函数的图像与零点精彩试题
专题14 运用函数的图像研零点问题(解析版)

专题14 运用函数的图像研零点问题一、题型选讲题型一: 运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。
作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。
例1、(2019苏州三市、苏北四市二调)定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上⎩⎨⎧<≤-<≤-=43,432,2)(x x x x x f 则函数x x f y log 5)(-=的零点的个数为 【答案】 5【解析】因为f(x +4)=f(x),可得f(x)是周期为4的奇函数,先画出函数f(x)在区间[2,4)上的图像,根据奇函数和周期为4,可以画出f(x)在R 上的图像,由y =f (x )-log 5| x |=0,得f (x )=log 5| x |,分别画出y =f (x )和y =log 5|x |的图像,如下图,由f (5)=f (1)=1,而log 55=1,f (-3)=f (1)=1,log 5|-3|<1,而f (-7)=f (1)=1,而log 5|-7|=log 57>1,可以得到两个图像有5个交点,所以零点的个数为5.解后反思 本题考查了函数的零点问题,以及函数的奇偶性和周期性,考查了转化与化归、数形结合的思想,函数的零数问题,常转化为函数的图像的交点个数来处理,其中能根据函数的性质作出函数的图像并能灵活地运用图像,找到临界点是解题的关键也是难点.例2、(2017苏锡常镇调研)若函数f (x )=⎩⎪⎨⎪⎧12x-1,x <1,ln xx 2,x ≥1,)则函数y =|f (x )|-18的零点个数为________.【答案】 4【解析】设g (x )=ln xx 2,则由g ′(x )=x -ln x ·2x x 4=1-2ln x x 3=0,可得x =e ,所以g (x )在(1,e)上单调递增,在(e ,+∞)上单调递减,当x →+∞时,g (x )→0,故g (x )在(1,+∞)上的最大值为g (e)=12e >18.在同一平面直角坐标系中画出y =|f (x )|与y =18的图像可得,交点有4个,即原函数零点有4个.易错警示 答案中出现了3和5这两种错误结果,3的主要原因是弄错了(1,+∞)上的单调性或者忘了处理绝对值,5的主要原因是没有发现图像趋近于x 轴.题型二 运用函数图像研究复合函数零点个数复合函数零点问题的特点:考虑关于x 的方程()0g f x =⎡⎤⎣⎦根的个数,在解此类问题时,要分为两层来分析,第一层是解关于()f x 的方程,观察有几个()f x 的值使得等式成立;第二层是结合着第一层()f x 的值求出每一个()f x 被几个x 对应,将x 的个数汇总后即为()0g f x =⎡⎤⎣⎦的根的个数例3、(2017南通期末) 已知函数f (x )是定义在[1,+∞)上的函数,且f (x )=⎩⎨⎧1-|2x -3|,1≤x <2,12f ⎝ ⎛⎭⎪⎫12x , x ≥2,则函数y =2xf (x )-3在区间(1,2 015)上的零点个数为________.【答案】11 【解析】解法1 由题意得当1≤x <2时,f (x )=⎩⎪⎨⎪⎧2x -2,1≤x ≤32,4-2x , 32<x <2. 设x ∈[2n -1,2n)(n ∈N *),则x2n -1∈[1,2),又f (x )=12n -1f ⎝ ⎛⎭⎪⎫12n -1x ,①当x 2n -1∈⎣⎢⎡⎦⎥⎤1,32时,则x ∈[2n -1,3·2n -2],所以f (x )=12n -1f ⎝ ⎛⎭⎪⎫12n -1x =12n -1⎝ ⎛⎭⎪⎫2·12n -1x -2,所以2xf (x )-3=2x ·12n -1⎝ ⎛⎭⎪⎫2·12n -1x -2-3=0,整理得x 2-2·2n -2x -3·22n -4=0.