的不等式,进行求解即可.【详解】解:解2151x x m −<⎧⎨<+⎩,得:31x x m <⎧⎨<+⎩,∵不等式组的解集为:3x <, ∴13m +≥, ∴2m ≥; 故选B .7.(2024·内蒙古包头·中考真题)若21m −,m ,4m −这三个实数在数轴上所对应的点从左到右依次排列,则m 的取值范围是( ) A .2m < B .1m < C .12m <<D .513m <<【答案】B【分析】本题考查实数与数轴,求不等式组的解集,根据数轴上的数右边的比左边的大,列出不等式组,进行求解即可.【详解】解:由题意,得:214m m m −<<−, 解得:1m <; 故选B .8.(2024·上海·中考真题)如果x y >,那么下列正确的是( ) A .55x y +<+ B .55x y −<− C .55x y > D .55x y −>−【答案】C【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意; B .两边都加上5−,不等号的方向不改变,故错误,不符合题意; C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意; D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意; 故选:C .9.(2024·四川内江·中考真题)不等式34x x ≥−的解集是( ) A .2x ≥− B .2x ≤− C .2x >− D .2x <−【答案】A【分析】本题考查了解一元一次不等式,根据解一元一次不等式的步骤解答即可求解,掌握解一元一次不等式的步骤是解题的关键. 【详解】解:移项得,34x x −≥−, 合并同类项得,24x ≥−, 系数化为1得,2x ≥−, 故选:A .10.(2024·山东烟台·中考真题)实数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .3b c +>B .0a c −<C .a c >D .22a b −<−11.(2024·江苏苏州·中考真题)若1a b >−,则下列结论一定正确的是( )A .1a b +<B .1a b −<C .a b >D .1a b +>【答案】D【分析】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.不等式的性质:不等式的两边同时加上或减去同一个数或字母,不等号方向不变;不等式的两边同时乘以或除以同一个正数,不等号方向不变;不等式的两边同时乘以或除以同一个负数,不等号方向改变. 直接利用不等式的性质逐一判断即可. 【详解】解:1a b >−,A 、1a b +>,故错误,该选项不合题意;B 、12a b −>−,故错误,该选项不合题意;C 、无法得出a b >,故错误,该选项不合题意;D 、1a b +>,故正确,该选项符合题意; 故选:D .12.(2024·四川眉山·中考真题)不等式组212321x x x x +>+⎧⎨+≥−⎩的解集是( )A .1x >B .4x ≤C .1x >或4x ≤D .14x <≤【答案】D【分析】本题考查的是解一元一次不等式组,分别求出各不等式的解集,再求出其公共解集即可.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【详解】解:212321x x x x +>+⎧⎨+≥−⎩①②,解不等式①,得1x >, 解不等式②,得4x ≤, 故不等式组的解集为14x <≤. 故选:D .13.(2024·贵州·中考真题)不等式1x <的解集在数轴上的表示,正确的是( )A .B .C .D .【答案】C【分析】根据小于向左,无等号为空心圆圈,即可得出答案.本题考查在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解题的关键. 【详解】不等式1x <的解集在数轴上的表示如下:.故选:C .14.(2024·河南·中考真题)下列不等式中,与1x −>组成的不等式组无解的是( )A .2x >B .0x <C .<2x −D .3x >−【答案】A【分析】本题考查的是解一元一次不等式组,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解题的关键.根据此原则对选项一一进行判断即可. 【详解】根据题意1x −>,可得1x <−, A 、此不等式组无解,符合题意;B 、此不等式组解集为1x <−,不符合题意;C 、此不等式组解集为<2x −,不符合题意;D 、此不等式组解集为31x −<<−,不符合题意; 故选:A15.(2024·陕西·中考真题)不等式()216x −≥的解集是( )A .2x ≤B .2x ≥C .4x ≤D .4x ≥16.(2024·浙江·中考真题)不等式组()211326x x −≥⎧⎨−>−⎩的解集在数轴上表示为( )A .B .C .D .【答案】A【分析】本题考查解一元一次不等式组和在数轴上表示不等式的解集,先分别求出每一个不等式的解集,再根据不等式的解集在数轴上表示方法画出图示是解题的关键.【详解】解:()211326x x −≥⎧⎪⎨−>−⎪⎩①②,解不等式①,得:1x ≥, 解不等式②,得:4x <, ∴不等式组的解集为14x ≤<. 在数轴上表示如下: .故选:A .17.(2024·山东·中考真题)根据以下对话,给出下列三个结论:①1班学生的最高身高为180cm ; ②1班学生的最低身高小于150cm ; ③2班学生的最高身高大于或等于170cm . 上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③【答案】C【分析】本题考查了二元一次方程、不等式的应用,设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b ,根据1班班长的对话,得180x ≤,350x a +=,然后利用不等式性质可求出170a ≥,即可判断①,③;根据2班班长的对话,得140b >,290y b +=,然后利用不等式性质可求出150y <,即可判断②.【详解】解:设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b , 根据1班班长的对话,得180x ≤,350x a +=, ∴350x a =− ∴350180a −≤, 解得170a ≥, 故①错误,③正确;根据2班班长的对话,得140b >,290y b +=,∴290b y =−, ∴290140y −>, ∴150y <, 故②正确, 故选:C .18.