COB封装最新技术
cob绑定工艺

cob绑定工艺Cob绑定工艺是一种将芯片和散热器组合在一起的封装技术,可以提高芯片的散热性能和可靠性。
这种工艺在LED照明、电源模块和汽车电子等领域得到广泛应用。
Cob绑定工艺的核心是将芯片和散热器直接粘合在一起,形成一个整体。
这种粘合可以使用导热胶或者导热硅脂来实现。
导热胶是一种具有良好导热性能和粘附性的材料,可以将芯片和散热器紧密地连接在一起,有效地提高散热效果。
导热硅脂则是一种具有高导热性能的材料,可以填充芯片和散热器之间的微小空隙,提高散热效果。
Cob绑定工艺相比传统封装工艺具有很多优势。
首先,由于芯片和散热器直接粘合在一起,减少了封装材料和热界面材料的使用,降低了成本。
其次,由于芯片和散热器紧密连接,散热效果更好,可以提高芯片的工作稳定性和寿命。
此外,Cob绑定工艺还可以提高封装的紧凑性和可靠性,减小封装体积,提高产品的集成度。
在实际应用中,Cob绑定工艺有一些注意事项。
首先,需要选择合适的导热胶或导热硅脂,以确保良好的导热性能和粘附性。
其次,需要控制好粘合的厚度和均匀性,避免出现空隙或者厚度不均匀的情况。
此外,还需要考虑封装后的散热问题,选择合适的散热器和散热方案,以确保芯片的正常工作温度。
总结一下,Cob绑定工艺是一种将芯片和散热器直接粘合在一起的封装技术,可以提高芯片的散热性能和可靠性。
这种工艺具有成本低、散热效果好、紧凑可靠等优点,广泛应用于LED照明、电源模块和汽车电子等领域。
在应用过程中需要注意选择合适的粘合材料、控制好粘合厚度和均匀性,并考虑好散热问题。
Cob绑定工艺的发展为电子产品的封装和散热提供了新的解决方案,将在未来得到更广泛的应用。
新型COB型LED日光灯管与传统LED日光灯管对比分析

新型COB型LED日光灯管与传统LED日光灯管对比分析新型COB型LED日光灯管原来介绍:传统LED日光灯管使用上百颗小功率草帽或贴片封装,效率低且成本一直居高不下,本公司产品,利用自己拥有的MCOB多芯片集成封装技术,打破传统的点阵式封装方式,采用将铜片直接冲压或者浇铸,形成聚光反光杯,表面再涂上陶瓷,将芯片直接置于反光杯内的全新MCOB封装结构,该技术有效地解决了散热、光效率提升个光色一致性等LED行业问题。
新型LED日光灯管性能特点:工艺独特:采用MCOB封装方式,性能稳定,为面光源发光光率高:整灯光效可达100LM/W以上。
性能稳定:该产品使用了MCOB封装技术,BOSS底胶技术等,保证了快速发热,确保了产品的寿命。
耐高压:整灯均可耐4500V以上一高压。
散热效果好:采用了多杯面散热的结构设计、散热好、确保产品的寿命和品质的稳定。
环保:不含汞、铅等还害金属,无紫外线,无频闪,不会对健康造成危害。
寿命长:设计寿命在40000小时以上。
外观结构:本公司提供的LED灯管外形结构采用PC+铝合金,铝合壳体在PC罩内,区别在于传统LED灯管铝合外露,由于目前的代替型LED日光灯管为内置式电源,铝合金散热体外露,可能造成日光灯漏电,对于人的生命安全产生危险。
应用于学校的优势----面临问题视力影响据报道我国视力不良患病率已由世界第三位升到第二位,仅次于日本。
就业选择:影响学生就业。
健康影响节能灯汞的排放对于学生身体健康影响。
a、1只普通节能灯的含汞量约5毫克,仅够沾满一个圆珠笔尖,但渗入地下后即可造成1800吨水受污染。
b、国家推广的2亿节能灯的后遗症,国内专家学者已经上书国务院质疑绿色工程是污染陷阱,欧洲国家已经在逐步禁止使用节能灯。