解得x =3·2n -2或x =-2n -2.由于x∈[2n -1,3·2n -2],所以x =3·2n -2;②当x 2n -1∈⎝ ⎛⎭⎪⎫32,2时,则x ∈(3·2n -2,2n),所以f (x )=12n -1f ⎝ ⎛⎭⎪⎫12n -1x =12n -1⎝ ⎛⎭⎪⎫4-2·12n -1x ,所以2xf (x )-3=2x ·12n -1⎝ ⎛⎭⎪⎫4-2x 2n -1-3=0,整理得x 2-4·2n -2x +3·22n -4=0.解得x =3·2n -2或x =2n -2.由于x ∈(3·2n -2,2n),所以无解.综上所述,x =3·2n -2.由x =3·2n -2∈(1,2 015),得n ≤11,所以函数y =2xf (x )-3在区间(1,2 015)上零点的个数是11.解法2 由题意得当x ∈[2n -1,2n)时,因为f (x )=12n -1·f ⎝ ⎛⎭⎪⎫12n -1x ,所以f (x )max =f ⎝ ⎛⎭⎪⎫32·2n -1=12n -1.令g (x )=32x .当x =32·2n -1时,g (x )=g ⎝ ⎛⎭⎪⎫32·2n -1=12n -1,所以当x ∈[2n -1,2n)时,x =32·2n -1为y =2xf (x )-3的一个零点.下面证明:当x ∈[2n -1,2n)时,y =2xf (x )-3只有一个零点.当x ∈[2n -1,3·2n -2]时,y =f (x )单调递增,y =g (x )单调递减,f (3·2n -2)=g (3·2n -2),所以x ∈[2n -1,3·2n -2]时,有一零点x =3·2n -2;当x ∈(3·2n -2,2n)时,y =f (x )=12n -1-12n -1⎝ ⎛⎭⎪⎫x 2n -2-3,k 1=f ′(x )=-122n -3,g (x )=32x ,k 2=g ′(x )=-32x 2∈⎝ ⎛⎭⎪⎫-13·22n -3,-322n +1,所以k 1<k 2.又因为f (3·2n -2)=g (3·2n -2),所以当x ∈[2n -1,2n)时,y =2xf (x )-3只有一个零点.由x =3·2n -2∈(1,2 015),得n ≤11,所以函数y =2xf (x )-3在区间(1,2 015)上零点的个数是11.解法3 分别作出函数y =f (x )与y =32x 的图像,如图,交点在x 1=32,x 2=3,x 3=6,…,x n =3·2n -2处取得.由x =3·2n -2∈(1,2 015),得n ≤11,所以函数y =2xf (x )-3在区间(1,2 015)上零点的个数是11.题型三 运用函数图像研究与零点有关的参数问题三类问题之间的联系:即函数的零点⇔方程的根⇔函数图象的交点,运用方程可进行等式的变形进而构造函数进行数形结合,解决这类问题要选择合适的函数,以便于作图,便于求出参数的取值范围为原则。
函数的图像与零点试题

点为 x= ,
∴| | ,即 A 中的函数符合题意
故选 A.
9.若 a 2 ,则方程 x3 3ax2 3 0 在(0,2)上恰好有(B )个
根
A.0
B. 1
C.2
D. 3
10.已知函数 f(x)=
,若方程 f(x
)+2a﹣1=0 恰有 4 个实数根,则实数 a 的取值 范围是( A )
A (﹣ ,0] B [﹣ ,0] C [1, )
∴f(x0)=0 ∵f(x)=2x+ 是单调递增函数,且 x1∈(1,
x0),x2∈(x0,+∞), ∴f(x1)<f(x0)=0<f(x2)
故选 B. 7.如图是函数 f(x)=x2+ax+b 的部分图象,函数 g(x)=ex﹣f'(x)的零点所在的区间是(k,k+1 )(k∈z),则 k 的值为( C )
. =8x﹣2 . x+1)2
.
. x﹣ )
解答: 解:∵g(x)=4x+2x﹣2 在 R 上连续,且 g( )
= = <0,g( )=2+1﹣2=1>0.
