第二套生物化学名词解释
生物化学名词解释

生物化学名词解释1. 蛋白质(Protein):由氨基酸组成的大分子有机化合物,是生物体的主要组成部分,也是细胞内许多重要功能的执行者。
蛋白质在生物体中具有结构、催化、传递、运输、防御等多种功能。
2. 氨基酸(Amino Acid):由氨基(NH2)和羧基(COOH)共同组成的有机化合物,是蛋白质的基本组成单元。
共有20种常见的氨基酸,它们以不同的顺序和方式连接在一起形成多肽链,进而构成蛋白质的结构。
3. 酶(Enzyme):一类在生物体内催化化学反应的蛋白质,能够加速化学反应的速率而不被消耗。
酶在体内起到调节新陈代谢、促进化学反应等重要作用,能够高效地催化特定的底物转化为产物。
4. 代谢(Metabolism):生物体对物质和能量进行吸收、转化和利用的过程。
代谢包括两种主要状态:合成(Anabolism)和分解(Catabolism),前者是有机物合成的过程,后者是有机物分解的过程。
通过代谢,生物体能够维持其正常功能和生存。
5. 核酸(Nucleic Acid):生物体内负责存储和传递遗传信息的大分子有机化合物。
主要包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
DNA携带着生物个体的遗传信息,RNA则参与基因的表达过程。
6. 基因(Gene):位于染色体上的DNA序列,携带着细胞合成蛋白质所需的遗传信息。
基因控制着生物体的生长、发育、代谢和功能等各个方面。
7. 合成(Anabolism):生物体内由低分子物质通过一系列反应形成高分子物质的过程。
合成包括蛋白质的合成、有机物合成、核酸合成等。
8. 分解(Catabolism):生物体内由高分子物质通过一系列酶催化的反应分解为低分子化合物的过程。
分解产生的能量可用于细胞活动,维持生物体的正常功能。
9. 代谢途径(Metabolic Pathway):一系列有机化合物在生物体内转化的路径。
代谢途径由一系列酶催化的反应组成,每个反应都是为了转化产物或为下一个步骤提供底物。
生物化学名词解释新完整版

生物化学名词解释新生物化学名词解释第一章蛋白质的结构与功能1.肽键:一分子氨基酸的氨基和另一分子氨基酸的羧基通过脱去水分子后所形成的酰胺键称为肽键。
2.等电点:在某一pH溶液中,氨基酸或蛋白质解离成阳离子和阴离子的趋势或程度相等,成为兼性离子,成点中性,此时溶液的pH称为该氨基酸或蛋白质的等电点。
3.模体:在蛋白质分子中,由两个或两个以上具有二级结构的肽段在空间上相互接近,形成一个特殊的空间构象,并发挥特殊的功能,称为模体。
4.结构域:分子量较大的蛋白质三级结构常可分割成多个结构紧密的区域,并行使特定的功能,这些区域被称为结构域。
5.亚基:在蛋白质四级结构中每条肽链所形成的完整三级结构。
6.肽单元:在多肽分子中,参与肽键的4个原子及其两侧的碳原子位于同一个平面内,称为肽单元。
7.蛋白质变性:在某些理化因素影响下,蛋白质的空间构象破坏,从而改变蛋白质的理化性质和生物学活性,称之为蛋白质变性。
第二章核酸的结构与功能1.DNA变性:在某些理化因素作用下,DNA分子稳定的双螺旋空间构象破环,双链解链变成两条单链,但其一级结构仍完整的现象称DNA变性。
2.Tm:即溶解温度,或解链温度,是指核酸在加热变性时,紫外吸收值达到最大值50%时的温度。
在Tm时,核酸分子50%的双螺旋结构被破坏。
3.增色效应:核酸加热变性时,由于大量碱基暴露,使260nm处紫外吸收增加的现象,称之为增色效应。