不符合要求的光环境下(暗、亮、眩光等)对学生情绪,学习成绩的影响。
能源浪费人工控制或半自动控制造成能源浪费,不规范使用造成维护管理费用增加。
教室照明标准自我国卫生部于1987年发布实施《中小学采光和照卫生标准》至今已10余年,该标准是根据当时的经济技术条件和教育发展状况订制的,平均照度为150勒克斯,低于现在发达国家和国际标准的低水平(300勒克斯)。
倒装cob封装工艺

倒装cob封装工艺
倒装COB封装工艺是一种先进的集成电路封装技术,COB是
Chip on Board的缩写,意为芯片直接封装在基板上。
倒装COB封
装工艺相比传统封装技术具有一些优势。
首先,倒装COB封装工艺可以有效减小封装尺寸,提高集成度。
由于芯片直接封装在基板上,不需要额外的封装材料和封装空间,
因此可以实现更小型化的封装,适用于轻薄化、小型化的电子产品
设计。
其次,倒装COB封装工艺可以提高散热性能。
由于芯片直接与
基板接触,热量可以更快更有效地传导到基板上,利于散热,有利
于提高芯片的工作稳定性和可靠性。
此外,倒装COB封装工艺可以降低封装成本。
相比传统封装技术,倒装COB封装省去了一些封装材料和工序,可以降低生产成本,提高生产效率。
然而,倒装COB封装工艺也存在一些挑战和局限性。
例如,对
基板的要求较高,需要优质的基板材料和制造工艺;另外,倒装
COB封装需要特殊的焊接工艺,对生产工艺要求较高。
总的来说,倒装COB封装工艺在一定的应用场景下具有明显的优势,但也需要克服一些技术难题。
随着技术的不断进步和应用需求的不断变化,倒装COB封装工艺有望在未来得到更广泛的应用和发展。
COB工艺及其发展趋势

COB工艺及其发展趋势摘要本文主要讲了PCB线路板邦定的制备工艺及封装技术的发展趋势,以及化学材料在芯片封装方面的应用及发展方向。
关键词COB;工艺;发展趋势;材料前言集成电路封装的目的在于保护芯片不收或少受外界的影响,并为之提供一个发挥集成电路芯片功能的良好工作环境,以使之稳定可靠、正常的完成电路完成电路功能。
但是集成电路芯片封装只能限制而不能提高芯片的功能。
一、PCB线路板邦定的制备工艺1. 工艺要求:把写好程序的芯片(IC)邦定到PCB线路板上;使其能够联接到其他电器元件。
2. 生产原理:首先根据客户提供的图纸,将芯片粘接到PCB板上,再用ASM530邦定机将铝线接到芯片和PCB板,烘烤干后质检、检测后用黑胶封住芯片部位,再烘干后再检测,包装。
3. 工艺过程:a: 首先将购进的PCB板擦拭清洁、排版,按同一方向整齐地放入铝盘中。
b: 开启固晶机,把红胶倒入固晶机的胶盘,对照方向用在固晶机上编好程序,调整好技术参数开始固晶,再将固好晶的PCB板放入120度的烘箱烘烤30分钟,烘干后流入下一段工序。
c: 开启ASM530邦定机,根据PCB调整好机器的功率,依据客户提供的图纸编好程序,使用相应的焊线(铝线、金线)把芯片和PCB板连接在一起,注意不能漏线、断线。
d: 将邦好线的PCB板进行功能检测,如果检测到有次品就进行返修,直至成合格品。
e: 把合格的PCB板进行封胶,启动封胶机,根据铝盘中的PCB板编好程序,调整好气压、出胶高度、胶点大小。
开始封胶,注意封胶品质,保证胶点刚好封住芯片部位,并且胶点要刚好在圆圈里不能溢出。
f:将封好胶的PCB板放入120度的烘箱内烘烤120分钟,完全干透后再将其拿出进行外观检测,待合格后再进行包装发货。