设 g(x)=4x+2x﹣2 的零点为 x0,则
又 f(x)=8x﹣2 零点为 x= ;f(x)=(x+1)2 的零点为 x=﹣1 f(x)=ex﹣1 零点为 x=0;f(x)=ln(x﹣ )零
( A ) A、在区间(0,1),(1,2)内均有零点 B、
在区间(0,1)内有零点,在区间(1,2)内无 零点
C、在区间(0,1),(1,2)内均无零点 D、 在区间(0,1)内无零点,在区间(1,2)内有 零点
5.已知 x1 是方程 x 2x 3的根, x2 是方程 x log2 x 3的根,
高考数学复习考点知识与题型专题讲解训练04 函数的图象、零点及应用(含解析)

高考数学复习考点知识与题型专题讲解训练专题04 函数的图象、零点及应用考点1 作函数的图象 1.作出下列函数的图象. (1)y =⎩⎨⎧-2x +3,x ≤1,-x 2+4x -2,x >1;(2)y =2x +2;【解析】(1)分段分别画出函数的图象,如图①所示.(2)y =2x +2的图象是由y =2x 的图象向左平移2个单位长度得到的,其图象如图②所示.考点2 识图与辨图2.已知定义在区间[0,4]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为( )【答案】D【解析】法一:先作出函数y =f (x )的图象关于y 轴的对称图象,得到y =f (-x )的图象; 然后将y =f (-x )的图象向右平移2个单位,得到y =f (2-x )的图象;再作y =f (2-x )的图象关于x 轴的对称图象,得到y =-f (2-x )的图象.故选D. 法二:先作出函数y =f (x )的图象关于原点的对称图象,得到y =-f (-x )的图象;然后将y =-f (-x )的图象向右平移2个单位,得到y =-f (2-x )的图象.故选D.3.(2021·浙江省诸暨市第二高级中学高三模拟)函数()21xy x e =-的图象是( )A .B .C .D .【答案】A【解析】因为()21xy x e =-,则()21xy x e '=+,1,2x ⎛⎫∈-∞- ⎪⎝⎭时,()210x y x e '=+<,所以函数()21x y x e =-在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()210x y x e '=+>,所以函数()21x y x e =-在1,2⎛⎫-∞- ⎪⎝⎭上单调递增,且12x <时,()210xy x e =-<,所以BCD 均错误,故选:A.4.(2021·吉林高三模拟)函数()6cos 2sin xf x x x=-的图象大致为( ).A .B .C .D .【答案】A 【解析】函数()6cos 2sin xf x x x=-为奇函数,所以排除选项BC ,又当0x >时,()f x 第一个零点为2x π=,所以令4x π=,则有222sin 0,cos0242x x ππ--=>=>,所以排除D.故选:C 考点3 函数图象的应用 考向1 研究函数的性质5.已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,递增区间是(0,+∞) B .f (x )是偶函数,递减区间是(-∞,1) C .f (x )是奇函数,递减区间是(-1,1) D .f (x )是奇函数,递增区间是(-∞,0) 【答案】C【解析】将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎨⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.6.(2021·山东烟台高三模拟)设函数()2,01,0x x f x x -⎧≤=⎨>⎩,则满足()()12f x f x +<的x 的取值范围是( ) A .(],1-∞- B .()0,∞+ C .()1,0- D .(),0-∞【答案】D【解析】作出函数()f x 的图象如下图所示:所以,函数()f x 在(),0-∞上为减函数,且当0x ≥时,()1f x =, 因为()()12f x f x +<,观察图象可得2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是(),0-∞.故选:D. 考向2 求不等式解集7.若不等式(x -1)2<log a x (a >0,且a ≠1)在x ∈(1,2)内恒成立,则实数a 的取值范围为( ) A .(1,2] B.)1,22(C .(1,2) D .(2,2) 【答案】A【解析】要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需函数y =(x -1)2在(1,2)上的图象在y =log a x 的图象的下方即可.当0<a <1时,显然不成立;当a >1时,如图,要使x ∈(1,2)时,y =(x -1)2的图象在y =log a x 的图象的下方,只需(2-1)2≤log a 2,即log a 2≥1,解得1<a ≤2,故实数a 的取值范围是(1,2].8.