(2024·安徽·中考真题)已知实数a ,b 满足10a b −+=,011a b <++<,则下列判断正确的是( )A .102a −<< B .112b << C .2241a b −<+< D .1420a b −<+<二、填空题19.(2024·山东·中考真题)写出满足不等式组21215x x +≥⎧⎨−<⎩的一个整数解 .【答案】1−(答案不唯一)【分析】本题考查一元一次不等式组的解法,解题的关键是正确掌握解一元一次不等式组的步骤.先解出一元一次不等式组的解集为13x −≤<,然后即可得出整数解.【详解】解:21215x x +≥⎧⎨−<⎩①②,由①得:1x ≥−, 由②得:3x <,∴不等式组的解集为:13x −≤<, ∴不等式组的一个整数解为:1−; 故答案为:1−(答案不唯一).20.(2024·广西·中考真题)不等式7551x x +<+的解集为 . 【答案】<2x −【分析】本题考查了解一元一次不等式,根据解一元一次不等式的步骤解答即可求解,掌握解一元一次不等式的步骤是解题的关键.【详解】解:移项得,7515x x −<−, 合并同类项得,24x <−, 系数化为1得,<2x −, 故答案为:<2x −.21.(2024·黑龙江大兴安岭地·中考真题)关于x 的不等式组420102x x a −≥⎧⎪⎨−>⎪⎩恰有3个整数解,则a 的取值范围是 .不等式组22.(2024·吉林·中考真题)不等式组230x x −>⎧⎨−<⎩的解集为 .23.(2024·上海·中考真题)一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有 个绿球.∴0x >,且x 为正整数, ∴x 的最小值为1,∴绿球的个数的最小值为3, ∴袋子中至少有3个绿球, 故答案为:3.24.(2024·福建·中考真题)不等式321x −<的解集是 . 【答案】1x <【分析】本题考查的是解一元一次不等式,通过移项,未知数系数化为1,求解即可解. 【详解】解:321x −<,33x <, 1x <,故答案为:1x <.25.(2024·广东·中考真题)关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是 .【答案】3x ≥/3x ≤【分析】本题主要考查了求不等式组的解集,在数轴上表示不等式组的解集,根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可. 【详解】解:由数轴可知,两个不等式的解集分别为3x ≥,2x >, ∴不等式组的解集为3x ≥, 故答案为:3x ≥.26.(2024·四川内江·中考真题)一个四位数,如果它的千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称该数为“极数”.若偶数m 为“极数”,且33m是完全平方数,则m = ;27.(2024·山东烟台·中考真题)关于x 的不等式12xm x −≤−有正数解,m 的值可以是 (写出一个即可).三、解答题28.(2024·江苏盐城·中考真题)求不等式113xx +≥−的正整数解.【答案】1,2.【分析】本题考查了求一元一次不等式的解集以及正整数解,先求出不等式的解集,进而可得到不等式的正整数解,正确求出一元一次不等式的解集是解题的关键. 【详解】解:去分母得,()131x x +≥−, 去括号得,133x x +≥−, 移项得,331x x −≥−−, 合并同类项得,24x −≥−, 系数化为1得,2x ≤, ∴不等式的正整数解为1,2.29.(2024·四川凉山·中考真题)求不等式3479x −<−≤的整数解. 【答案】2,3,4【分析】本题考查了解一元一次不等式组,熟练掌握知识点是解题的关键.先将3479x −<−≤变形为347479x x −<−⎧⎨−≤⎩,再解每一个不等式,取解集的公共部分作为不等式组的解集,再找出其中的整数解即可.【详解】解:由题意得347479x x −<−⎧⎨−≤⎩①②,解①得:1x >, 解②得:4x ≤,∴该不等式组的解集为:14x <≤, ∴整数解为:2,3,430.(2024·江苏连云港·中考真题)解不等式112x x −<+,并把解集在数轴上表示出来.这个不等式的解集在数轴上表示如下:31.(2024·甘肃·中考真题)解不等式组:()223122x x x x ⎧−<+⎪⎨+<⎪⎩ 32.(2024·四川眉山·中考真题)解不等式:12132x x+−−≤,把它的解集表示在数轴上.33.(2024·天津·中考真题)解不等式组213317x x x +≤⎧⎨−≥−⎩①②请结合题意填空,完成本题的解答. (1)解不等式①,得______; (2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______. 【答案】(1)1x ≤ (2)3x ≥− (3)见解析 (4)31x −≤≤【分析】本题考查的是解一元一次不等式,解一元一次不等式组;(1)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案; (2)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案; (3)根据前两问的结果,在数轴上表示不等式的解集; (4)根据数轴上的解集取公共部分即可. 【详解】(1)解:解不等式①得1x ≤,故答案为:1x ≤;(2)解:解不等式②得3x ≥−, 故答案为:3x ≥−;(3)解:在数轴上表示如下:(4)解:由数轴可得原不等式组的解集为31x −≤≤, 故答案为:31x −≤≤.34.(2024·北京·中考真题)解不等式组:()3142,92.5x x x x ⎧−<+⎪⎨−<⎪⎩ 【答案】17x −<<【分析】先求出每一个不等式的解集,再根据不等式组解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解”确定不等式组的解集.本题考查了一元一次不等式组的解法,熟练进行不等式求解是解题的关键.35.(2024·湖北武汉·中考真题)求不等式组3121x x x +>⎧⎨−≤⎩①②的整数解. 【答案】整数解为:1,0,1−【分析】本题考查了解一元一次不等式组,分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而求得整数解.【详解】解:3121x x x +>⎧⎨−≤⎩①②解不等式①得:2x >−解不等式②得:1x ≤∴不等式组的解集为:21x −<≤,∴整数解为:1,0,1−36.