第七章动力学的基本方程
化工-第七章 化学反应动力学基础

反应速率与转化率:
设A组分:n A0 初始量、t反应时间、n At时刻瞬时量 x At时刻瞬时转化率 反应消耗的A的量 n A0 n A xA 反应初始时A的量 n A0 即: n A n A0 (1 x A ) 若反应前后体积变化不大:c A c A0 (1 xA ) 1 dnA 1 nA0 dx A 则: rA V dt V dt nA0 x A
转化为目的产物的反应物的物质的量 选择性()= 反应物被转化掉的物质的量 收率:
收率()= 转化为目的产物的反应物的物质的量 进入反应器的反应物的物质的量
二、复杂反应的速率方程式
1、平行反应:
k2 A B S dcS dcP a1 b1 a b 则:rp k1c A cB rS k2c A2 cB2 dt dt rp k1 a1 a2 b1 b2 平行反应速率之比为: = c A cB rS k2 k1 A B P
第七章 化学反应动力学基础
内容: 2、简单反应的速率方程式 4、本征动力学和宏观动力学
1、化学动力学基本概念 3、简单反应和复杂反应
重点: 2、简单反应和复杂反应
1、简单反应的速率方程式
§7-1 化学动力学基本概念
一、化学计量方程式
复杂的化学计量方程式: 0= i Bi
n
i : 为组分Bi的计量系数。反应物为负、产物为正。
r f (c, T ) r f (T ) (c) f (T ):反应速率的温度效应、 (c):反应速率的浓度效应 f (T )常表示为反应速率常数k : k A exp( E 对于均相反应:aA bB sS
( c) c cB A
第七章 刚体动力学(讲义)

MO = ∑ MO ( Fi ) = ∑ (ri × Fi )
i =1 i =1
n
n
注意,主矩的的计算与参考点的选取有关。例如,将参考点由 O 改成 O′ ,于是
MO = ∑ ri × Fi = ∑
i =1 i =1
n
n
(ri′ + OO′) × Fi = ∑ (ri′ × Fi ) + OO′ × ∑ Fi
R = ∑ Fi
i =1
n
这是个自由矢量,它只给出矢量的大小和方向,不过问作用点的位置。 对力系的矩也可作类似的讨论。对于共点力系,合力的矩等于各个力对同一点的矩的矢量 和,即
MO ( F) = r × F = r × ∑ Fi = ∑ (r × Fi )
i =1 i =1
n
n
一般的力系中不一定存在合力,因此也就谈不上求合力的矩。但是每个力相对于同一参考 点的力矩是矢量,我们可以求这些矢量的和,并称为主矩,记为 MO ,即有
(II)刚体绕质心的转动:
dLc = ∑ ric × Fi (对质心的角动量定理) dt i
第一个式子求质心运动等同于质点动力学,可以解出刚体的平动运动部分(三个方程解三个运 动变量) 。第二个式子又可求出刚体的转动角速度 ω ( L 与 ω 有一定的关系) ,于是刚体的运动 就完全确定了。由角动量定理求刚体的转动角速度是重点讨论的内容。 7.2 作用在刚体上的力和力矩 通常矢量指的是所谓自由矢量(free vector) :只有大小和方向,它可以平行自由移动。 作为物理量的矢量则不然,例如,力矢量 F ,为了完全确定这个力,还要说明力的作用点, 若用 r 表示作用点的话,则要有两个矢量 F 和 r ,这个力才完全被确定下来。这种矢量被称为定 位矢量(bound vector) 。除了力矢量是定位矢量外,质点的速度和加速度等也是定位矢量的例 子。 还有一种矢量,称为滑动矢量(sliding vector) ,它可在包含该矢量的一直线上自由移动。 例如,作用在刚体上的力(见下面的讨论) 。
第7章_理想流体动力学基本方程

④列动量方程求解。
Fx p1A1 p2 A2 cos Rx Qv2x v1x