(2021·甘肃省会宁县第一中学高三模拟)已知)(f x 在R 上是可导函数,)(f x 的图象如图所示,则不等式)()(2230x x f x '-->解集为( )A .)()(,21,-∞-⋃+∞B .)()(,21,2-∞-⋃C .)()()(,11,02,-∞-⋃-⋃+∞D .)()()(,11,13,-∞-⋃-⋃+∞ 【答案】D【解析】原不等式等价于()22300x x f x '⎧-->⎪⎨>⎪⎩或()22300x x f x '⎧--<⎪⎨<⎪⎩,结合)(f x 的图象可得,3111x x x x ><-⎧⎪⎨-⎪⎩或或或1311x x -<<⎧⎨-<<⎩,解得1x <-或3x >或11x -<<.故选:D . 考点4 函数图象对称性的应用9.已知lga +lgb =0,函数f(x)=a x 与函数g(x)=-log b x 的图像可能是( )【答案】B【解析】∵lga +lgb =0,∴lgab =0,ab =1,∴b =1a .∴g(x)=-log b x =log a x ,∴函数f(x)与g(x)互为反函数,图像关于直线y =x 对称,故选B.10.(2021·云南高三模拟)已知函数()f x 是R 上的奇函数,且满足()()11f x f x =+-,当(]0,1x ∈,()ln f x x =,则下列关于函数()f x 叙述正确的是( )A .函数()f x 的最小正周期为1B .函数()f x 在()0,2021内单调递增C .函数()f x 相邻两个对称中心的距离为2D .函数()ln y f x x =+在区间()0,2021内有1010个零点 【答案】D【解析】由()()11f x f x =+-得:()()2f x f x +=,()f x ∴最小正周期为2,A 错误; 当(]0,1x ∈时,()ln f x x =,又()f x 为R 上的奇函数,则()00f =, 可得()f x 大致图象如下图所示:由图象可知:()f x 在()0,2021上没有单调性,B 错误;()f x 的对称中心为()()0,k k Z ∈,则相邻的对称中心之间距离为1,C 错误;()ln y f x x =+在区间()0,2021内的零点个数等价于()f x 与ln y x =-在()0,2021内的交点个数,在平面直角坐标系中画出()f x 与ln y x =-大致图象如下图所示:由图象可知:()f x 与ln y x =-在每个()()2,22k k k Z +∈内都有1个交点,且在区间内的交点横坐标等于或小于21k +,∴两个函数在()0,2021内有1010个交点,即()ln y f x x =+在区间()0,2021内有1010个零点,D正确.故选:D.11.(2021·山东淄博高三模拟)已知函数()y f x =的定义域为{|0}x x x ∈≠R ,,且满足()()0f x f x --=,当0x >时,()ln 1f x x x =-+,则函数()y f x =的大致图象为().A .B .C .D .【答案】D【解析】由()()0f x f x --=得函数()f x 为偶函数,排除A 、B 项, 又当0x >时,()ln 1f x x x =-+,∴(1)0f =,()20f e e =-<.故选:D 考点5 判断函数零点所在的区间12.设函数f (x )=13x -ln x ,则函数y =f (x )( )A .在区间)1,1(e,(1,e)内均有零点B .在区间)1,1(e,(1,e)内均无零点C .在区间)1,1(e 内有零点,在区间(1,e)内无零点D .在区间)1,1(e内无零点,在区间(1,e)内有零点【答案】D【解析】法一:图象法 令f (x )=0得13x =ln x .作出函数y =13x 和y =ln x 的图象,如图, 显然y =f (x )在)1,1(e内无零点,在(1,e)内有零点.法二:定理法当x ∈),1(e e 时,函数图象是连续的,且f ′(x )=13-1x =x -33x <0,所以函数f (x )在),1(e e 上单调递减.又f )1(e =13e +1>0,f (1)=13>0,f (e)=13e -1<0,所以函数有唯一的零点在区间(1,e)内.13.(2021·黑龙江高三模拟)函数()1293xf x x ⎛⎫=-- ⎪⎝⎭的零点所在的一个区间是()A .()1,2B .()1,0-C .()0,1D .()2,1--【答案】D【解析】如图,绘出函数13xy ⎛⎫= ⎪⎝⎭与函数29y x =+的图像,结合图像易知,函数()1293xf x x ⎛⎫=-- ⎪⎝⎭的零点所在的一个区间是()2,1--,故选:D.考点6 判断函数零点(或方程根)的个数14.