4. 设计内容:工艺方案方框图5. 工艺过程所需设备固晶机、超声波焊线机、超声波补线机、COB封胶机、高温干燥箱、高倍显微镜。
二、先进封装技术发展趋势电子产品继续在个人、医疗、家庭、汽车、环境和安防系统等领域得到新的应用。
cob倒装封装标准

cob倒装封装标准
COB(Chip on Board)是一种集成电路封装技术,它将芯片直
接粘贴在PCB(Printed Circuit Board)上,而不是采用传统的封
装方式。
COB封装技术的倒装指的是将芯片颠倒安装在PCB上,使
芯片的连接面朝向PCB,这种安装方式可以减小封装尺寸,提高散
热效果,降低封装成本,并且可以增加PCB的布局灵活性。
COB倒装封装标准通常涉及到以下几个方面:
1. 封装工艺标准,COB倒装封装需要严格控制封装工艺,包括
芯片粘贴、焊接、封装胶固化等环节。
标准化的封装工艺可以确保
封装质量和稳定性。
2. 焊接标准,COB倒装封装的焊接技术对于保证芯片与PCB之
间的连接质量至关重要。
需要制定相应的焊接标准,包括焊接温度、焊接时间、焊接材料等方面的要求。
3. 封装材料标准,COB倒装封装所使用的封装胶、导热材料等
材料需要符合相应的标准,以确保其性能和可靠性。
4. 封装尺寸标准,COB倒装封装需要遵循一定的封装尺寸标准,以便与其他元器件和PCB进行匹配和布局。
5. 整体可靠性标准,COB倒装封装需要符合整体可靠性标准,
包括耐热性、耐冲击性、耐湿热循环性等方面的要求。
总的来说,COB倒装封装标准涉及到封装工艺、焊接、材料、
尺寸和可靠性等多个方面的要求,只有严格遵循这些标准,才能保
证COB倒装封装的质量和稳定性。
cob半导体封装工艺

cob半导体封装工艺一、COB的含义COB(Chip On Board),又称芯片直接贴装技术,是一种将裸芯片直接安装在印刷电路板(PCB)上,随后进行引线键合,并利用有机胶将芯片与引线封装保护的工艺技术。
这一过程实现了芯片与电路板电极之间在电气和机械层面的连接。
COB工艺是一种与表面贴装技术(SMD)封装相区别的新型封装方式。
相较于传统工艺,COB具备较高的设备精度,封装流程简便,且间距可以做到更小。
因此,它特别适用于加工线数较多、间隙较细、面积要求较小的PCB板。
在COB工艺中,芯片在焊接压接后采用有机胶进行固化密封保护,从而确保焊点及焊线免受外界损伤,进而实现极高的可靠性。
二、COB封装的工艺流程及步骤:1.擦板:在COB工艺流程中,由于PCB等电子板上存在焊锡残渣和灰尘污渍,下一阶段的固晶和焊线等工序可能会导致不良产品增多和报废。
为解决此问题,厂家需对电子线路板进行清洁。
2.固晶:传统工艺采用点胶机或手动点胶,在PCB印刷线路板的IC位置上涂上适量红胶,再用真空吸笔或镊子将IC裸片正确放置在红胶上。
3.烘干:将涂好红胶的裸片放入热循环烘箱中烘烤一段时间,也可自然固化(时间较长)。
4.绑定:采用铝丝焊线机,将晶片(如LED晶粒或IC芯片)与PCB板上对应的焊盘铝丝进行桥接,即COB的内引线焊接。
5. 前测:使用专用检测工具(根据COB不同用途选择不同设备,简单的高精密度稳压电源)检测COB板,对不合格的板子进行重新返修。
6.封胶:将适量黑胶涂在绑定好的晶粒上,并根据客户要求进行外观封装。
7.固化:将封好胶的PCB印刷线路板放入热循环烘箱中恒温静置,可根据要求设定不同的烘干时间。
8.测试:采用专用检测工具对封装好的PCB印刷线路板进行电气性能测试,以区分好坏优劣。