Fy p2 A2 sin Ry Q v2y v1y
Fx p1A1 p2 A2 cos Rx Qv2 cos v1
Fy p2 A2 sin Ry Qv2 sin 0
Rx p1A1 p2 A2 cos Qv2 cos v1
动量方程:反映了流体的动量变 化与外力之间的关系
粘性流体:实际流体都具有粘性。既有粘性切应力,又有法向压应力。
0
理想流体:理想流体可忽略粘性。即无粘性切应力,只有法向压应力。
0
粘性流体:
理想流体:
一、动量方程——流体的运动方程
1、积分形式的动量方程——流体的运动方程
质点系的动量定理:
系统的动量对时间的变化率等于作
第7章 理想流体动力学动量方程
粘性流体:实际流体都具有粘性,致使所研究的问题比较复杂。 理想流体:指粘性为零的流体,实际上并不存在,但在有些问题
中,粘性的影响很小,可以忽略不计,致使所研究的 问题简单化。 理想流体动力学规律可以应用于粘性的影响很小的实 际流体中,所以本章的研究具有实际意义。
主要内容
过流断面是均匀流或渐(缓)变流断面不可压缩流体
Fx Q(2v2x 1v1x ) Fy Q(2v2 y 1v1y ) Fz Q(2v2z 1v1z )
④当沿程有分流和汇流时:
Fx (3Q3v3x 2Q2v2x 1Q1v1x ) Fy (3Q3v3y 2Q2v2 y 1Q1v1y ) Fz (3Q3v3z 2Q2v2z 1Q1v1z )
对1-1,2-2断面列伯努利方程
p1 v12 p2 v22
g 2g g 2g
v1 1.42m / s v2 3.18m / s
第七章 复相反应动力学

e Ea ( ) / RT
f
( )
式中:亦称为凝聚系数,代表具有Ea能量的吸附质分子碰撞在空白吸附
中心上而被吸附中心吸附的分子的概率;通常,由于固体表面的不均匀性
及被吸附的吸附质分子间的相互作用,Ea、均院
第三节 吸附过程动力学
3. 脱附速率rd基本方程
ra rd ka pA (1A ) kdA
令 bA ka / kd ,称为吸附平衡常数或吸附系数;Langmuir吸附等温式:
A
bA pA 1 bA pA
19
东南大学能源与环境学院
第三节 吸附过程动力学
b. 单组份吸附,吸附时,吸附质分子发生解离,每个吸附质
占据2个以上吸附中心:
7
东南大学能源与环境学院
第一节 概述
③ 固体表面的分子与聚集到固体表面的反应物首先形成一种不 稳定的中间络合物,然后不稳定的中间络合物反应得到反应 产物,相当于化学吸附作用;
④ 反应物在固体表面形成一种所谓“表面自由基”,然后按链 式反应机理进行。
无论采用何种解释,共同点在于对表面反应的关键步骤的确定
2.吸附
不同相态物质接触时,一相分子(吸附 质)只停留在相界面上,吸附量与相际 表面积关系密切,遵循朗格缪尔、乔姆 金或弗鲁德里希等吸附模型。
因气相很易进入液相内部,故气液接触 时,还常称为吸收;气相、液相分子不 易进入固相内部(不包括进入固体内表 面空隙),故气固、液固间传质过程通 常称为吸附。
① 反应物分子借助于固体表面富集,固体表面依靠其表面分 子的分子间力(范德华力),把周围邻近的分子拉到固体 表面上浓集,相当于物理吸附作用;
② 固体表面凭借其表面所存在的作用力(分子间力、化学键 力),使靠近固体表面的反应物分子发生变形,使反应物 分子反应能力发生改变,致使反应得以进行或加速,相当 于物理吸附、化学吸附的双重作用;
动力学方程

动力学方程1. 引言动力学方程是研究物体在运动中受到的力学作用的数学描述。
它是物理学中非常重要的概念,广泛应用于各个领域,包括经济学、工程学、生物学等。
本文将介绍动力学方程的基本概念、求解方法以及应用等方面的内容。
2. 动力学方程的定义动力学方程描述了物体在运动过程中所受到的力学作用。