(2021·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≤0,1+1x ,x >0,则函数y =f (x )+3x 的零点个数是( )A .0B .1C .2D .3【答案】C【解析】解方程法,令f (x )+3x =0, 则⎩⎨⎧x ≤0,x 2-2x +3x =0或⎩⎪⎨⎪⎧x >0,1+1x +3x =0,解得x =0或x =-1,所以函数y =f (x )+3x 的零点个数是2.15.(2021·山东潍坊高三模拟)已知函数221,0()2,0x x f x x x x ⎧->=⎨--≤⎩,若函数()()g x f x m =-有3个零点,则实数m 的取值范围( ) A .()1,0- B .[]1,0-C .(0,1)D .[]0,1【答案】C【解析】因为函数()()g x f x m =-有3个零点,所以()()0g x f x m =-=有三个实根,即直线y m =与函数()y f x =的图象有三个交点.作出函数()y f x =图象,由图可知,实数m 的取值范围是(0,1).故选:C .16.(2021·浙江镇海中学高三模拟)函数4()log (||1)cos f x x x π=+-的零点个数为( ) A .9 B .8C .7D .6【答案】D【解析】令()4log (||1)x g x =+ ,因为10x +>恒成立,则()g x 的定义域为R , 由()()44log (||1)log (||1)x g x x g x --+=+==,所以()g x 为偶函数, 当0x >时,()4log (1)g x x +=,在()0,∞+上单调递增,令()cos h x x π=, 分别画出()g x 与()h x 的函数图象,由图可知,()g x 与()h x 有六个交点, 即函数4()log (||1)cos f x x x π=+-有六个零点.故选: D.考点7 函数零点的应用 考向1 根据零点的范围求参数17.若函数f(x)=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( ) A .(1,3) B .(1,2) C .(0,3) D .(0,2) 【答案】C【解析】由条件可知f(1)f(2)<0,即(2-2-a)(4-1-a)<0,即a(a -3)<0,解之得0<a<3.18.(2021·浙江高一期末)已知函数()()2log 1,1212,1x x x f x x ⎧-<-⎪=⎨-+≥-⎪⎩,若函数()()F x f x k =- 恰有3个零点,则实数k 的取值范围是( )A .52,2⎛⎤⎥⎝⎦B .()2,3C .(]3,4D .()2,+∞【答案】A【解析】函数()()F x f x k =- 恰有3个零点,即函数()y f x =与()h x k =的图象有三个交点,分别画出()y f x =与()h x k =的图象,如图所示,5(1)2f -=,观察图象可得,当522k <≤时,两图象有3个交点,即函数()()F x f x k =-恰有3个零点.故选:A.19.(2021·江西高三模拟)设函数,10()11,01(1)x x f x x f x -<≤⎧⎪=⎨+<<⎪-⎩,若函数()4y f x t =-在区间()1,1-内有且仅有一个零点,则实数的取值范围是( )A .1,4⎛⎫-+∞ ⎪⎝⎭B .1,04⎛⎫- ⎪⎝⎭C .1,4⎛⎫-∞- ⎪⎝⎭D .1,{0}4⎛⎤-∞- ⎥⎝⎦【答案】D【解析】因为()(),1011,011x x f x x f x -<≤⎧⎪=⎨+<<⎪-⎩所以(),1011,011x x f x x x -<≤⎧⎪=⎨+<<⎪-⎩,其图象如下:函数()4y f x t =-在区间()1,1-内有且仅有一个零点,等价于()40f x t -=在区间()1,1-内有且仅有一个实数根,又等价于函数()y f x =的图象与直线4y t =在区间()1,1-内有且仅有一个公共点. 于是41t ≤-或40t =,解得14t ≤-或0t =.故选:D 考向2 已知函数零点或方程根的个数求参数20.(2020·湖南高三模拟)已知函数2141,0()1,02x x x x f x x +⎧-+≥⎪=⎨⎛⎫<⎪ ⎪⎝⎭⎩,若()()g x f x a =-恰好有3个零点,则实数a 的取值范围为( ) A .[0,1) B .(0,1)C .1,12⎡⎫⎪⎢⎣⎭D .1,12⎛⎤ ⎥⎝⎦【答案】D【解析】由条件可知()0f x a -=()a f x ⇒=()()g x f x a =-恰好有3个零点,等价于y a =与()y f x =有3个交点,如图画出函数的图象,由图象可知112a <≤.故选:D21.(2021·安庆摸底)若函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,则实数a 的取值范围是________.【答案】]2,41[-【解析】∵函数f (x )=4x -2x -a ,x ∈[-1,1]有零点, ∴方程4x -2x -a =0在[-1,1]上有解, 即方程a =4x -2x 在[-1,1]上有解. 