相较于其他封装技术,COB技术具有价格低(仅为同芯片的1/3左右)、节约空间、工艺成熟等优势,因此在半导体封装领域得到广泛应用。
三、主要焊接方法1、热压焊:此方法通过加热和加压力使金属丝与焊区紧密结合。
COB封装就是为1.0mm及以下点间距量身打造的

COB 封装就是为1.0mm 及以下点间距量身打造的
板上封装(Chip on Board)是一种将多颗LED 芯片直接安装在散热PCB 基板上来直接导热的结构。
COB 封装集合了上游芯片技术,中游封装技术及下游显示技术,因此COB 封装需要上、中、下游企业的紧密合作才能推动COB LED 显示屏大规模应用。
COB 封装显示模块示意图
如上图所示,为一种COB 集成封装LED 显示模块,正面为LED 灯模组构成像素点,底部为IC 驱动元件,最后将一个个COB 显示模块拼接成设计大小的LED 显示屏。
COB 的理论优势:
1、设计研发:没有了单个灯体的直径,理论上可以做到更加微小;。
COB与SMD两种封装形式的分析和比较,探讨LED显示领域最佳的封装形式

COB与SMD两种封装形式的分析和比较,探讨LED显示领域最佳的封装形式COB封装在LED显示屏应用领域已渐趋成熟,尤其在户外小间距领域以其独特的技术优势异军突起。
特别是在最近两年,随着生产技术以及生产工艺的改进,COB 封装技术已经取得了质的突破,以前一些制约发展的因素,也在技术创新的过程中迎刃而解。
那么,COB封装技术优势到底在哪里?它与传统的SMD封装又有哪些不同?未来它会取代SMD成为LED显示屏的主流吗?一般来说,某种封装技术是否有生命力,是要从产业链的头部(LED芯片)一直看到它尾部(客户应用端)。
通过全面的分析来评估。
其中,对某种封装技术的最终评判权一定是来自客户应用端,而不是产业链上的某个环节。
本文将通过COB与SMD两种封装形式进行分析和比较,探讨LED显示领域最佳的封装形式。
总体来说,COB封装和SMD封装在LED芯片的选择上是站在同一个起跑线上,之后选择了不同的技术路线。
一、封装环节分析评估1. 技术不同COB封装是将LED芯片直接用导电胶和绝缘胶固定在PCB板灯珠灯位的焊盘上,然后进行LED芯片导通性能的焊接,测试完好后,用环氧树脂胶包封。
SMD封装是将LED芯片用导电胶和绝缘胶固定在灯珠支架的焊盘上,然后采用和COB 封装相同的导通性能焊接,性能测试后,用环氧树脂胶包封,再进行分光、切割和打编带,运输到屏厂等过程。
2. 优劣势比较SMD封装厂能造出高质量的灯珠是勿容置疑的,只是生产工艺过多,成本会相对高些。
还会增加从灯珠封装厂到屏厂之间的运输、物料仓储和质量管控成本。
而SMD认为COB封装技术过于复杂,产品的一次通过率没有单灯的好控制,甚至是无法逾越的障碍。
失效点无法维修,成品率低。
事实上,COB封装以目前的设备技术和质量管控水平,0.5K的集成化技术可以使一次通过率达到70%左右,1K的集成化技术可以达到50%左右、2K的集成化技术可以使该项指标达到30%左右。
即使有没有通过一次通过率检测的模组,但整板不良点也就1-5点,超过5个不良点位以上的模组很少,封胶前经过测试与返修是可以使成品合格率达到90%-95%左右。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大功率LED封装技术解析一、前言大功率LED封装由于结构和工艺复杂,并直接影响到LED的使用性能和寿命,一直是近年来的研究热点,特别是大功率白光LED 封装更是研究热点中的热点。