(2024·江西·中考真题)如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本;(2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?【答案】(1)书架上有数学书60本,语文书30本.(2)数学书最多还可以摆90本【分析】本题主要考查了一元一次方程及不等式的应用,解题的关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.(1)首先设这层书架上数学书有x 本,则语文书有(90)x −本,根据题意可得等量关系:x 本数学书的厚度(90)x +−本语文书的厚度84=,根据等量关系列出方程求解即可;(2)设数学书还可以摆m 本,根据题意列出不等式求解即可.【详解】(1)解:设书架上数学书有x 本,由题意得:0.8 1.2(90)84x x +−=,解得:60x =,9030x −=.∴书架上有数学书60本,语文书30本.(2)设数学书还可以摆m 本,根据题意得:1.2100.884m ⨯+≤,解得:90m ≤,∴数学书最多还可以摆90本.37.(2024·黑龙江牡丹江·中考真题)牡丹江某县市作为猴头菇生产的“黄金地带”,年总产量占全国总产量的50%以上,黑龙江省发布的“九珍十八品”名录将猴头菇列为首位.某商店准备在该地购进特级鲜品、特级干品两种猴头菇,购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元.请解答下列问题:(1)特级鲜品猴头菇和特级干品猴头菇每箱的进价各是多少元?(2)某商店计划同时购进特级鲜品猴头菇和特级干品猴头菇共80箱,特级鲜品猴头菇每箱售价定为50元,特级干品猴头菇每箱售价定为180元,全部销售后,获利不少于1560元,其中干品猴头菇不多于40箱,该商店有哪几种进货方案?(3)在(2)的条件下,购进猴头菇全部售出,其中两种猴头菇各有1箱样品打a (a 为正整数)折售出,最终获利1577元,请直接写出商店的进货方案. 【答案】(1)特级鲜品猴头菇每箱进价为40元,特级干品猴头菇每箱进价为150元(2)有3种方案,详见解析(3)特级干品猴头菇40箱,特级鲜品猴头菇40箱【分析】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)正确计算求解.(1)设特级鲜品猴头菇和特级干品猴头菇每箱的进价分别是x 元和y 元,根据“购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元”,列出方程组求解即可; (2)设商店计划购进特级鲜品猴头菇m 箱,则购进特级干品猴头菇()80m −箱,根据“获利不少于1560元,其中干品猴头菇不多于40箱,”列出不等式组求解即可;(3)根据(2)中三种方案分别求解即可;元和38.(2024·江苏扬州·中考真题)解不等式组260412x x x −≤⎧⎪⎨−<⎪⎩,并求出它的所有整数解的和.39.(2024·山东威海·中考真题)定义我们把数轴上表示数a 的点与原点的距离叫做数a 的绝对值.数轴上表示数a ,b 的点A ,B 之间的距离()AB a b a b =−≥.特别的,当0a ≥时,表示数a 的点与原点的距离等于0a −.当a<0时,表示数a 的点与原点的距离等于0a −.应用如图,在数轴上,动点A 从表示3−的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B 从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A ,B 之间的距离等于3个单位长度?(2)求点A ,B 到原点距离之和的最小值.【答案】(1)过4秒或6秒(2)3【分析】本题考查了一元一次方程的应用,不等式的性质,绝对值的意义等知识,解题的关键是:(1)设经过x 秒,则A 表示的数为3x −+,B 表示的数为122x −,根据“点A ,B 之间的距离等于3个单位长度”列方程求解即可;≤40.(2024·湖南·中考真题)某村决定种植脐橙和黄金贡柚,助推村民增收致富,已知购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元.(1)求脐橙树苗和黄金贡柚树苗的单价;(2)该村计划购买脐橙树苗和黄金贡柚树苗共1000棵,总费用不超过38000元,问最多可以购买脐橙树苗多少棵?【答案】(1)50元、30元(2)400棵【分析】本题考查了二元一次方程组的应用、一元一次不等式的应用,解题的关键是:(1)设脐橙树苗和黄金贡柚树苗的单价分别为x元/棵,y元/棵,根据“购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元”列方程组求解即可;(2)购买脐橙树苗a棵,根据“总费用不超过38000元”列不等式求解即可.【详解】(1)解:设脐橙树苗和黄金贡柚树苗的单价分别为x元/棵,y元/棵,根据题意,得211023190x y x y +=⎧⎨+=⎩, 解得5030x y =⎧⎨=⎩, 答:脐橙树苗和黄金贡柚树苗的单价分别为50元/棵,30元/棵;(2)解:设购买脐橙树苗a 棵,则购买黄金贡柚树苗()1000a −棵,根据题意,得()5030100038000a a +−≤,解得400a ≤,答:最多可以购买脐橙树苗400棵.41.(2024·贵州·中考真题)为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩? 【答案】(1)种植1亩甲作物和1亩乙作物分别需要5、6名学生(2)至少种植甲作物5亩【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,(1)设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据“种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名”列方程组求解即可;(2)设种植甲作物a 亩,则种植乙作物()10a −亩,根据“所需学生人数不超过55人”列不等式求解即可.【详解】(1)解:设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据题意,得32272222x y x y +=⎧⎨+=⎩, 解得56x y =⎧⎨=⎩, 答:种植1亩甲作物和1亩乙作物分别需要5、6名学生;(2)解:设种植甲作物a 亩,则种植乙作物()10a −亩,。

