直升机操控原理

合集下载

直升飞机飞行原理

直升飞机飞行原理

直升飞机飞行原理直升机是一种垂直起降的飞行器,它可以在空中悬停、向前、向后、向左、向右飞行,还可以进行定点停留、低高度飞行、复杂地形涂毒、运输货物等,是一种非常灵活多变的飞行器。

那么,直升机是如何实现这种“绕不过去”的飞行方式的呢?下面,我们来了解一下直升机的飞行原理。

一、空气动力学基础不论是飞机还是直升机,它们都要靠空气动力学来实现飞行。

空气动力学是研究空气对物体的作用的学科。

在空气中,物体移动时,空气会对其产生阻力、升力和推力等作用。

在直升机的飞行中,最主要的就是升力了。

升力是空气对直升机产生的向上的支持力,使其能够腾空而起。

而产生升力的关键,则是由于在直升机的旋转叶片上产生了一个向下的气流,这个气流将气体压缩,使其速度加快,压力降低,形成低压区。

而直升机上方的空气则形成高压区,从而产生了升力。

二、基本构造1.机身部分:直升机的主体部分,其中装置有驾驶室、乘客和货物舱、发动机等。

2.旋翼部分:直升机最重要的部分,由主旋翼和尾旋翼组成。

3.主旋翼:是直升机上的最重要的部分,主要产生升力和推进力。

它是一组大型的可旋转叶片,可以轮流地在上下、左右和前后方向调整。

4.尾旋翼:又称为方向舵,主要负责平衡和转向直升机。

5.起落架:支撑直升机在地面或者水面上的装置。

三、飞行原理我们知道,飞机在飞行中通过翼面产生升力和推力来维持飞行。

而直升机则是通过旋翼来产生升力和推力,从而可以实现垂直起降和各种方向的移动。

正常飞行时,主旋翼的旋转速度越快,升力就越大。

主旋翼在旋转时还产生了空气流,对于尾旋翼而言,这种空气流就相当于一束强劲的风,从而也可以产生升力和推力,平衡直升机并控制飞行方向。

直升机的旋翼不仅可以产生升力和推力,还可以调整飞行方向。

当主旋翼向右旋转时,直升机就会向左飞行,反之亦然。

而尾旋翼则可以扭转调整直升机的飞行方向。

在直升机的飞行过程中,由于旋翼旋转的高速气流形成较大的后向力,所以需要加装平衡重量使其平衡。

无人机飞行原理—无人直升机飞行原理

无人机飞行原理—无人直升机飞行原理
三、无人直升机飞行原理
4.操纵性
1、操纵方式
直升机的操纵都是通过主旋翼及尾桨来实现的,由于直升机的纵向移动与俯仰转动、横侧移动与滚转是 不能独立分开的,因此直升机的操纵主要有以下4种方式:
(1)垂直运动操纵。通过总距杆改变旋翼桨叶角而改变旋翼拉力,操纵直升机升降改变升力的大小来 实现。
(2)纵向运动操纵。通过改变旋翼纵向倾斜角而改变拉力方向,产生附加纵向力来操纵直升机前进或 后退。
(3)横侧运动操纵,通过改变旋翼横向倾斜角而改变拉力方向,产生附加横侧力来实现。 (4)航向运动操纵,通过改变尾桨拉力大小,改变尾桨桨距而改变尾桨拉力来保证原定航向或进行左 右转弯。
三、无人直升机飞行原理
4.操纵性
2、操纵方法
直升机的操纵系统,是指传递操纵指令、进行总操纵、变距操纵和航向操纵的操纵机构和操纵线路。 1)总距操纵 总距操纵,是通过操纵自动倾斜器调节变距铰,使各片桨叶的安装角同时增大或减小,进而使主旋翼的 总桨距改变,从向改变旋翼拉力F的大小。当拉力F大于直升机重力G时,直开机就上升,反之,直升机则 下降。
直升机在垂直飞行状态(轴流状态)时,每片桨叶受到的作用力,除桨叶自身重力外,还有桨叶的拉力 和惯性离心力。由于旋翼周向气流是对称的,每片桨叶在旋转一周中,拉力和惯性离心力不变,所以,桨 叶在各个方向上扬起的角度均相同,主旋翼上的拉力如图。
三、无人直升机飞行原理源自3.稳定性稳定性,是直升机的一种运动属性,通常指直升机保持固有运动状态或抵制外界扰动的能力。 直升机的静稳定性是指平衡状态被破坏瞬间的直升机运动趋势,包括3种形式:静稳定的、静不稳定的和 中性稳定的。 影响直升机稳定性的影响因素很多,主要有如下两点: (1)飞行速度。在低速前飞时平尾提供静不稳定力矩,但随着前飞速度增加,当旋翼尾流不影响到平尾 时,平尾能改善直升机的速度稳定性;同时在较大速度下,平尾也能改善直升机的迎角稳定性。 (2)重心位置。直升机重心对迎角稳定性有明显的影响,后重心时的迎角不稳定性要比正常重心时严重, 这是由于旋翼拉力增量对重心产生的力矩是不稳定的抬头力矩。为了使旋冀对迎角的不稳定程度不是太严 重,要严格限制直升机的后重心。