LED封装的功能主要包括:1、机械保护,以提高可靠性;2、加强散热,以降低晶片结温,提高LED性能;3、光学控制,提高出光效率,优化光束分布;4、供电管理,包括交流/直流转变,以及电源控制等。
LED封装方法、材料、结构和工艺的选择主要由晶片结构、光电/机械特性、具体应用和成本等因素决定。
经过40多年的发展,LED封装先后经历了支架式(Lamp LED)、贴片式(SMD LED)、功率型LED(Power LED)等发展阶段。
随着晶片功率的增大,特别是固态照明技术发展的需求,对LED封装的光学、热学、电学和机械结构等提出了新的、更高的要求。
为了有效地降低封装热阻,提高出光效率,必须采用全新的技术思路来进行封装设计。
二、大功率LED封装关键技术大功率LED封装主要涉及光、热、电、结构与工艺等方面,如图1所示。
这些因素彼此既相互独立,又相互影响。
其中,光是LED 封装的目的,热是关键,电、结构与工艺是手段,而性能是封装水平的具体体现。
从工艺相容性及降低生产成本而言,LED封装设计应与晶片设计同时进行,即晶片设计时就应该考虑到封装结构和工艺。
否则,等晶片制造完成后,可能由于封装的需要对晶片结构进行调整,从而延长了产品研发周期和工艺成本,有时甚至不可能。
具体而言,大功率LED封装的关键技术包括:(一)、低热阻封装工艺对于现有的LED光效水平而言,由于输入电能的80%左右转变成为热量,且LED晶片面积小,因此,晶片散热是LED封装必须解决的关键问题。
主要包括晶片布置、封装材料选择(基板材料、热介面材料)与工艺、热沉设计等。
图1 大功率LED封装技术图2 低温共烧陶瓷金属基板LED封装热阻主要包括材料(散热基板和热沉结构)内部热阻和介面热阻。
散热基板的作用就是吸引晶片产生的热量,并传导到热沉上,实现与外界的热交换。
常用的散热基板材料包括矽、金属(如铝,铜)、陶瓷(如Al2O3,AIN,SiC)和复合材料等。
如Nichia公司的第三代LED采用CuW做衬底,将1mm晶片倒装在CuW衬底上,降低了封装热阻,提高了发光功率和效率;Lamina Ceramics 公司则研制了低温共烧陶瓷金属基板,如图2,并开发了相应的LED 封装技术。
该技术首先制备出适于共晶焊的大功率LED晶片和相应的陶瓷基板,然后将LED晶片与基板直接焊接在一起。
由于该基板上集成了共晶焊层、静电保护电路、驱动电路及控制补偿电路,不仅结构简单,而且由于材料热导率高,热介面少,大大提高了散热性能,为大功率LED阵列封装提出了解决方案。
德国Curmilk公司研制的高导热性覆铜陶瓷板,由陶瓷基板(AIN和Al2O3)和导电层(Cu)在高温高压下烧结而成,没有使用黏结剂,因此导热性能好、强度高、绝缘性强、如图3所示。
其中氮化铝(AIN)的热导率为160W/mk,热膨胀系数为4.0×10-6/℃(与矽的热膨胀系数3.2×10-6/℃相当),从而降低了封装热应力。
研究表明,封装介面对热阻影响也很大,如果不能正确处理介面,就难以获得良好的散热效果。
例如,室温下接触良好的介面在高温下可能存在介面间隙,基板的翘曲也可能会影响键合和局部的散热。
改善LED封装的关键在于减少介面和介面接触热阻,增强散热。
因此,晶片和散热基板间的热介面材料(TIM)选择十分重要。
LED封装常用的TIM为导电胶和导热胶,由于热导率较低,一般为0.5-2.5W/mK,致使介面热阻很高。