不等式组_精品文档

不等式组_精品文档

不等式组1. 引言不等式组是数学中一个重要的概念,它由一组不等式组成。

不等式是数学中用于描述数值之间大小关系的工具,而不等式组则可以用于描述多个数值之间的复杂关系。

本文将介绍不等式组的定义、解法以及其在应用中的一些常见场景。

2. 不等式组的定义不等式组是由多个不等式组成的集合,每个不等式可以是大于(>)、小于(<)、大于等于(≥)或小于等于(≤)等符号连接的数学表达式。

一个不等式组的一般形式可表示为:{不等式1,不等式2,...不等式n}其中,每个不等式可以包含一或多个变量,表示了变量之间的大小关系,或者变量与常数之间的关系。

3. 不等式组的解法不等式组的解是使得每个不等式都成立的变量的取值范围。

要解决一个不等式组,可以通过以下步骤进行:- 确定每个不等式中的变量个数和类型。

- 找到每个不等式中变量的取值范围。

可以通过移项、合并同类项、因式分解等方法将不等式转化为形式更简单的不等式。

- 根据不等式符号的特性进行取值范围的确定。

例如,对于大于(>)或小于(<)的不等式,变量的取值范围应排除等号右侧的值;对于大于等于(≥)或小于等于(≤)的不等式,变量的取值范围应包括等号右侧的值。

- 根据每个不等式的取值范围求解整个不等式组的解。

可以通过求交集或并集的方式得到最终的解集。

4. 不等式组的表示方法不等式组可以用不等式图形表示法、解集表示法或区间表示法来表示,具体的表示方式取决于问题的要求和解的形式。

不等式图形表示法是通过绘制每个不等式的图形并表示它们的交集或并集来表示不等式组。

解集表示法是通过写出每个不等式的解集并表示它们的交集或并集来表示不等式组。

区间表示法是用数轴上的区间表示不等式组的解集。

5. 不等式组的应用不等式组在实际问题中具有广泛的应用。

以下是一些常见的应用场景:- 经济领域:不等式组可以用于描述供需关系、利润最大化问题等经济学中的问题。

- 工程领域:不等式组可以用于描述工程中的约束条件,如最大承载能力、最短路径等。

九年级数学教案不等式组的解法与应用

九年级数学教案不等式组的解法与应用

九年级数学教案不等式组的解法与应用九年级数学教案:不等式组的解法与应用导言:不等式组是数学中的一个重要概念,它由多个不等式组成,并且需要找出满足这些不等式的解集。

在九年级数学教学中,学生将接触到不等式组的解法与应用。

本教案将介绍不等式组的基本概念、解法以及实际应用,帮助学生理解和掌握这一知识点。

一、不等式组的基本概念1.1 不等式组的定义不等式组由多个不等式构成,通常用{x, y, z...}表示。

例如:{2x+3y<10,x-y>5}就是一个含有两个不等式的不等式组。

1.2 解集的概念解集是满足不等式组中所有不等式的所有点的集合。

解集可以为空集、有限集或无限集。

解集的表示通常用{x, y, z...|不等式1, 不等式2...}表示。

例如:{x, y | x>1, y<2}表示满足不等式x>1和y<2的点的集合。

二、不等式组的解法2.1 图解法可以通过在坐标系上绘制不等式的图形来求解不等式组。

我们将每个不等式转化为等式,并在坐标系上绘制对应的直线或曲线。

然后,通过观察图形的交点或不等式的区域来确定解集。

2.2 代入法代入法是通过将不等式组中的一个不等式的解表达式代入到其他不等式中,从而求解整个不等式组。

这种方法可以简化计算,特别是在不等式组比较复杂的情况下。

2.3 消元法消元法是通过对不等式组进行加、减、乘、除等运算,使得其中一个变量的系数为1,从而简化解法的过程。

通过逐步消元,可以得到简化形式的不等式组,进而求得解集。

三、不等式组的应用3.1 实际问题的建模不等式组可以应用于解决实际问题,例如优化问题、约束问题等。

通过建立数学模型,可以将实际问题转化为不等式组的形式,并利用解集来解决问题。

3.2 市场竞争分析在市场竞争中,各个厂商或企业可能会面临不同的限制条件。

通过建立相应的不等式组,可以分析市场份额、收益等因素,并找到最优的经营策略。

3.3 资源分配问题不等式组可以应用于资源分配问题,例如生产成本分析、人力资源分配等。

考点07 一元一次不等式(组)及其应用-备战2023届中考数学一轮复习考点梳理(解析版)

考点07 一元一次不等式(组)及其应用-备战2023届中考数学一轮复习考点梳理(解析版)