直升机的飞控原理

直升机的飞控原理

直升机的飞控原理直升机的飞控系统是控制直升机飞行的核心部件,它的基本原理是通过对旋钮、操纵杆等操纵装置的操作转换成电信号,再通过电子设备对这些信号进行处理和控制,最终传达给直升机各个部位,实现对直升机姿态、航向、高度、速度等参数的控制。

直升机的飞控系统由多个部分组成,包括飞行总线、飞行控制计算机、电动操纵表面、液压操纵系统等。

飞行总线是连接飞行控制计算机和其他部件的通信系统,用于传输控制指令和接收状态信息。

飞行控制计算机是控制系统的核心,负责处理操纵装置转换成的电信号,根据飞行任务要求和飞行状态进行计算和控制,再通过飞行总线向其他部件发送控制指令。

直升机的飞控系统实现对姿态的控制主要是通过电动操纵表面和液压操纵系统来实现的。

电动操纵表面一般包括前翼、副翼和方向舵等,通过电机驱动改变表面的位置和角度,从而改变直升机的姿态。

液压操纵系统一般包括液压泵、液压缸和液压阀等,通过泵将液压油输送到缸中,使缸表面的活塞发生位移,进而改变操纵表面的位置和角度。

直升机的飞控系统还可以实现对航向、高度和速度等参数的控制。

航向控制主要是通过控制尾桨的转动来实现的。

尾桨通过尾桨马达驱动,可以改变直升机的航向。

高度控制主要是通过改变旋翼的推力来实现的。

旋翼的叶片角度可以通过电机驱动的系统或液压驱动的系统进行调节,从而改变旋翼的推力。

速度控制主要是通过改变旋翼的转速来实现的。

旋翼的转速可以通过燃油分配系统或液压调节系统来进行控制。

飞行控制计算机是直升机飞控系统的核心部件,它通过接收操纵装置的输入信号,根据飞行任务和状态信息进行计算和控制,最终向操纵表面和液压操纵系统发送控制指令。

飞行控制计算机一般具有实时计算、状态估计和故障处理等功能。

它可以实现对直升机的自动控制和稳定飞行。

总之,直升机的飞控系统是控制直升机飞行的关键部件,通过操纵装置的操作转换成电信号,然后通过飞行控制计算机进行处理和控制,最终传达给直升机各部件,实现对直升机的姿态、航向、高度、速度等参数的控制。

(完整版)直升机飞行操控的基本原理

(完整版)直升机飞行操控的基本原理

直升机飞行操控的基本原理图 1 直升机飞行操纵系统- 概要图(a)(b)图2 直升机操纵原理示意图1.改变旋翼拉力的大小2.改变旋翼拉力的方向3.改变尾桨的拉力飞行操纵系统包括周期变距操纵系统、总距操纵系统和航向操纵系统。

如图2所示,周期变距操纵系统控制直升机的姿态(横滚和俯仰),总距操纵系统控制直升机的高度,航向操纵系统控制直升机的航向。

一、周期变距操纵系统周期操纵系统用于操纵旋翼桨叶的桨距周期改变。

当桨距周期改变时,引起桨叶拉力周期改变,而桨叶拉力的周期改变,又引起桨叶周期挥舞,最终使旋翼锥体相对于机身向着驾驶杆运动的方向倾斜,从而实现直升机的纵向(包括俯仰)及横向(包括横滚)运动。

纵向和横向操纵虽然都通过驾驶杆进行操纵,但二者是各自独立的。

周期变距操纵系统(见图3)包括右侧和左侧周期变距操纵杆(1)和(3)、可调摩擦装置(2)、橡胶波纹套(4)、俯仰止动件(5)、横滚连杆(7)、俯仰连杆(8)、横滚止动件及中立位置定位孔(9)、横滚拉杆(10)、横滚协调拉杆(11)、俯仰扭矩管轴组件(12)、总距拉杆(13)、与复合摇臂相连接的拉杆(14)、伺服机构(15)、伺服机构(横滚+总距)(16)、伺服机构(俯仰+总距)(17)和可调拉杆(18)等组件。