一般来说,动力学方程可以分为牛顿第二定律和拉格朗日方程两种形式。
2.1 牛顿第二定律牛顿第二定律是描述质点运动的基本定律之一。
它的数学表达式为:F = ma其中,F表示物体所受的合力,m表示物体的质量,a表示物体的加速度。
根据牛顿第二定律,我们可以得到物体在受到外力作用下的运动方程。
2.2 拉格朗日方程拉格朗日方程是描述物体运动的另一种形式,它基于能量守恒的原理。
拉格朗日方程的数学表达式为:d/dt ( ∂L/∂(dq/dt) ) - ∂L/∂q = 0其中,L表示物体的拉格朗日函数,q表示广义坐标,t表示时间。
拉格朗日方程可以从运动的作用量原理推导得到,它可以描述多自由度、非洛加多力学系统的运动。
3. 动力学方程的求解方法求解动力学方程是研究物体运动的关键步骤之一。
常见的求解方法主要有解析解法和数值解法两种。
3.1 解析解法解析解法是通过数学计算的方法,求得动力学方程的精确解。
在一些简单的情况下,动力学方程可以直接求解得到解析解。
例如,简谐振动的运动方程可以通过解微分方程得到解析解。
3.2 数值解法数值解法是通过数值计算的方法,求得动力学方程的近似解。
数值解法通常采用数值求解微分方程的方法,例如欧拉法、龙格-库塔法等。
数值解法在复杂的情况下具有更好的适用性,但是精度相对较低。
4. 动力学方程的应用动力学方程广泛应用于各个领域,下面将简要介绍一些典型的应用。
4.1 经济学在经济学中,动力学方程可以用于描述经济系统的运动规律。
例如,经济增长模型可以通过动力学方程来描述经济发展的速度和方向,从而为经济政策制定提供理论依据。
第七章 动力学 公式归纳

第七章动力学1.化学反应速率对定容条件下的化学反应aA + dD →gG + hH化学反应速率2.化学反应速率方程(动力学方程):对基元反应: a A + b B + ··· ···→产物质量作用定律a +b + ··· ------反应级数零级反应r=k ,k的量纲为mol.L-1.s-1一级反应r=kc,k的量纲为s-1;二级反应r=kc2 ,k的量纲为(mol·L -1)-1 ·s-13.经验速率方程复合反应a A + b B + ··· ···→产物经验速率方程k ---- 速率常数;有量纲。
nA、nB。
----- A物质、B物质的分级数。
n = nA + nB + ···----- 反应级数;4.简单级数反应的特征(重要)5. van’t Hoff 温度每升高10℃,反应速率大约增加2~4倍=2~4Arrhenius经验公式(1). 微分形式(2). 不定积分形式(3). 定积分形式(4). 指数形式C --- 积分常数 T :KR = 8.314 J / K·mol E a ---- 活化能 (J / mol) ;A--- 指前因子或频率因子(与k 的单位相同) 6.--- 活化分子的平均能量;--- 反应物分子的平均能量; J / mol --- 1mol 具有平均能量的分子变成活化分子所需要的最低能量; J / mol复合反应及近似处理(作参考,会自己推导)一.对峙反应(可逆反应) 1-1级反应达平衡时A 、B 的平衡浓度:二.平行反应A 物质消耗的总反应速率为: 积分得:三.连串反应 反应四. 链反应。
*E rE a E。
流体力学第七章不可压缩流体动力学基础

第七章不可压缩流体动力学基础在询面的章节中,我们学习了理想流体和粘性流体的流动分析,按照水力学的 观点,求得平均量。
但是,很多问题需要求得更加详细的信息,如流速、压强等 流动参数在二个或三个坐标轴方向上的分布情况。
本章的容介绍流体运动的基本 规律、基本方程、定解条件和解决流体问题的基本方法。
第一节流体微团的运动分析运动方式:①移动或单纯的位移(平移)②旋转③线性变形④角变形。