考点07 一元一次不等式(组)及其应用中考数学中,一元一次不等式(组)的解法及应用时有考察,其中,不等式基本性质和一元一次不等式(组)解法的考察通常是以选择题或填空题的形式出题,还通常难度不大。

而对其简单应用,常会和其他考点(如二元一次方程组、二次函数等)结合考察,此时难度上升,需要小心应对。

对于一元一次不等式中含参数问题,虽然难度系数上升,但是考察几率并不大,复习的时候只需要兼顾即可!一、不等式的基本性质二、一元一次不等式(组)的解法三、求不等式(组)中参数的值或范围四、不等式(组)的应用考向一:不等式的基本性质【易错警示】1.若a >b ,则下列不等式中,错误的是( )A .3a >3bB .﹣<﹣C .4a ﹣3>4b ﹣3D .ac 2>bc 2【分析】根据不等式的性质进行一一判断.【解答】解:A 、在不等式a >b 的两边同时乘以3,不等式仍成立,即3a >3b ,故本选项正确;B 、在不等式a >b 的两边同时除以﹣3,不等号方向改变,即﹣<﹣,故本选项正确;C 、在不等式a >b 的两边同时先乘以4、再减去3,不等式仍成立,4a ﹣3>4b ﹣3,故本选项正确;D 、当c =0时,该不等式不成立,故本选项错误.故选:D .2.已知x <y ,下列式子不成立的是( )A .x +1<y +1B .x <y +100C .﹣2022x <﹣2022yD .【分析】根据不等式的性质判断即可.【解答】解:A 、在不等式x =y 的两边同时加上1得x +1<y +1,原变形成立,故此选项不符合题意;B 、在不等式x <y 的两边同时加上100得x +100<y +100,原变形成立,故此选项不符合题意;C 、在不等式x <y的两边同时乘以﹣2022得﹣2022x >﹣2022y ,原变形不成立,故此选项符合题意;D 、在不等式x <y 的两边同时除以2022得x <y ,原变形成立,故此选项不符合题意;故选:C .3.若x>y,且(a+3)x<(a+3)y,求a的取值范围 a<﹣3 .【分析】根据题意,在不等式x>y的两边同时乘以(a+3)后不等号改变方向,根据不等式的性质3,得出a+3<0,解此不等式即可求解.【解答】解:∵x>y,且(a+3)x<(a+3)y,∴a+3<0,则a<﹣3.故答案为:a<﹣3.4.已知3x﹣y=1,且x≤3,则y的取值范围是 y≤8 .【分析】根据3x﹣y=1求出x=,根据x≤3得出≤3,再根据不等式的性质求出不等式的解集即可.【解答】解:∵3x﹣y=1,∴3x=1+y,∴x=,∵x≤3,∴≤3,∴1+y≤9,∴y≤8,即y的取值范围是y≤8,故答案为:y≤8.5.已知a,b,c为三个非负实数,且满足,若W=3a+2b+5c,则W的最大值为 130 .【分析】将方程组两个方程相加,得到3a+5c=130﹣4b,整体替换可得W=130﹣2b,再由b的取值范围即可求解.【解答】解:,①+②,得3a+4b+5c=130,可得出a=10﹣,c=20﹣,∵a,b,c为三个非负实数,∴a =10﹣≥0,c =20﹣≥0,∴0≤b ≤20,∴W =3a +2b +5c =2b +130﹣4b =130﹣2b ,∴当b =0时,W =130﹣2b 的最大值为130,故答案为:130.考向二:一元一次不等式(组)的解法1. 一元一次不等式的解法2. 一元一次不等式(组)的解法①按照一元一次不等式的解法解出每个不等式的解集②依据数轴取各不等式解集的公共部分一元一次不等式组解法及解集的四种情况无解大大小小则无解1.不等式3(2﹣x)>x+2的解在数轴上表示正确的是( )A.B.C.D.【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.【解答】解:∵3(2﹣x)>x+2,∴6﹣3x>x+2,﹣3x﹣x>2﹣6,﹣4x>﹣4,x<1,故选:C.2.在平面直角坐标系中,点A(a,2)在第二象限内,则a的取值可以是( )A.1B.﹣C.0D.4或﹣4【分析】根据第二象限内点的坐标特点列出关于a的不等式,求出a的取值范围即可.【解答】解:∵点A(a,2)是第二象限内的点,∴a<0,四个选项中符合题意的数是,故选:B.3.关于x的方程ax=2x﹣7的解为负数,则a的取值范围是 a>2 .【分析】先解方程得到x=,根据题意得到<0,所以2﹣a<0,然后解不等式即可.【解答】解:解方程ax=2x﹣7的得x=,∵方程ax=2x﹣7的解为负数,∴<0,∴2﹣a<0,解得a>2,即a的取值范围为a>2.故答案为:a>2.4.已知x>2是关于x的不等式x﹣3m+1>0的解集,那么m的值为 1 .【分析】先把m看作常数,求出不等式的解集,再根据不等式解集为x>2,建立关于m的方程,求解即可.【解答】解:x﹣3m+1>0x>3m﹣1,∵x>2 是关于x的不等式x﹣3m+1>0 的解集,∴3m﹣1=2,解得:m=1,故答案为:1.5.若关于的不等式﹣ax>bx﹣b(ab≠0)的解集为x>,则关于x的不等式3bx<ax﹣b的解集是 x>﹣1 .【分析】根据已知不等式的解集,即可确定的值以及a+b的符号,进而求得a=2b,进一步求得b<0,从而解不等式即可.【解答】解:移项,得:(a+b)x<b,根据题意得:a+b<0且=,即3b=a+b,则a=2b,又a+b<0,即3b<0,则b<0,则关于x的不等式3bx<ax﹣b化为:3bx<2bx﹣b,解得x>﹣1.故答案为:x>﹣1.6.解下列不等式,并将解集在数轴上表示出来.(1)﹣x+19≥2(x+5);(2).【分析】(1)先去括号,再移项、合并同类项,把x的系数化为1,再把不等式的解集在数轴上表示出来即可;(2)不等式两边都乘12去分母后,去括号,移项合并,将x系数化为1,求出解集,表示在数轴上即可.【解答】解:(1)﹣x+19≥2(x+5),去括号,得)﹣x+19≥2x+10,移项,得﹣x﹣2x≥10﹣19,合并同类项,得﹣3x≥﹣9,系数化为1,得x≤3.将解集在数轴上表示为:(2),去分母,得3(x+4)﹣12<4(4x﹣13),去括号,得3x+12﹣12<16x﹣52,移项,得3x﹣16x<﹣52﹣12+12,合并同类项,得﹣13x<﹣52,系数化为1,得x>4.解集在数轴上表示为:7.关于x的方程5x﹣2k=6+4k﹣x的解是负数,求字母k的值.【分析】解方程得出x=k+1,根据方程的解为负数得出关于k的不等式,解之可得.【解答】解:解方程5x﹣2k=6+4k﹣x得x=k+1,∵方程的解是负数,∴k+1<0,∴k<﹣1.8.不等式组的解集在数轴上表示为( )A.B.C.D.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.【解答】解:,解不等式①,得:x≥1,解不等式②,得:x≥2,故原不等式组的解集是x≥2,其解集在数轴上表示如下:,故选:C.9.对于任意实数x,我们用{x}表示不小于x的最小整数.如:{2.7}=3,{2022}=2022,{﹣3.14}=﹣3,若{2x+3}=﹣2,则x的取值范围是( )A.B.C.D.【分析】根据{x}表示不小于x的最小整数,可得﹣3<2x+3≤﹣2,然后进行计算即可解答.【解答】解:∵{2x+3}=﹣2,∴﹣3<2x+3≤﹣2,∴﹣6<2x≤﹣5,∴﹣3<x≤﹣,故选:D.10.不等式组的解集是 x<3 .【分析】先求出每个一元一次不等式的解集,再求出它们的公共部分即为不等式组的解集.【解答】解:,解①得:x≤8,解②得:x<3,∴不等式组的解集为x<3.故答案为:x<3.11.解不等式(组),并把解集在数轴上表示出来:(1)2(x﹣1)+2<3x;(2).【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1)∵2(x﹣1)+2<3x,∴2x﹣2+2<3x,∴2x﹣3x<2﹣2,∴﹣x<0,则x>0,将解集表示在数轴上如下:(2)解不等式3x﹣(x﹣2)≥6,得:x≥2,解不等式x+1>,得:x<4,则不等式组的解集为2≤x<4,将不等式组的解集表示在数轴上如下:考向三:求不等式组中参数的值或范围方法步骤总结:①解出不等式(组)的解集——用含参数的表达式表示;②根据题目要求,借助数轴,确定参数表达式的范围,必在两个相邻整数之间;③由空心、实心判断参数两边边界哪边可以取“=”,哪边不能取“=”。