而采用低温和共晶焊料、焊膏或者内掺纳米颗粒的导电胶作为热介面材料,可大大降低介面热阻。
图3 覆铜陶瓷基板截面示意图(二)、高取光率封装结构与工艺在LED使用过程中,辐射复合产生的光子在向外发射时产生的损失,主要包括三个方面:晶片内部结构缺陷以及材料的吸收;光子在出射界面由于折射率差引起的反射损失;以及由于入射角大于全反射临界角而引起的全反射损失。
因此,很多光线无法从晶片中出射到外部。
通过在晶片表面涂覆一层折射率相对较高的透明胶层(灌封胶),由于该胶层处于晶片和空气之间,从而有效减少了光子在介面的损失,提高了取光效率。
此外,灌封胶的作用还包括对晶片进行机械保护,应力释放,并作为一种光导结构。
因此,要求其透光率高,折射率高,热稳定性好,流动性好,易于喷涂。
为提高LED封装的可靠性,还要求灌封胶具有低吸湿性、低应力、耐老化等特性。
目前常用的灌封胶包括环氧树脂和矽胶。
矽胶由于具有透光率高,折射率大,热稳定性好,应力小,吸湿性低等特点,明显优于环氧树脂,在大功率LED 封装中得到广泛应用,但成本较高。
研究表明,提高矽胶折射率可有效减少折射率物理屏障带来的光子损失,提高外量子效率,但矽胶性能受环境温度影响较大。
随着温度升高,矽胶内部的热应力加大,导致矽胶的折射率降低,从而影响LED光效和光强分布。
萤光粉的作用在于光色复合,形成白光。
其特性主要包括粒度、形状、发光效率、转换效率、稳定性(热和化学)等,其中,发光效率和转换效率是关键。
研究表明,随着温度上升,萤光粉量子效率降低,出光减少,辐射波长也会发生变化,从而引起白光LED色温、色度的变化,较高的温度还会加速萤光粉的老化。
原因在于萤光粉涂层是由环氧或矽胶与萤光粉调配而成,散热性能较差,当受到紫光或紫外光的辐射时,易发生温度猝灭和老化,使发光效率降低。
此外,高温下灌封胶和萤光粉的热稳定性也存在问题。
由于常用萤光粉尺寸在1μm以上,折射率大于或等于1.85,而矽胶折射率一般在1.5左右。
由于两者间折射率的不匹配,以及萤光粉颗粒尺寸远大于光散射极限(30nm),因而在萤光粉颗粒表面存在光散射,降低了出光效率。
通过在矽胶中掺入纳米萤光粉,可使折射率提高到1.8以上,降低光散射,提高LED出光效率(10%-20%),并能有效改善光色质量。
传统的萤光粉涂敷方式是将萤光粉与灌封胶混合,然后点涂在晶片上。
由于无法对萤光粉的涂敷厚度和形状进行精确控制,导致出射光色彩不一致,出现偏蓝光或者偏黄光。
而Lumileds公司开发的保形涂层(Conformal coating)技术可实现萤光粉的均匀涂覆,保障了光色的均匀性,如图4b。
但研究表明,当萤光粉直接涂覆在晶片表面时,由于光散射的存在,出光效率较低。
有鉴于此,美国Rensselaer 研究所提出了一种光子散射萃取工艺(Scattered Photon Extraction method, SPE),通过在晶片表面布置一个聚焦透镜,并将含萤光粉的玻璃片置于距晶片一定位置,不仅提高了器件可靠性,而且大大提高了光效(60%),如图4(c)。
图4 大功率白光LED封装结构总体而言,为提高LED的出光效率和可靠性,封装胶层有逐渐被高折射率透明玻璃或微晶玻璃等取代的趋势,通过将萤光粉内掺或外涂于玻璃表面,不仅提高了萤光粉的均匀度,而且提高了封装效率。
此外,减少LED出光方向的光学介面数,也是提高出光效率的有效措施。
(三)、阵列封装与系统集成技术经过40多年的发展,LED封装技术和结构先后经历了四个阶段,如图5所示。