4.HnRNA:核内不均一RNA。
在细胞核内合成的mRNA初级产物比成熟的mRNA分子大得多,称为核内不均一RNA。
hnRNA在细胞核内存在时间极短,经过剪切成为成熟的mRNA,并依靠特殊的机制转移到细胞质中。
5.核酶:也称为催化性RNA,一些RNA具有催化能力,可以催化自我拼接等反应,这种具有催化作用的RNA分子叫做核酶。
6.核酸分子杂交:不同来源但具有互补序列的核酸分子按碱基互补配对原则,在适宜条件下形成杂化双链,这种现象称核酸分子杂交。
生物化学名词解释

1.分子伴侣:是细胞内一类可以识别肽链的非天然构象,促进各功能域和整体蛋白质正确折叠的保守蛋白质。
2.等电点:对某一蛋白质(氨基酸)来说,在某一PH,它所带的正电荷与负电荷恰好相等,即净电荷为零。
这一PH称为该蛋白质(氨基酸)的等电点。
3.结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区域,折叠的较为紧密,各行使其功能,称为结构域。
4.核酶:具有催化活性的RNA。
5.增色效应:核酸(DNA和RNA)分子解链变性或断链,其紫外吸收值(一般在260nm处测量)增加的现象。
6.底物水平磷酸化:物质在生物氧化过程中,常生成一些含有高能键的化合物,而这些化合物可直接偶联ATP或GTP的合成,这种产生ATP等高能分子的方式称为底物水平磷酸化。
7.氧化磷酸化:在真核细胞的线粒体或细菌中,物质在体内氧化时释放的能量供给ADP与无机磷合成ATP的偶联反应。
8.脂肪动员:储存在脂肪细胞中的脂肪被脂肪酶逐步水解为游离脂肪酸及甘油,并释放入血以供其它组织氧化利用的过程。
9.一碳单位:一碳单位就是指具有一个碳原子的基团。
指某些氨基酸分解代谢过程中产生含有一个碳原子的基团,包括甲基、亚甲基、甲烯基、甲炔基、甲酰基及亚氨甲基等。
10.ATP合酶:结合于线粒体内膜、叶绿体类囊体膜和细菌质膜上由多亚基组成的复合物。
在氧化磷酸化和光合磷酸化过程可催化ATP的合成。
11.端粒酶:是一种含有RNA链的逆转录酶。
它以所含RNA为模板来合成DNA端粒结构。
12.Tm值:是DNA熔解温度,指把DNA的双螺旋结构降解一半时的温度。
不同序列的DNA,Tm值不同。
DNA中G-C含量越高,Tm值越高,成正比关系。
13.Klenow片段:E.coli DNA聚合酶Ⅰ经胰蛋白酶或枯草杆菌蛋白酶部分水解生成的C末端605个氨基酸残基片段。
该片段保留了DNA聚合酶I的5ˊ-3ˊ聚合酶和3ˊ-5ˊ外切酶活性,但缺少完整酶的5ˊ-3ˊ外切酶活性。
生物化学的名词解释 (2)

28饱和脂肪酸在一系列酶的作用下,羧基端的β位C原子发生氧化,碳链在α位C 原子与β位C原子间发生断裂,每次生成一个乙酰COA和较原来少二个碳单位的脂肪酸,这个不断重复进行的脂肪酸氧化过程称为β-氧化脂肪酸在一些酶的催化下,其α-C原子发生氧化,结果生成一分子CO2和较原来少一个碳原子的脂肪酸,这种氧化作用称为α-氧化。
脂肪酸在酶催化下,其ω碳(末端甲基C)原子发生氧化,先生成ω-羟脂酸,继而氧化成α,ω-二羧酸的反应过程,称为ω-氧化。
酮体(ketone bodies):脂肪酸在肝脏中分解氧化时生成的乙酰-CoA在酶的催化下转变成的三种中间代谢物的总称。
包括乙酰乙酸﹑β–羟丁酸和丙酮。
脂肪酸代谢的调节(一)脂肪酸进入线粒体的调控在细胞内,脂肪酸分解代谢的调控主要由线粒体控制脂肪酸进入线粒体内。