初三数学不等式的解法与应用

初三数学不等式的解法与应用

初三数学不等式的解法与应用在初中数学中,不等式是一个非常重要的概念,并且在解题过程中有着广泛的应用。

本文将介绍不等式的基本概念和解法,并探讨其在实际问题中的应用。

一、不等式的基本概念不等式是数学中描述数值大小关系的一种方式。

一般来说,不等式由不等号连接的两个表达式组成。

常见的不等号有大于号(>)、小于号(<)、大于等于号(≥)和小于等于号(≤)。

例如,以下是几个常见的不等式:1. x > 22. 3x + 4 < 103. 2x ≤ 5 - x二、不等式的解法解不等式的过程就是找到使不等式成立的数值范围。

根据不等号的性质,解不等式可以通过以下几种方法来进行求解。

1. 图像法对于一元一次不等式,可以将其表示成坐标轴上的图像,通过观察图像的形状,找到使不等式成立的数值范围。

例如,对于不等式 x > 2,可以绘制出x轴,并在x = 2处画一个实心圆点,然后在此点右侧用箭头标识不等关系。

从图像可以看出,不等式的解集为{x | x > 2},即大于2的所有实数。

2. 代数法通过对不等式进行代数变换,可以找到不等式的解集。

例如,对于不等式 3x + 4 < 10,可以按照一般的方程解法进行求解:3x + 4 < 103x < 10 - 43x < 6x < 2因此,不等式的解集为{x | x < 2},即小于2的所有实数。