1.右侧周期变距操纵杆3.左侧周期变距操纵杆2.可调摩擦装置4.橡胶波纹套5.俯仰止动件6.复合摇臂 7.横滚连杆8.俯仰连杆9.横滚止动件及中立位置定位孔10.横滚拉杆11.横滚协调拉杆12.俯仰扭矩管轴组件13.总距拉杆14.与复合摇臂相连接的拉杆15.伺服机构16.伺服机构(横滚+总距)17.伺服机构(俯仰+总距)18.可调拉杆图 3 直升机周期变距操纵系统(一)纵向操纵情况当前推驾驶杆时,通过俯仰扭矩管轴组件(9)及俯仰连杆(8),使复合摇臂(6)上的纵向摇臂逆时针转动,通过其后的拉杆、摇臂,使左前侧纵向伺服机构下移,自动倾斜器固定盘向左前方倾斜,旋翼桨盘前倾,进而使直升机向前运动。

直升飞机工作原理

直升飞机工作原理

直升飞机工作原理
直升飞机是一种能够垂直起降并且在空中悬停的飞行器。

其工作原理基于贝尔-罗夫式旋翼系统,这是一种由一个巨大的旋
翼构成的系统,也被称为主旋翼。

主旋翼通过旋转产生了向上的升力,并将飞机提升至空中。

主旋翼通常由多个叶片组成,这些叶片通过复杂的机械结构与飞机的机身相连接。

当发动机开始工作时,主旋翼开始旋转。

通过改变旋翼叶片的角度和速度,飞行员可以控制飞机的飞行方向、高度和姿态。

为了保持平衡和稳定性,直升飞机通常配备了一枚尾旋翼,也被称为反推旋翼。

尾旋翼的主要功能是制造一个与主旋翼旋转方向相反的扭矩,以抵消主旋翼产生的旋转力矩。

这样可以保持飞机的稳定性,并防止其自身旋转。

除了旋翼系统,直升飞机还包括其他重要的组成部分。

其中包括发动机,用于为旋翼系统提供动力;航电系统,用于控制和监测各个飞机系统的运行状态;座舱,用于容纳飞行员和乘客;以及机身结构,用于支撑和保护各个组件。

总而言之,直升飞机的工作原理基于旋翼系统的运转,通过旋转产生升力以及控制飞机的飞行方向和高度。

这种独特的设计使得直升飞机能够以垂直起降的方式飞行,并在空中悬停。

直升机的工作原理

直升机的工作原理

直升机的工作原理
直升机的工作原理是利用主旋翼和尾推力来产生升力和动力。

主要包括以下几个部分:
1. 主旋翼:主旋翼是直升机最重要的部分,通常由三至六片可调节的旋翼叶片组成。

当发动机提供足够的动力使主旋翼快速旋转时,旋翼叶片会产生升力。

通过改变叶片的推力和螺旋桨角度,可以控制直升机的升力和姿态。

2. 尾推力:直升机的尾部有一根垂直的尾旋翼,它的作用是产生推力和水平方向的倾斜力。

通过改变尾旋翼的推力和方向,可以控制直升机的方向和平衡。

3. 方向舵:直升机的尾部还有一个水平的方向舵,用来控制直升机的左右转向。

通过改变方向舵角度,可以改变直升机的水平方向。

4. 发动机:直升机的发动机通常是内燃机或涡轮发动机,提供所需的动力和转动力给主旋翼。

5. 操纵系统:直升机的操纵系统包括操纵杆、脚踏板、控制杆等。

驾驶员通过操纵这些操纵设备来改变主旋翼和尾推力的推力、角度和方向,从而控制直升机的升力、姿态和飞行方向。

总结来说,直升机的工作原理通过旋转的主旋翼产生升力,通过尾推力和调整方向舵来控制飞行方向,通过发动机提供动力。

驾驶员通过操纵系统来控制这些机构,使直升机飞行在所需高度和方向上。

直升机飞行操控的基本原理

直升机飞行操控的基本原理

直升机飞行操控的基本原理图 1 直升机飞行操纵系统- 概要图(a)(b)图2 直升机操纵原理示意图1.改变旋翼拉力的大小2.改变旋翼拉力的方向3.改变尾桨的拉力飞行操纵系统包括周期变距操纵系统、总距操纵系统和航向操纵系统。