脂肪酸进入细胞后,在细胞质中由硫激酶催化生成脂酰-CoA,脂酰-CoA必须转化为脂酰肉碱才能穿越线粒体内膜,脂酰肉碱是由外膜上的脂酰肉碱转移酶Ⅰ催化脂酰-CoA和肉碱而生成的,该酶强烈地受丙二酸单酰-CoA抑制,当丙二酸单酰-CoA浓度高时,阻止脂肪酸的分解。
(二)心脏中脂肪酸氧化的调节脂肪酸在心脏中主要是分解代谢。
分解产生的能量是心脏能量的主要来源。
如果心脏用能减少,柠檬酸循环和氧化磷酸化的活动随之减弱,导致乙酰-CoA 和NADH的积聚。
乙酰-CoA浓度升高抑制了硫解酶的活性,从而抑制了β-氧化。
NADH增高,NAD+减少,影响了L-3-羟脂酰-CoA脱氢酶活性,从而也抑制了氧化。
(三)激素对脂肪酸代谢的调节胰高血糖素和肾上腺素能使脂肪组织中的cAMP含量升高。
cAMP激活了cAMP-依赖性蛋白激酶,使三酰甘油脂肪酶磷酸化转变为有活性形式,从而加速了脂肪组织中的脂肪水解作用,提高了血液中脂肪酸水平。
最终活化了其他组织中的β-氧化。
此外cAMP-依赖性蛋白激酶还抑制了脂肪酸合成的关键酶——乙酰-CoA羧化酶,抑制了脂肪酸的合成。
生物化学名词解释

生物化学名词解释1.结构域:指一些较大的蛋白质分子,其三级结构中具有的两个或多个在空间上可明显区别的局部区域。
2.模体:指由多肽链中相邻的几个二级结构单元在空间上相互接近形成的有规律的二级结构集合。
3.等电点:指在溶液中,氨基酸或蛋白质电离成为电中性的兼性粒子时的溶液PH。
4.蛋白质变性:指在某些理化因素作用下,蛋白质特定的空间结构被破坏,从而导致其理化性质、生物活性丧失的现象。
5.反密码环:tRNA上含有反密码子,可以与mRNA的密码子通过碱基互补配对相互识别的部位。
6.Km值:米氏常数,数值上等于酶促反应速率为最大反应速率一半时的底物浓度。
7.必需基团:酶分子整体构象中对于酶发挥活性所必须的集团。
8.酶的活性中心:酶分子中的必需集团在空间结构上彼此靠近,集中形成的一个特定空间结构区域,可以与底物特异性结合并催化底物转化为产物。
9.酶的竞争性抑制:指抑制剂与酶的底物结构相似,抑制剂可以与底物竞争结合酶的活性中心,从而阻碍酶和底物结合形成的中间产物。
10.变构酶:指受别构效应调节的酶,含有别构位点。
别构位点在结合别构效应物以后酶的构象发生变化,从而影响活性中心的构象,最后影响酶的活性。
11.酶的化学修饰:酶蛋白上的一些基团在特定酶的催化下与某种化学基团发生共价结合而被修饰或酶蛋白身上某些特定的化学基团脱落进而引起酶活性改变的现象。
12.同工酶:指催化相同的反应但结构和理化性质等不同的酶。
13.氧化磷酸化:指代谢物氧化脱下的氢经线粒体呼吸链传给氧生成水,同时释放能量使ADP磷酸化生成ATP的过程。
14.底物水平磷酸化:指代谢物因脱氢、脱水等作用使分子内能量重新分布,形成高能键传给ADP生成ATP的过程。
15.糖的有氧氧化:葡萄糖在有氧条件下彻底氧化分解生成CO2和H2O同时释放大量能量并合成ATP的过程。
16.糖异生:由非糖物质生成葡萄糖或糖原的过程。
17.磷酸戊糖途径:葡萄糖在细胞质中生成核糖-5-磷酸及NADPH+H+,前者再进一步变成甘油醛-3-磷酸和果糖-6-磷酸的反应过程。
生物化学名词解释

绪论1.生物化学(biochemistry):从分子水平来研究生物体(包括人类、动物、植物和微生物内基本物质的化学组成、结构,以及在生命活动中这些物质所进行的化学变化(即代谢反应)的规律及其与生理功能关系的一门科学,是一门生物学与化学相结合的基础学科。
2.新陈代谢(metabolism):生物体与外界环境进行有规律的物质交换,称为新陈代谢。
通过新陈代谢为生命活动提供所需的能量,更新体内基本物质的化学组成,这是生命现象的基本特征,是揭示生命现象本质的重要环节。