3. 区间法对于一元一次不等式,可以通过找到使不等式成立的数值范围的闭区间或开区间。

例如,对于不等式2x ≤ 5 - x,可以按照以下步骤进行求解:2x ≤ 5 - x3x ≤ 5x ≤ 5/3因此,不等式的解集为[x | x ≤ 5/3],即小于等于5/3的所有实数。

三、不等式的应用不等式在代数和几何问题中有着广泛的应用。

以下是几个常见的应用场景。

1. 线性规划线性规划是一种优化问题,通过解线性不等式组来确定使目标函数达到最大或最小值的最优解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、不等式(组)及其应用嵇光 昆山市新镇中学【课标要求】⒈掌握不等式及其基本性质.⒉掌握一元一次不等式、一元一次不等式组及其解法,用数轴确定解集. ⒊根据具体问题中的数量关系,列出不等式(组),解决简单的问题. 【课时分布】不等式(组)部分在第一轮复习时大约需要3个课时,其中包括单元测试.下表为内容及课时安排(仅供参考).【知识回顾】 1、知识脉络2、基础知识不等式的有关概念(1)用不等号表示不等关系的式子叫做不等式. (2)使不等式成立的未知数的值叫做不等式的解.(3)不等式的所有的解,组成这个不等式的解的集合,简称为这个不等式的解集. (4)求不等式的解集的过程,叫做解不等式. 不等式的基本性质 (1)不等式的性质1不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变. 如果a >b ,那么a +c >b +c ,a -c >b -c . (2)不等式的性质2不等式的两边都乘以(或除以)同一个正数,不等号的方向不变. 如果a >b ,并且c >0,那么a c >b c .(3)不等式的性质3不等式的两边都乘以(或除以)同一个负数,不等号的方向改变. 如果a >b ,并且c <0,那么a c <b c . 一元一次不等式(1)只含有一个未知数,且含未知数的式子是整式,未知数的最高次数是1,像这样的不等式叫做一元一次不等式.(2)解一元一次不等式与解一元一次方程相类似,基本步骤是:去分母、去括号、移项、合并同类项、系数化为 1.特别要注意当系数化为1时,不等式两边同乘以(或除以)同一个负数,不等号的方向必须改变.(3)一元一次不等式的解集在数轴上直观表示如下图:一元一次不等式组(1)几个未知数相同的一元一次不等式所组成的不等式组叫做一元一次不等式组. (2)解一元一次不等式组一般先求出不等式组中各个不等式的解集,再利用数轴求出它们的公共部分.(3)由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下: 若b a <,则 ①⎩⎨⎧>>b x a x 的解集是b x >,如下图: ②⎩⎨⎧<<bx ax 的解集是a x <,如下图:③⎩⎨⎧<>b x ax 的解集是b x a <<,如下图: ④⎩⎨⎧><bx a x 无解,如下图: 不等式(组)的应用解不等式的应用问题关键是建立不等式模型,会根据题中的不等量关系建立不等式(组),解决实际应用问题.具体可以参见“三、方程(组)及其应用”中列方程(组)解应用题的一般步骤. 3.能力要求例1.解下列不等式(组),并把解集在数轴上表示出来. (1)151--x ≥;2x(2) ()82+x ≤(),3410--x ①.131221<--+x x ② < > ≤≥解:(1) 去分母,得 ()1012--x ≥,5x整理,得 x 3-≥,12 ∴ x ≤.4- 解集在数轴上表示为:(2) 由①得 162+x ≤,12410+-x 整理得 x 6≤,6 ∴ x ≤;1由②得 ()(),612213<--+x x 整理得 ,1<-x∴解集在数轴上表示为:∴ 不等式组的解集为x <-1≤.1例2.已知关于x 、y 的方程组⎩⎨⎧=+-=-a y x a y x 2132的解是负数,求a 的取值范围.【分析】先由方程组求出方程组的解(用含a 的代数式表示),再由方程组的解为负数列出不等式组,求a 的取值范围.【解】 解方程组,2132⎩⎨⎧=+-=-a y x a y x 得 .71725⎪⎪⎩⎪⎪⎨⎧+=-=a y a x ∵方程组的解是负数,∴⎩⎨⎧<<.0,0y x 即⎪⎪⎩⎪⎪⎨⎧<+<-.071,0725a a∴⎪⎩⎪⎨⎧-<<.1,52a a∴.1-<a【说明】本题主要考查学生解方程组和分步解决问题的能力.当方程或不等式中含有字母时,一般是先将字母看作已知数进行计算.例3.现计划把甲种货物1240t 和乙种货物880t 用一列货车运往基地,已知这列货车挂有A 、B 两种不同规格的货车厢共40节,使用A 型车厢每节费用为6000元,使用B 型车厢每节费用为8000元.(1)设运送这批货物的总费用为y 万元,这列货车挂A 型车厢x 节,试写出y 与x 之间的函数关系式.(2)如果每节A 型车厢最多可装甲种货物35t 和乙种货物15t,每节B 型车厢最多可装甲种货物25t 和乙种货物35t,装货时按此要求安排A 、B 两种车厢的节数,那么共有几种方案?