如图2所示,周期变距操纵系统控制直升机的姿态(横滚和俯仰),总距操纵系统控制直升机的高度,航向操纵系统控制直升机的航向。

一、周期变距操纵系统周期操纵系统用于操纵旋翼桨叶的桨距周期改变。

当桨距周期改变时,引起桨叶拉力周期改变,而桨叶拉力的周期改变,又引起桨叶周期挥舞,最终使旋翼锥体相对于机身向着驾驶杆运动的方向倾斜,从而实现直升机的纵向(包括俯仰)及横向(包括横滚)运动。

纵向和横向操纵虽然都通过驾驶杆进行操纵,但二者是各自独立的。

周期变距操纵系统(见图3)包括右侧和左侧周期变距操纵杆(1)和(3)、可调摩擦装置(2)、橡胶波纹套(4)、俯仰止动件(5)、横滚连杆(7)、俯仰连杆(8)、横滚止动件及中立位置定位孔(9)、横滚拉杆(10)、横滚协调拉杆(11)、俯仰扭矩管轴组件(12)、总距拉杆(13)、与复合摇臂相连接的拉杆(14)、伺服机构(15)、伺服机构(横滚+总距)(16)、伺服机构(俯仰+总距)(17)和可调拉杆(18)等组件。

1.右侧周期变距操纵杆3.左侧周期变距操纵杆2.可调摩擦装置4.橡胶波纹套5.俯仰止动件6.复合摇臂 7.横滚连杆8.俯仰连杆9.横滚止动件及中立位置定位孔10.横滚拉杆11.横滚协调拉杆12.俯仰扭矩管轴组件13.总距拉杆14.与复合摇臂相连接的拉杆15.伺服机构16.伺服机构(横滚+总距)17.伺服机构(俯仰+总距)18.可调拉杆图 3 直升机周期变距操纵系统(一)纵向操纵情况当前推驾驶杆时,通过俯仰扭矩管轴组件(9)及俯仰连杆(8),使复合摇臂(6)上的纵向摇臂逆时针转动,通过其后的拉杆、摇臂,使左前侧纵向伺服机构下移,自动倾斜器固定盘向左前方倾斜,旋翼桨盘前倾,进而使直升机向前运动。

直升机上的工作原理是什么

直升机上的工作原理是什么

直升机上的工作原理是什么
直升机的工作原理是通过旋转机翼产生升力,推动机械驱动力来实现飞行。

具体包括以下步骤:
1. 旋翼产生升力:直升机通常配备一个或多个主旋翼,旋翼由数个可调节的桨叶组成。

当发动机提供动力,使旋翼以适当的速率旋转时,桨叶产生升力,向上推动直升机。

2. 控制俯仰:为了改变直升机的俯仰姿态(前后倾斜),可调节桨叶的角度。

当主旋翼前后倾斜时,升力的方向也会发生变化,从而使得直升机向前或向后倾斜。

3. 控制横滚:直升机的横滚姿态(左右倾斜)也可以通过旋翼桨叶的调整来实现。

当主旋翼的一侧上升,并与另一侧下降时,会产生一个横向推力,使得直升机向左或向右倾斜。

4. 推进力:为了提供向前飞行的推进力,直升机通常安装一个尾推装置,如旋转叶片的尾桨或尾喷气发动机。

这些设备产生推力,抵消直升机的阻力,使其能够在空中移动。

总的来说,直升机的工作原理基于旋转机翼产生升力和通过各种方式控制姿态来实现飞行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 直升机的操纵原理
直升机不同于固定翼飞机,一般都没有在飞行中 供操纵的专用活动舵面。

这是由于在小速度飞行 或悬停中,其作用也很小,因为只有当气流速度 很大时舵面或副翼才会产生足够的空气动力。

单 旋翼带尾桨的直升机主要靠旋翼和尾桨进行操纵, 而双旋翼直升机靠两副旋翼来操纵。

由此可见, 旋翼还起着飞机的舱面和副翼的作用。




直升机操纵原理
旋翼不仅提供升力同时也是直升机的主要操 纵面。


总距操纵杆:通过自动倾斜器改变旋翼桨叶 总距,控制直升机的升降运动。

提杆,增大 总距,升力增大,直升机上升;压杆,减小 总距,直升机下降。


周期变距操纵杆:操纵周期变距操纵杆,使 自动倾斜器相应的倾斜,从而使桨叶的桨距 作每周一次的周期改变,造成旋翼拉力矢量 按相应的方向倾斜,达到控制直升机的前、 后(左、右)和俯仰(或横滚)运动。




直升机操纵原理
脚蹬:控制尾桨,实现航向操纵。

尾桨:平衡旋翼反扭矩、航向操纵。

垂尾:增加航向稳定性。

平尾:增加俯仰稳定性。




直升机操纵原理(续)


6.1 直升机操纵特点
直升机驾驶员座舱 操纵机构及配置直 升机驾驶员座舱主 要的操纵机构是: 驾驶杆(又称周期 变距杆)、脚蹬、 油门总距杆。

此外 还有油门调节环、 直升机配平调整片 开关及其他手柄.