3.分子生物学(molecular biology):分子生物学是现代生物学的带头学科,它主要研究遗传的分子基础(分子遗传学),生物大分子的结构与功能和生物大分子的人工设计与合成,以及生物膜的结构与功能等。
4.药学生物化学:是研究与药学科学相关的生物化学理论、原理与技术,及其在药物研究、药品生产、药物质量控制与药品临床中应用的基础学科。
第一章糖的化学1.糖基化工程:通过人为的操作(包括增加、删除或调整)蛋白质上的寡糖链,使之产生合适的糖型,从而达到有目的地改变糖蛋白的生物学功能。
2.单糖(monosaccharide):凡不能被水解成更小分子的糖称为单糖。
单糖是糖类中最简单的一种,是组成糖类物质的基本结构单位。
3.多糖(polysaccharide):由许多单糖分子缩合而成的长链结构,分子量都很大,在水中不能成真溶液,有的成胶体溶液,有的不溶于水,均无甜味,也无还原性。
4.寡糖(oligosaccharide):是由单糖缩合而成的短链结构(一般含2~6个单糖分子)。
5.结合糖(glycoconjugate):也称糖复合物或复合糖,是指糖和蛋白质、脂质等非糖物质结合的复合分子。
6.同聚多糖(homopolysaccharide):也称为均一多糖,由一种单糖缩合而成,如淀粉、糖原、纤维素、戊糖胶、木糖胶、阿拉伯糖胶、几丁质等。
7.杂多糖(heteropolysaccharide):也称为不均一多糖,由不同类型的单糖缩合而成,如肝素、透明质酸和许多来源于植物中的多糖如波叶大黄多糖、当归多糖、茶叶多糖等。
生物化学名词解释大全
生物化学名词解释大全1. 生物化学(Biochemistry):研究生物体内化学成分、结构和功能之间的关系的学科。
2. 多肽(Polypeptide):由多个氨基酸残基通过肽键连接而成的聚合物,是蛋白质的组成部分。
3. 氨基酸(Amino Acid):生物体内构成蛋白质的基本单位,包含一个氨基(NH2)和一个羧基(COOH),以及一个特定的侧链。
4. 聚合酶链式反应(Polymerase Chain Reaction,PCR):一种体外复制DNA的技术,通过反复循环的酶催化,使得目标DNA序列在简单的反应体系中大量扩增。
5. 糖(Sugar):生物体内分子中含有羟基的有机化合物,是能源的重要来源,也是构成核酸和多糖的基本单元。
6. 代谢(Metabolism):生物体内发生的化学反应的总和,包括物质合成与分解、能量转化以及调节和控制这些反应的调节机制。
7. 酶(Enzyme):催化生物化学反应的蛋白质分子,可以促进反应速率,但本身在反应中不被消耗。
8. 核酸(Nucleic Acid):生物体内储存和传导遗传信息的分子,包括DNA和RNA,由核苷酸链组成。
9. 基因(Gene):DNA分子上的特定区域,编码了一种特定蛋白质的信息,是遗传信息的基本单位。
10. 代谢途径(Metabolic Pathway):由一系列相互作用的酶催化的反应组成的序列,用于维持生物体内能量和物质的平衡。
11. 脂质(Lipid):一类不溶于水的化合物,在生物体内发挥结构和能量储存的重要作用,常见的脂质包括脂肪酸、甘油和胆固醇等。
12. 细胞呼吸(Cellular Respiration):通过氧化分解有机物质以释放能量的过程,通常包括糖的氧化并产生二氧化碳和水。
13. 光合作用(Photosynthesis):将光能转化为化学能的过程,植物和一些微生物通过光合作用将二氧化碳和水转化为有机物质和氧气。