图5 LED封装技术和结构发展1、引脚式(Lamp)LED封装引脚式封装就是常用的A3-5mm封装结构。
一般用于电流较小(20-30mA),功率较低(小于0.1W)的LED封装。
主要用于仪表显示或指示,大规模集成时也可作为显示幕。
其缺点在于封装热阻较大(一般高于100K/W),寿命较短。
2、表面组装(贴片)式(SMT-LED)封装表面组装技术(SMT)是一种可以直接将封装好的器件贴、焊到PCB表面指定位置上的一种封装技术。
具体而言,就是用特定的工具或设备将晶片引脚对准预先涂覆了粘接剂和焊膏的焊盘图形上,然后直接贴装到未钻安装孔的PCB表面上,经过波峰焊或再流焊后,使器件和电路之间建立可靠的机械和电气连接。
SMT技术具有可靠性高、高频特性好、易于实现自动化等优点,是电子行业最流行的一种封装技术和工艺。
3、板上晶片直装式(COB)LED封装COB是Chip On Board(板上晶片直装)的英文缩写,是一种通过粘胶剂或焊料将LED晶片直接粘贴到PCB板上,再通过引线键合实现晶片与PCB板间电互连的封装技术。
PCB板可以是低成本的FR-4材料(玻璃纤维增强的环氧树脂),也可以是高热导的金属基或陶瓷基复合材料(如铝基板或覆铜陶瓷基板等)。
而引线键合可采用高温下的热超声键合(金丝球焊)和常温下的超声波键合(铝劈刀焊接)。
COB技术主要用于大功率多晶片阵列的LED封装,同SMT相比,不仅大大提高了封装功率密度,而且降低了封装热阻(一般为6-12W/m.K)。
4、系统封装式(SiP)LED封装SiP(System in Package)是近几年来为适应整机的携带型发展和小型化的要求,在系统晶片System on Chip (SOC)基础上发展起来的一种新型封装集成方式。
对SiP-LED而言,不仅可以在一个封装内组装多个发光晶片,还可以将各种不同类型的器件(如电源、控制电路、光学微结构、感测器等)集成在一起,构建成一个更为复杂的、完整的系统。
同其他封装结构相比,SiP具有工艺相容性好(可利用已有的电子装装材料和工艺),集成度高,成本低,可提供更多新功能,易于分块测试,开发周期短等优点。
按照技术类型不同,SiP可分为四种:晶片层叠型、模组型、MCM型和三维(3D)封装型。
目前,高亮度LED器件要代替白炽灯以及高压汞灯,必须提高总的光通量,或者说可以利用的光通量。
而光通量的增加可以通过提高集成度、加大电流密度、使用大尺寸晶片等措施来实现。
而这些都会增加LED的功率密度,如散热不良,将导致LED晶片的结温升高,从而直接影响LED器件的性能(如发光效率降低、出射光发生红移,寿命降低等)。
多晶片阵列封装是目前获得高光通量的一个最可行的方案,但是LED阵列封装的密度受限于价格、可用的空间、电气连接,特别是散热等问题。
由于紫光晶片的高密度集成,散热基板上的温度很高,必须采用有效的热沉结构和合适的封装工艺。
常用的热沉结构分为被动和主动散热。
被动散热一般选用具有高肋化系数的翅片,通过翅片和空气间的自然对流将热量耗散到环境中。
该方案结构简单,可靠性高,但由于自然对流换热系数较低,只适合于功率密度较低,集成度不高的情况。
对于大功率LED(封装),则必须采用主动散热,如翅片+风扇、热管、液体强迫对流、微通道致冷、相变致冷等。
在系统集成方面,台湾新强光电公司采用系统封装技术(SiP),并通过翅片+热管的方式搭配高效能散热模组,研制出了72W、80W 的高亮度白光LED光源,如图6。