方程a =4x -2x 可变形为a =2)412(-x -14,∵x ∈[-1,1],∴2x ∈]2,21[,∴2)412(-x -14∈]2,41[-∴实数a 的取值范围是]2,41[-考点8 用函数图象刻画变化过程22.甲、乙二人同时从A 地赶往B 地,甲先骑自行车到两地的中点再改为跑步,乙先跑步到中点再改为骑自行车,最后两人同时到达B 地.已知甲骑车比乙骑车的速度快,且两人骑车速度均大于跑步速度.现将两人离开A 地的距离s 与所用时间t 的函数关系用图象表示,则下列给出的四个函数图象中,甲、乙的图象应该是( )A .甲是图①,乙是图②B .甲是图①,乙是图④C .甲是图③,乙是图②D .甲是图③,乙是图④ 【答案】B【解析】由题知速度v =st 反映在图象上为某段图象所在直线的斜率.由题知甲骑自行车速度最大,跑步速度最小,甲与图①符合,乙与图④符合.23.(2021·重庆高三模拟)匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是( )A .B .C .D .【答案】A【解析】设圆锥PO 底面圆半径r ,高H ,注水时间为t 时水面与轴PO 交于点O ',水面半径AO x '=,此时水面高度PO h '=,如图:由垂直于圆锥轴的截面性质知,xhr H =,即r x h H=⋅,则注入水的体积为2223211()333r r V x h h h h H H πππ==⋅⋅=⋅,令水匀速注入的速度为v ,则注水时间为t 时的水的体积为V vt =,于是得2223333222333r H vt H v h vt h h t H r r πππ⋅=⇒=⇒=⋅,而,,r H v 都是常数,即2323H v r π是常数,所以盛水的高度h 与注水时间t 的函数关系式是23323H v h tr π=⋅,203r H t v π≤≤,223323103H v h t r π-'=⋅>,函数图象是曲线且是上升的,随t 值的增加,函数h 值增加的幅度减小,即图象是先陡再缓,A 选项的图象与其图象大致一样,B ,C ,D 三个选项与其图象都不同.故选:A 24.(2021·浙江高三模拟)如图,设有圆O 和定点C ,当l 从0l 开始在平面上绕O 匀速旋转(旋转角度不超过90︒)时,它扫过圆内阴影部分面积S 是时间t 的函数,它的图像大致是如下哪一种( )A .B .C .D .【答案】C【解析】当直线l 从初始位置0l 转到经过点C 的过程中阴影部分面积增加的越来越快,图像越来越“陡峭”;l 从过点C 的位置转至结束时阴影部分面积增加的越来越慢,图像越来越“平缓”,故选:C.考点9 应用所给函数模型解决实际问题25.某市家庭煤气的使用量x (m 3)和煤气费f (x )(元)满足关系f (x )=⎩⎨⎧C ,0<x ≤A ,C +B x -A ,x >A .已知某家庭2018年前三个月的煤气费如表: 月份 用气量 煤气费 一月份 4 m 3 4元 二月份 25 m 3 14元 三月份35 m 319元若四月份该家庭使用了20 m 3的煤气,则其煤气费为( ) A .11.5元 B .11元 C .10.5元 D .10元 【答案】A【解析】根据题意可知f (4)=C =4,f (25)=C +B (25-A )=14,f (35)=C +B (35-A )=19,解得A =5,B =12,C =4,所以f (x )=⎩⎪⎨⎪⎧4,0<x ≤5,4+12x -5,x >5,所以f (20)=4+12×(20-5)=11.5.26.(2021·湖南高三期末)某工厂8年来某种产品年产量C 与时间t (年)的函数关系如图所示.以下四种说法:①前三年产量增长的速度越来越快; ②前三年产量增长的速度越来越慢; ③第三年后这种产品停止生产; ④第三年到第八年每年的年产量保持不变. 其中说法正确的序号是________. 【答案】②④【解析】由图可知,前3年的产量增长的速度越来越慢,故①错误,②正确; 第三年后这种产品的产量保持不变,故③错误,④正确; 综合所述,正确的为:②④. 故答案为:②④.27.(【百强校】福建师范大学附属中学2020-2021学年高一上学期期末考试数学试题)如图所示,边长为 1的正方形PABC 沿 x 轴从左端无穷远处滚向右端无穷远处,点B 恰好能经过原点.设动点P 的纵坐标关于横坐标的函数解析式为()y f x =,则对函数()y f x =有下列判断:①函数()y f x = 是偶函数; ②()y f x =是周期为 4 的函数;③函数 ()y f x =在区间[10,12] 上单调递减; ④函数 ()y f x = 在区间[1,1] 上的值域是[1,2] 其中判断正确的序号是_______.