14. 激素(Hormone):由内分泌腺分泌并通过血液传递到细胞中起作用的化学物质,调节和控制生物体内的各种生理过程。
生物化学 名词解释
名词解释1 生物化学:即生命的化学,它是从分子的水平来研究生命体内的基本物质的化学组成,结构特征,理化性质,以及这些物质在生物体内进行化学变化的规律及其与生理功能之间的关系的一门学科。
2蛋白质等电点:蛋白质在溶液中解离成正负离子的趋势相等即静电荷为零时溶液的ph称为蛋白质的等电点。
3 蛋白质变性:在某些理化因素作用下,蛋白质的空间构象发生改变或破坏,导致其生物活性的丧失和一些理化性质的改变,这种现象称为蛋白质的变性作用。
4 酶原:无活性的酶的前体。
5 酶的活性中心:有些必需基因在一级结构上相距很远,但在形成特定空间结构时彼此靠近,形成具有特定空间构象的区域,该区域能与底物特异性结合并将底物转化为产物,称之为酶的活性中心。
6 米氏常数:Km值等于酶促反应速度为最大速度一半时的底物浓度。
7 维生素:机体维持正常生命活动不可缺少的一类小分子有机化合物。
8呼吸链:代谢物脱下的成对氢原子通过多种酶和辅酶所组成的连锁反应体系逐步传递最终与氧结合生成水的链式连锁反应体系。
9 生物氧化:物质在生物体内进行氧化分解称为生物氧化。
10 糖酵解:是指葡萄糖或糖原在无氧情况下,经过一系列中间代谢分解成乳酸的过程。
11 血浆脂蛋白:是脂类在血浆中的存在形式,也是脂类在血液中的运输形式。
12 B-氧化:脂酰Co A进入线粒体基质,从脂酰基的B-碳原子开始进行脱氢,加水,再脱氢,硫解的连续反应。
13 联合脱氨基:L-谷氨酸脱氢酶和转氨酶的联合,以及嘌呤核苷酸循环。
14 基因:染色体中携带有遗传信息的DNA片段,是遗传的功能单位。
15 半保留复制:DNA在复制时首先是两条链之间的氢键断裂两链分开,然后分别以每条链为模版各自合成一条新的DNA链,这样新合成的每个子代DNA分子中,一条链来自亲代DNA,另一条链是新合成的,这种复制方式为半保留复制。
16 必需氨基酸:必需氨基酸指的是人体自身不能合成或合成速度不能满足人体需要,必须从食物中摄取的氨基酸。
生物化学与分子生物学第二版(贾弘禔)名词解释与课后题总结
可利用氨基酸理化特性对其进行定性定量分析 2 氨基酸 氨基酸具有两性离子特征,氨基酸具有特征性的滴定曲线 氨基酸的氨基和羧基可发生多种化学反应,包括肽反应和形成 schiff 碱。 利用其理化性质进行定性定量反应的方法 氨基酸与茚三酮试剂发生呈色反应 氨基酸与 2,4-二硝基氟苯反应生成二硝基苯基氨基酸 氨基酸与亚硝酸反应生成氮气 含共轭双键的氨基酸具有紫外吸收性质 薄层层析是鉴定氨基酸及其修饰的经典方法 此外,含共轭双键的氨基酸具有紫外吸收性质,色氨酸、酪氨酸的最大吸收峰在 280 nm 附 近。 核苷酸:核苷酸的紫外吸收特征可用于其定性定量分析 嘌呤碱和嘧啶碱共轭双键最大吸收 峰值 260nm 核苷酸的解离特征可用于其分离纯化 核苷酸分子在特定溶液中各基团的解离常数(pK)和等电点(pI)均为特征性常数,这些特 性赋予核苷酸以层析和电泳行为的差异,因此被广泛用于核苷酸的分离和纯化。例如,薄层 层析、离子交换层析、毛细管电泳等技术都可用于分离和纯化核苷酸。