位移 和旋转可以完全比拟于刚体运动,至于线性变形和脚变形有时统称为变形运动则 是基于液体的易流动性而特有的运动形式,在刚体是没有的。
在直角坐标系中取微小立方体进行研究。
(b)谥.A n(d)一. 平移:如果图(a )所示的基体各角点的质点速度向量完全相同时,则构成(c)A B(a)A了液体基体的单纯位移,其移动速度为心、®、“,。
基体在运动中可能沿直线也 可能沿曲线运动,但其方位与形状都和原来一样(立方基体各边的长度保持不 变)。
二、 线变形:从图(b )中可以看出,由于沿y 轴的速度分量,B 点和C 点都比 A 点和D 点大了竺如 而比就代表〃y = l 时液体基体运动时,在单位时间沿勿dyy 轴方向的伸长率。
du x °"、. du : dxdydz三、 角变形(角变形速度)—BIA ■ dp -------------------------------- Jda-0 = dp + 00 =J"些+些k dz. dx四、旋转(旋转角速度)1O = —0 =—21勿du vdx—dx角变形:血 A那么,代入欧拉加速度表达式,得:du r du Tdu r八 八5=说=古叫 云+"卑+"0+-叭巴加、6仇 du Ya v = ----- = — + u v ---------- + U.0, +ii t a ). -iLCoydt dt dy “'2 …加.du diL q 。
动力学方程的推导和解析

动力学方程的推导和解析动力学方程是研究物体运动规律的重要工具,在物理学和工程学等领域有着广泛的应用。
本文将从基本概念出发,介绍动力学方程的推导和解析方法,以帮助读者更好地理解和应用这一重要的物理学原理。
一、动力学方程的基本概念动力学方程描述了物体运动的规律,它是牛顿力学的基石。
在牛顿力学中,动力学方程可以用力的平衡原理来推导,即物体所受合力等于物体的质量乘以加速度。
这一原理可以表示为以下形式的方程:F = ma其中,F代表物体所受的合力,m代表物体的质量,a代表物体的加速度。
这个方程是动力学方程的基本形式,可以用来描述物体在给定力作用下的运动状态。
二、动力学方程的推导动力学方程的推导可以通过分析物体所受的力和质量之间的关系来实现。
首先,我们需要确定物体所受的力,这些力可以来自于重力、弹力、摩擦力等。
然后,根据力的平衡原理,将这些力相加得到物体所受的合力。
最后,将合力除以物体的质量,得到物体的加速度。
以一个简单的例子来说明动力学方程的推导过程。
假设有一个质量为m的物体,受到一个向下的重力作用,以及一个向上的弹力。
根据牛顿第二定律,物体所受的合力等于物体的质量乘以加速度。
因此,我们可以得到以下方程:mg - kx = ma其中,g代表重力加速度,k代表弹簧的劲度系数,x代表弹簧的伸长量。
这个方程描述了物体在重力和弹力作用下的运动规律。
三、动力学方程的解析解析动力学方程是指通过数学方法求解方程,得到物体在给定力作用下的运动规律。
一般情况下,动力学方程是一个微分方程,需要通过积分或其他数学方法来求解。
继续以前面的例子为基础,我们可以通过求解微分方程来得到物体的运动规律。
首先,将方程重写为标准形式:ma + kx = mg然后,我们可以使用数学方法来求解这个微分方程。
例如,我们可以假设物体的位移x是一个关于时间t的函数,即x = x(t),然后将这个函数代入微分方程中,得到一个关于x和t的方程。
通过求解这个方程,我们可以得到物体的位移随时间变化的函数关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.求解微分方程 联立上面3个微分方程,有:
3 g sin q q 2l
若还要求解任一瞬时的角速 度,则可进一步积分:
q d q q dq
§7-3刚体对轴的转动惯量
1.定义: J z
mi ri 2
若刚体的质量是连续分布,则