(写出所有正确结论的序号) 【答案】①②④【解析】当2x 1-≤<-时,P 的轨迹是以A 为圆心,半径为1的14圆当1x 1-≤<时,P 的轨迹是以B 为圆心,半径为2的14圆 当1x 2≤<时,P 的轨迹是以C 为圆心,半径为1的14圆当2x 3≤≤时,P 的轨迹是以A 为圆心,半径为1的14圆 故函数的周期为4因此最终构成图象如下所示:①根据图象的对称性可知函数()y f x =是偶函数;故正确②由图可得()f x 的周期为4,故正确③函数()y f x =在区间[2,4]上为增函数,故在区间[10,12]上也是增函数,故错误 ④在区间[1,1]上的值域是[1,2],故正确 综上,正确的序号是①②④考点10 构建函数模型解决实际问题 考向1 构建二次函数模型28.有一批材料可以建成200 m 长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成的矩形场地的最大面积为________ m 2.(围墙厚度不计) 【答案】2 500【解析】设围成的矩形场地的长为x m ,则宽为200-x4 m ,则S =x ·200-x 4=14(-x 2+200x ). 当x =100时,S max =2 500 (m 2).29.(2021·四川高三模拟)某市出租车的计价标准为1.2元/km ,起步价为6元,即最初3km (不含3km )计费6元.若某人乘坐该市的出租车去往13km 处的目的地,且一路畅通,等候时间为0,那么他需要支付的车费为_____. 【答案】19.2【解析】乘车距离为x km ,车费为y 元,由题意得:6,036 1.2,346 1.22,456 1.23,56x x y x x <<⎧⎪+≤<⎪⎪=+⨯≤<⎨⎪+⨯≤<⎪⎪⎩, 所以当13x =时,()6132 1.219.2y =+-⨯=元,所以他需要支付的车费为19.2元,故答案为:19.230(2021·河南郑州一中高三模拟)在“绿水青山就是金山银山”的环保理念指引下,结合最新环保法规和排放标准,各企业单位勇于担起环保的社会责任,采取有针对性的管理技术措施,开展一系列卓有成效的改造.已知某化工厂每月收入为100万元,若不改善生产环节将受到环保部门的处罚,每月处罚20万元.该化工厂一次性投资500万元建造垃圾回收设备,一方面可以减少污染避免处罚,另一方面还能增加废品回收收入.据测算,投产后的累计收入是关于月份x 的二次函数,前1月、前2月、前3月的累计收入分别为100.5万元、202万元和304.5万元.当改造后累计纯收入首次多于不改造的累计纯收入时,x =( )A .18B .19C .20D .21【答案】A【解析】不妨设投产后的累计收入2y ax bx c =++,则100.520242304.593a b c a b c a b c =++⎧⎪=++⎨⎪=++⎩,解得1,100,02a b c ===, 211002y x x ∴=+, ∴改造后累计纯收入为215001005002y x x -=+-, 不改造的累计纯收入为()10020x -,令()21100500100202x x x +->-, 即212050002x x +->, 解得201014x >-+201014x <--,20101417.4x ∴>-+,x N *∈,x 的最小值为18.故选:A 考向2 构建指数函数、对数函数模型31.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )A .略有盈利B .略有亏损C .没有盈利也没有亏损D .无法判断盈亏情况【答案】B【解析】设该股民购进这支股票的价格为a 元,则经历n 次涨停后的价格为a (1+10%)n =a ×1.1n 元,经历n 次跌停后的价格为a ×1.1n ×(1-10%)n =a ×1.1n ×0.9n =a ×(1.1×0.9)n =0.99n ·a <a ,故该股民这支股票略有亏损.32.声强级1L (单位:dB )与声强I 的函数关系式为:11210lg 10I L -⎛⎫= ⎪⎝⎭.若普通列车的声强级是95dB ,高速列车的声强级为45dB ,则普通列车的声强是高速列车声强的( ) A .610倍B .510倍C .410倍D .310倍【答案】B【解析】设普通列车的声强为1I ,高速列车的声强为2I ,因为普通列车的声强级是95dB ,高速列车的声强级为45dB ,所以1129510lg 10I -⎛⎫= ⎪⎝⎭,2124510lg 10I -⎛⎫= ⎪⎝⎭, ()11129510lg 10lg 1210I I -⎛⎫==+ ⎪⎝⎭,解得12.5lg I -=,所以 2.5110I -=, ()22124510lg 10lg 1210I I -⎛⎫==+ ⎪⎝⎭,解得27.5lg I -=,所以7.5210I -=, 两式相除得 2.5517.52101010I I --==, 则普通列车的声强是高速列车声强的510倍.故选:B.33.(2020·重庆市酉阳第一中学校高三月考)为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus ,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大它的光就越暗.