除了 mRNAtRNArRNA 外,细胞内存在的许多其他种类的小分子 RNA ,统称为非信使小 RNA(small non-messenger RNAs, snmRNAs)。 简答 1 双螺旋结构 DNA 是反向平行、右手螺旋的双链结构 两条多聚核苷酸链相互平行但走向相反,围绕着同一个螺旋轴形成右手双螺旋结构 由脱氧核糖和磷酸基团构成的亲水性骨架(backbone)位于双螺旋结构的外侧,而疏水的碱 基位于内侧。 直径为 2 nm,螺距为 3.4 nm 从外观上看, DNA 双螺旋结构的表面存在一个大沟 (major groove) 和一个小沟 (minor groove) DNA 双链之间具有碱基互补关系 碱基垂直螺旋轴居双螺旋内側,与对側碱基形成氢键配对(互补配对形式: ) 相邻碱基平面距离 0.34nm,螺旋一圈螺距 3.4nm,一圈 10 对碱基 疏水作用力和氢键维系 DNA 双螺旋结构的稳定 相邻的两个碱基对平面在旋进过程中发生相互重叠(overlapping) ,由此产生了疏水性的碱 基堆积力(base stacking interaction) 。 这种碱基堆积力和互补碱基对的氢键共同维系着 DNA 双螺旋结构的稳定,并且碱基堆积力 在双螺旋结构的稳定中起着更为重要的作用。 科学依据:1952 年,奥地利裔美国生物化学家查伽夫(E.chargaff,1905— )测定了 DNA 中 4 种碱基的含量,发现其中腺膘呤与胸腺嘧啶的数量相等,鸟膘呤与胞嘧啶的数量相等。 这使沃森、 克里克立即想到 4 种碱基之间存在着两两对应的关系, 形成了腺膘呤与胸腺嘧啶 配对、鸟膘呤与胞嘧啶配对的概念。 1953 年 2 月,沃森、克里克通过维尔金斯看到了富兰 克琳在 1951 年 11 月拍摄的一张十分漂亮的 DNA 晶体 X 射线衍射照片,这一下激发了他们 的灵感。他们不仅确认了 DNA 一定是螺旋结构,而且分析得出了螺旋参数。他们采用了富 兰克琳和威尔金斯的判断,并加以补充:磷酸根在螺旋的外侧构成两条多核苷酸链的骨架, 方向相反;碱基在螺旋内侧,两两对应 X-射线衍射图 2 tRNA 结构特点:P55 3 嘌呤和嘧啶含有共轭双键,在紫外波段有吸收。不同的原因是一般 DNA 是双链,RNA 是 单链。 第四章 糖与复合糖 名解 单糖是不能被分解成更小分子的糖,如葡萄糖(glucose) 、果糖(fructose)和核糖(ribose)等 由 2~10 个单糖以葡糖苷键连接而成的糖称为寡糖 由 10 个以上单糖通过糖苷键连接而成的线性或分支聚合物称为多糖 糖蛋白聚糖结构的不均一性称为糖形(glycoform) 聚糖中的 N-乙酰葡糖胺与多肽链中天冬酰胺残基的酰胺氮以共价键连接,形成 N-连接糖蛋 白 N-连接糖蛋白中 Asn-X-Ser/Thr 三个氨基酸残基组成的序列段称为糖基化位点。 聚糖中的 N-乙酰半乳糖胺与多肽链的丝/苏氨酸残基的羟基以共价键相连而形成 O-连接糖 蛋白。 糖胺聚糖链共价结合的蛋白质称为核心蛋白。 简答 1 聚糖中的 N-乙酰葡糖胺与多肽链中天冬酰胺残基的酰胺氮以共价键连接,形成 N-连 接糖蛋白。N-连接聚糖结构有高甘露糖型、复杂型和杂合型 N-连接聚糖是在内质网上以长 萜醇作为聚糖载体,先合成含 14 个糖基的聚糖链,然后转移至肽链的糖基化位点上,进一 步在内质网和高尔基体进行加工而成。 每一步加工都由特异的糖基转移酶催化完成,糖基必须活化为 UDP 或 UDP 的衍生物。 2 丝/苏氨酸残基的羟基,O-连接聚糖常由 N-乙酰半乳糖胺与半乳糖构成核心二糖,核心二
生物化学名词解释
练习题一、名词解释1.复性:蛋白质的变性作用如果不过于剧烈,则是一种可逆过程,变性蛋白质通常在除去变性因素后,可缓慢地重新自发折叠成原来的构象,恢复原有的理化性质和生物活性,这种现象成为复性2. 等电点(pI)当蛋白质溶液在某一定pH值时,使某特定蛋白质分子上所带正负电荷相等,成为两性离子,在电场中既不向阳极也不向阴极移动,此时溶液的pH值即为该蛋白质的等电点(isoelectric point,pI)。