驾驶杆和脚蹬
驾驶杆位于驾驶员座椅前面,通过操纵线系与旋翼 的自动倾斜器连接。

驾驶杆偏离中立位置表示:
向前——直升机低头并向前运动; 向后——直升机抬头并向后退; 向左——直升机向左倾斜并向左侧运动; 向右——直升机向右倾斜并向右侧运动。

脚蹬位于座椅前下部,对于单旋翼带尾桨的直升机
来说,驾驶员蹬脚蹬操纵尾桨变距改变尾桨推(拉) 力,对直升机实施航向操纵。




油门总距杆
油门总距杆通常位于驾驶员座椅的左方,由 驾驶员左手操纵,此杆可同时操纵旋翼总距 和发动机油门,实现总距和油门联合操纵。


油门调节环位于油门总距杆的端部,在不动 总距油门杆的情况下,驾驶员左手拧动油门 调节环可以在较小的发动机转速范围内调整 发动机功率。




调整片操纵
调整片操纵(又称配平操纵)的主要原因是因 为直升机在飞行中驾驶杆上的载荷,不同于 飞机的舵面载荷。

如果直升机旋翼使用可逆 式操纵系统,那么驾驶杆要受周期(每一转) 的可变载荷,而且此载荷又随着飞行状态的 改变而产生某些变化。

为减小驾驶杆的载荷, 大多数直升机操纵系统中都安装有液压助力 器。

操纵液压助力器可进行不可逆式操纵, 即除了操纵系统的摩擦之外,旋翼不再向驾 驶杆传送任何力。




6.2 直升机的操纵机构
在图中(1)是周期变距操纵杆,操纵它可通过助力器(3)可使下 旋转转盘(2)倾斜,从而带动整个旋翼倾斜,(5)是总距操纵杆, 操纵它可使旋转转盘上下移动,并通过摇臂改变旋翼桨叶的桨 距,从而达到改变旋翼升力大小的目的;(6)是脚蹬,操纵它 可改变尾桨桨叶的桨距,从而改变尾桨拉力的大小。




6.2.1 总距操纵杆
总距操纵杆简称总距杆。

用来控制旋翼桨叶总距变化的座舱操 纵杆。

总距操纵杆一般布置在驾驶员座位的左侧,绕支座轴线 上、下转动。

驾驶员左手上提杆时,使自动倾斜器上升而增大 旋翼桨叶总距(即各片桨叶桨距同时增大相同的角度)使旋翼拉 力增大,反之拉力减小,由此来控制直升机的升降运动。

这是 直升机特有的一种操纵机构。


通常在总距操纵杆的手柄上设置旋转式油门操纵机构,用来调 节发动机油门的大小,以便使发动机输出功率与旋翼桨叶总距 变化后的旋翼需用功率相适应。

因此,又称其为总距油门杆。


随着电传、光传操纵技术的发展,座舱操纵机构也在向新型侧 杆操纵方式发展,总距操纵杆将有可能与周期变距操纵杆合并 成一个很简单的侧置操纵杆。




旋翼自动倾斜器
尾桨功能
尾桨功能
类型(着舰着
着舰、着
水装置)
设计参数尾桨

桨盘载荷、
桨尖速度、
桨叶片数和
实度、扭转、
翼型等。

翼型等
直升机的操纵
☐在对单旋翼直升机旋翼不倾斜时,
即旋翼桨盘(旋翼桨叶旋转形成的
空间形状)竖直向上,此时旋翼升力
与直升机重力同时作用在铅垂线上,
只要操纵总距操纵杆,使旋翼升力
大于直升机重量,直升机就会垂直
上升(见图A);反之则垂直下降;
☐当升力与重量相等时,直升机便可悬在空中。

若前推周期变距当升力与重量相等时直升机便可悬在空中若前推周期变距
机械飞行操纵
行操纵组成:总距操纵
总距操纵
杆、周期变距
操纵杆、脚蹬、不同构型直升机
飞行控制(操纵)系统(续)
飞行控制(操纵)系统(续)。

相关文档
最新文档