J z m r dm
2
在工程中,常将转动惯量表示为
J z m
2 z
—— m为刚体的质量, z 称为回转半径
2.转动惯量的计算 ①.积分法 ②. 平行移轴定理 同一个刚体对不同轴的
转动惯量一般是不相同的。
J z ' J zC md
2
③.计算转动惯量的组合法
例7-4 钟摆: 均质直杆m1, l ; 均质圆盘:m2 , R 。 求 JO 。 解: J O J O杆 J O盘
1 2 1 m1l m2 R 2 m2 (l R) 2 3 2
1 2 1 m1l m2 (3R 2 2l 2 4lR) 3 2
d q 3g sin q d q q 2l
q
0
q dq
q
0
3g sin q d q 2l
2 3 g (1 cosq ) q l
作业
7-1 7-16
引言 动力学研究物体的机械运动与作用力之间的关系。动
力学中所研究的力学模型是质点和质点系。
动力学的两类问题: (1)已知物体的运动规律,求作用在物体上的力; (2)已知作用在物体上的力及运动的初始条件,求物 体的运动规律。
§7-1 质点动力学的基本定律 §7-2 刚体绕定轴转动的微分方程 §7-3 转动惯量
§7-4 刚体的平面运动微分方程
e maC F
e J C M C ( F )
2
或
e d rC m 2 F dt 2 e d J C 2 M C ( F ) dt
应用时一般用投影式:
maCx Fx e maCy Fy e J C M C ( F )
e
e n maC Fn e J C M C ( F ) ma Ft
t C
e
以上各组均称为刚体平面运动微分方程.
§7-4 刚体平面运动微分方程
一、动力学的基本定律
第一定律 (惯性定律): 不受力作用的质点,将保持静止或作匀速直线运动。
ma F 第二定律 P mg , g 9.8 m 重力
力的单位:牛[顿],
s2
s2
1N 1kg 1m
第三定律 (作用与反作用定律): 两个物体间的作用力与反作用力总是大小相等,方向相反, 沿着同一直线, m
v2
Fn , 0 Fb
3 、质点动力学的两类基本问题 第一类问题:已知运动求力.
第二类问题:已知力求运动. 混合问题:第一类与第二类问题的混合.
§7-2 刚体定轴转动微分方程
J z M z ( F ie ) d2 或 J z 2 M z ( F ie ) dt
C x C y
3.杆的平面运动微分方程
mxC X 即: P l 2 l ( q sin q q cos q ) X A g 2 2
mC Y y P l 2 l 即: ( q cosq q sin q ) YB P g 2 2
二、质点的运动微分方程
或
ma Fi 2 d r m 2 Fi dt
1 、在直角坐标轴上的投影
m
d2 x dt
2
Fx , m
d2 y dt
2
Fy , m
d2 z dt
2
Fz
2、在自然轴上的投影 由 有
a at an n, ab 0,
例 均质细杆AB,长l,重 P,两端分别沿铅垂墙和水平面滑 动,不计摩擦,如图所示。若杆在铅垂位置受干扰后,由静止 状态沿铅垂面滑下,求杆在任意位置的角加速度(q的函数)。
解:1、杆在任意位置的受力图如图所示。 2、分析杆质心的运动,如图所示质 心的坐标为
l xC sin q 2 l yC cosq 2 l 2 l q sin q q cosq 2 2 l 2 l q cosq q sin q 2 2
z
ri
Mi
刚体绕定轴转动的微分方程
当外力主矩 时,角加速度 ,因而刚体作匀速转动或保
持静止(转动状态不变)。
应用刚体定轴转动的微分方程可以解决动力学两类问题。
(1)已知刚体的转动规律 ,可以通过导数运算求得刚
体上的外力对轴的力矩。 (2)已知外力的力矩,可以求角加速度,通过积分运算,
也可求得角速度和转动规律。