3. 同工酶存在于同一种属或不同种属,同一个体的不同组织或同一组织、同一细胞,具有不同分子形式但却能催化相同的化学反应的一组酶,称之为同工酶(isoenzyme)4. 诱导契合:诱导契合学说:酶的活性中心在结构上具柔性,底物接近活性中心时,可诱导酶蛋白构象发生变化,这样就使使酶活性中心有关基团正确排列和定向,使之与底物成互补形状有机的结合而催化反应进行。
5. 变构效应:有些酶分子表面除了具有活性中心外,还存在被称为调节位点(或变构位点)的调节物特异结合位点,调节物结合到调节位点上引起酶的构象发生变化,导致酶的活性提高或下降,这种现象称为别构效应6. 糖酵解:糖酵解是将葡萄糖降解为丙酮酸并伴随着ATP生成的一系列反应,是生物体内普遍存在的葡萄糖降解的途径。
该途径也称作Embden-Meyethof-Parnas途径,简称EMP途径。
8. β-氧化脂肪酸在体内氧化时在羧基端的β-碳原子上进行氧化,碳链逐次断裂,每次断下一个二碳单位,即乙酰CoA,该过程称作β-氧化。
9. 半保留复制DNA在复制时,两条链解开分别作为模板,在DNA聚合酶的催化下按碱基互补的原则合成两条与模板链互补的新链,以组成新的DNA分子。
这样新形成的两个DNA分子与亲代DNA分子的碱基顺序完全一样。
由于子代DNA分子中一条链来自亲代,另一条链是新合成的,这种复制方式称为半保留复制10. 转录转录是在 DNA的指导下的RNA聚合酶的催化下,按照碱基配对的原则,以四种核苷酸为原料合成一条与模板DNA互补的RNA 的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物化学第二套试卷…名词解释个人所做答案。
基本上是百度等来的。
应该没什么问题,作为参考。
1. 谷胱甘肽(glutathione, GSH):由谷氨酸,半胱氨酸,甘氨酸组成,是重要的还原剂,结构上有重要的γ-肽键。
2. α-螺旋(α-helix):每一圈包含
3.6个氨基残基,螺距0.54nm,一般为右手螺旋结构,靠键内氢键维持,具有旋光性。
3. 肽单位:由Cα、CO、NH、Cα2在同一个平面上且Cα2在平面上所处位置为反式构型,肽键有部分双键性质,不能自由旋转。
4. RS构型的判断方法:
5. 透析:通过小分子经过半透膜扩散到水(或缓冲液)的原理,是一种将小分子与生物大分子分开的分离纯化技术,主要有血液透析和腹膜透析。
6. DNA的二级结构:DNA是右手双螺旋,碱基位于螺旋内侧,双螺旋的稳定性由疏水相互作用和氢键。
7. 核酶:具有生物催化功能的RNA,是生物催化剂,打破酶是蛋白质的传统观念,通过催化转磷酸酯和磷酸二酯键水解参与RNA自身剪切,加工。
8、核酸酶:水解核苷酸之间磷酸二酯键的酶,不同来源,其专一性,作用方式有所不同,根据作用位置不同,将核算酶分为核算内切酶和核算外切酶。
9、FMN和FAD:FMN黄素核苷酸,存在于呼吸链,是一种递氢体。
FAD黄素腺嘌呤二核苷酸,存在呼吸链,是一种递氢体。
10、NAD+和NADP+:NAD+烟酰胺腺嘌呤二核苷酸,存在于呼吸链,一种辅酶,传递电子。
NADP+尼克酰胺腺嘌呤二核苷酸,存在于呼吸链,一种辅酶,传递电子。
11、酶的活性中心:直接与底物分子结合,并催化底物化学反应部位,主要由结合部位,催化部位两个功能部位组成,必须基因有组氨酸咪唑丝氨酸的羟基。