(3)在(2)的方案中,哪种方案费用最省?并求出最省费用.【分析】题(1)中总费用应该是A 型车厢的费用和B 型车厢的费用的总和.题(2)的要求是A 型车厢的甲种货物最大装载量与B 型车厢的甲种货物最大装载量的和不少于1240吨;A 型车厢的乙种货物最大装载量与B 型车厢的乙种货物最大装载量的和不少于880吨.【解】 (1) ∵ 用A 型车厢x 节,则B 型车厢为(40-x )节,得 .322.0)40(8.06.0+-=-+=x x x y (2) 依题意,得 ()x x -+4025≥,1240()x x -+4035≥.880解之,得 24≤x ≤.26∵ x 取整数, ∴ 24=x 或25或26.∴ 共有三种方案:① 24节A 型车厢和16节B 型车厢; ② 25节A 型车厢和15节B 型车厢; ③ 26节A 型车厢和14节B 型车厢. (3) 当24=x 时,2.27=y 万元; 当25=x 时,27=y 万元; 当26=x 时,8.26=y 万元;故安排方案③,即A 型车厢26节,B 型车厢14节最省,最省费用为26.8万元. 【说明】目前中考越来越注重能力的考查.本题是一道实际生活中的“方案设计问题”,要善于把这类问题转化,抽象为数学问题加以解决.例 4. 某市大蒜在国内、国际市场享有盛誉.某运输公司计划用10辆汽车将甲、乙、丙三种规格大蒜共100t 运输到外地.按规定每辆车只能装同一种大蒜,且必须满载,每种大蒜不少于一车.(1)设用x 辆车装运甲种大蒜,用y 辆车装运乙种大蒜,根据下表提供的信息,求y 与x 之间的函数关系式,并求自变量x 的取值范围.(2)设此次运输公司的利润为M (单位:百元),求M 与x 的函数关系式及最大运输利润【分析】题(1)中要全面把握三个条件:共用10辆汽车;大蒜共100t ;每种大蒜不少于一车.由题意可以列出方程和不等式.题(2)中运输公司的利润M 是甲、乙、丙三种大蒜的利润总和. 【解】(1)∵用x 辆车装运甲种大蒜,用y 辆车装运乙种大蒜,∴装运丙种大蒜的车辆为(10―x ―y )辆.根据题意,得 10(11108++y x ―x ―)y =100, 化简,得 y =-x 3+10.∵每种大蒜不少于一车, ∴ 103+-x ≥1,x ≥1. 解之得 1≤x ≤3.(2) 根据题意,得 M =x 82.2⋅+y 101.2⋅+10(112⋅―x ―y )=x 6.17+21(-10(22)103++x -x x 3+-)10 =-.2104.1+x∵=k -,04.1<∴M 随x 的增大而减小. 又∵1≤x ≤,3∴当x =1时M 有最大值.∴M 最大=-210+4.1=6.208(百元) 此时相应的车辆分配方案为:用1辆车装运甲种大蒜, 用7辆车装运乙种大蒜,用2辆车装运丙种大蒜.【说明】不等式的运用常常与方程(组)、函数的知识相结合,当不等式作为隐含条件使用的时候,更能反映学生全面思考问题的能力.例 5. 我国东南沿海某地的风力资源丰富,一年内日平均风速不小于3m/s 的时间共约160天,其中日平均风速不小于6m/s 的时间约占60天.为了充分利用风能这种“绿色能源”,该地拟建一个小型风力发电场,决定选用A 、B 两种型号的风力发电机.根据产品说明,这两种风力发电机在各种风速下的日发电量(即一天的发电量)如下表:(1)若这个发电场购x 台A 型风力发电机,则预计这些A 型风力发电机一年的发电总量至少为 h kW ⋅;(2)已知A 型风力发电机每台0.3万元,B 型风力发电机每台0.2万元.该发电场拟购置风力发电机共10台,希望购置的费用不超过2.6万元,而建成的风力发电场每年的发电总量不少于102000h kW ⋅,请你提供符合条件的购机方案.【分析】 审题的关键在于将文字与表格中的符号对应起来,如一台A 型发电机一年有60d 的日发电量≥150h kW ⋅,有100d 的日发电量≥36h kW ⋅,则可求出一台A 型发电机的年发电量(最小值).题(2)要求提出符合条件的购机方案,因此,只要是符合要求的方案均可,实际上购机方案可能不止一套. 【解】(1)12600x(2)设购A 型发电机x 台,则购B 型发电机10(-)x 台. 根据题意,得()x x -+102.03.0≤,6.2()x x -+10780012600≥.102000解之得:5≤x ≤.6∴可购A 型发电机5台,则购B 型发电机5台;或购A 型发电机6台,则购B型发电机4台.【说明】本题提供的是实际生活中常见的表格,要善于从中找出解题所需要的有效信息,构建相应的数学模型. 【复习建议】1、 立足教材,打好基础,查漏补缺,系统复习,熟练掌握不等式(组)的基本知识、基本方法和基本技能.2、多样化题型的适应性训练,重视问题情境的创设和实际问题的解决,强化不等式(组)思想和方法的渗透、总结.增强学生自觉运用不等式(组)模型解决现实生活中的数学问题的意识和能力.3、注重知识间的联系,将不等式(组)知识与函数知识、方程(组)知识有机结合,强化训练学生综合运用数学知识的能力,从而把数学知识转化为自身素质.。

相关文档
最新文档