12、糖异生:一般指非糖物质经丙酮酸合成葡萄糖,糖酵解逆向过程,糖不够时可合成糖,在细胞液中合成。
13、氧化脱氨基:在美催化氨基酸在氧化脱氢同时脱去氨基过程,谷氨酸在线粒体中由谷氨酸脱氢酶催化氧化脱氨,不需要氧脱氢酶。
14. 联合脱氢基作用:转氨基与谷氨酸氧化脱氢或嘌呤核苷酸循环联合脱氨,以满足机体排泄含氮废物需求。
氨基转移作用只是将一个氨基酸的氨基转移到另一酮上生成氨基酸。
15.鸟氨酸循环和尿素的合成:指氨与co2通过鸟、瓜、精氨酸合成尿素过程,主要是精氨酸水解产生尿素,重新生成鸟氨酸。
机体对氨的一种解毒机制。
16.氧化磷酸化的偶联机制:氧化和磷酸化之间是通过H+的电化学梯度联起来的,H是在呼吸链传递过程被运送到膜外。
膜侧H+浓度比膜内高变重新回到膜内,产生ATP,可与水电站作对比。
17.线粒体外NADH的穿梭:有磷酸甘油穿梭系统和苹果酸穿梭系统,NADH在酶化下,将氢交给磷酸二羟丙酮使之变成α-磷酸甘油,在线粒体外产生1.5ATP。
在线粒体外苹果酸脱氢酶将氢给草酰乙酸,使之变成苹果酸。
18.糖异生:一般指非糖物质经丙酮酸合成葡萄糖,糖酵解逆向过程,糖不够时可合成糖,在细胞液中合成。
19、血糖的来源和去路:来源:1食物中的糖类经小华吸收而来。
2空腹时,肝糖原分解为葡萄糖进入血液。
3.长期饥饿引起糖原减少时,非糖类物质等通过糖异生作用转变为葡萄糖补充血液。
血糖的去路:1.在各组织器官中氧化分解功能。
2.合成肝糖原和肌糖原。
20、胆固醇的代谢:机体内胆固醇来源于食物及生物合成。
胆固醇生物合成原料是乙酰辅酶A,合成途径分5个阶段,作为细胞膜及血脂蛋白重要组成。
21、脂肪酸氧化分解时的能量释放:脂肪酸主要是通过β-氧化作用完成分解。
骨骼肌、心肌可氧化分解脂肪酸为二氧化碳和谁并释放大量的能量,供集体利用,在体内的脂肪酸以肝和肌肉最为活跃。
22、酮体的生成及利用:当乙酰辅酶A被草酰乙酸载入三羧酸循环时进入另一途径生成酮体。
在肝脏中,脂肪酸β-氧化不完全,生成乙酰乙酸,b-羟丁酸和丙酮,三者称酮体。
酮体是脂肪酸代谢的正常产物。
23、磷酸戊糖途径:磷酸戊糖途径是葡萄糖氧化分解的一种方式。
6-p-葡萄糖在C1脱氢脱羧,以产生NADPH,磷酸戊糖,接着磷酸戊糖转变,最后形成三碳,四碳,六碳,七碳等磷酸酯。
最后生成的3-p-甘油醛,6-p-果糖可进入糖酵解途径进行代谢。
24、脂肪动员:在病理或饥饿提哦啊剑侠,储存在脂肪细胞中的脂肪,被脂肪酶水解为游离脂肪酸及甘油释放入血液中供其他组织氧化利用。
脂肪动员中HSL起决定作用,他是脂肪分解限速酶。
25、有氧氧化的调节和巴斯效应:丙酮酸脱氢酶系受乙酰辅酶A,ATP,NADH的变构抑制,受AMP,ADP.MAD+变构激活。
异柠檬酸脱氢酶是调节三羧酸循环流量的主要原因。
巴斯效应:糖的有氧氧化可抑制糖无氧酵解现象。
26、糖无氧酵解的生理意义:在无氧条件下,作为糖分解功能的补充途径。
在有氧条件下,作为某些细胞主要功能途径。
如表皮细胞,视网膜,红细胞无线粒体只能通过无氧呼吸。
27变构调节:小分子化合物与酶蛋白活性中心外某一部位特异结合,引起蛋白分子构象变化,从而改变酶活性,使能量得以有效利用,不致浪费。
不同代谢途径相互调节。
28、酶原的激活:指有些酶在细胞内合成和初分泌时,并不表现有催化活性,这种无活性状态的酶的前身物称为酶原。
酶原在一定条件下,受某种因素的作用,酶原分子的部分肽键被水解,使分子结构发生改变,形成酶的活性中心,无活性的酶原转化成有活性的酶称酶原的激活。
酶原只有在特定的部位、环境和特定的条件下才能被激活,保护细胞本身不被酶水解破坏。