到了1850年,英国天文学家普森又提出了亮度的概念,并提出著名的普森公式:22112.51g E m m E -=-,联系两个天体的星等1m 、2m 和它们对应的亮度1E 、2E .这个星等尺度的定义一直沿用至今.已知南十字星座的“十字架三”星等是1.26,猎户星座的“参宿一”星等是1.76,则“十字架三”的亮度大约是“参宿一”的( )倍.(当x 较小时,2101 2.3 2.7x x x ≈++)A .1.567B .1.568C .1.569D .1.570 【答案】B【解析】设“十字架三”的星等是1m ,“参宿一”的星等是2m ,“十字架三”的亮度是1E ,“参宿一”的亮度是2E ,则1 1.26m =,2 1.76m =,设12E rE =, 两颗星的星等与亮度满足22112.51gE m m E -=-, 211.76 1.26 2.51g E E ∴-=-,0.21210E E =0.22101 2.30.2 2.7(0.2) 1.568r ∴=≈+⨯+⨯=,∴与r 最接近的是1.568,故选B . 考向3 构建分段函数模型34(2021·广东江门市·高三模拟)某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量(微克)与时间(时)之间近似满足如图所示的图象.据进一步测定,每毫升血液中含药量不少于0.25微克时,治疗疾病有效,则服药一次治疗疾病有效的时间为___________小时.【答案】7916【解析】当01t ≤≤时,函数图象是一个线段,由于过原点与点()1,4,故其解析式为4,01y t t =≤≤,当 1t ≥时,函数的解析式为12t a y -⎛⎫= ⎪⎝⎭,因为()1,4M 在曲线上,所以1142a -⎛⎫= ⎪⎝⎭,解得 3a =, 所以函数的解析式为31,12t y t -⎛⎫=≥ ⎪⎝⎭, 综上,34(01)()1(1)2t t t y f t t -≤<⎧⎪==⎨⎛⎫≥ ⎪⎪⎝⎭⎩,由题意有340.2510.252t t -≥⎧⎪⎨⎛⎫≥ ⎪⎪⎝⎭⎩,解得1165t t ⎧≥⎪⎨⎪≤⎩,所以1516t ≤≤, 所以服药一次治疗疾病有效的时间为17951616-=个小时,故答案为:7916. 35.(2020·福建三明市·三明一中高三期中)某在校大学生提前创业,想开一家服装专卖店,经过预算,店面装修费为10000元,每天需要房租水电等费用100元,受营销方法、经营信誉度等因素的影响,专卖店销售总收入P 与店面经营天数x 的关系是21300,0300()245000,300x x x P x x ⎧-≤<⎪=⎨⎪≥⎩,则总利润最大时店面经营天数是__________,最大总利润是__________.【答案】200 10000元【解析】由题意,0300x ≤<时,221130010010000(200)1000022y x x x x =---=--+,200x ∴=时,10000max y =;300x ≥时,4500010010000350001005000y x x =--=-≤,200x ∴=天时,总利润最大为10000元 故答案为:200, 10000元。
高中函数零点问题精选题型

零点问题与数形结合题型一、直接做图1 函数 ()1|1|f x x =--‖ 的图像与直线 y k = 有且仅有四个不同的交点, 则实数 k 的取值范围是_________2 已知函数 ()22x f x =- 与 y b = 有两个交点, 则实数 b 的取值范围是_________3 已知函数 ||()2||,x f x x =+ 若关于 x 的方程 ()f x k = 有两个不同的实根, 则实数k 的取值范围是_________.已知函数 ()|lg |,f x x = 若 0a b << 且 ()(),f a f b = 则 2a b + 的范围是_________4 设函 21,0(),1,0x x f x x x ⎧-=⎨+<⎩ 若函数 ()a f x = 有两个实根 ()1212,,x x x x < 则 12x x + 的取值范围是_________5 若关于 x 的不等式 23344a x xb -+ 的解集恰好是 [a, b],则 a b +=_________6 关于 x 的不等式 201x px q ++ 的解集为 [3,4], 则 p q +=_________7 已知函数 22,||3(),6,||3x x f x x x ⎧-⎪=⎨->⎪⎩ 若 0,m n << 且 ()(),f m f n = 则 2n m +的取值范围是_________题型二、变形后做图1 直线 1y = 与曲线 2||y x x a =-+ 有 4 个交点, 则 a 的取值范围 是_________2 若关于 x 的方程 2||2x kx x =+ 有 4 个不同的实数解, 则实数 k 的范围为_________3 已知函数 21(),()32f x x h x =+= 解关于 x 的方程 433log (1)24f x ⎡⎤--=⎢⎥⎣⎦22log ()log (4)h a x h x ---。
利用函数的图像探究函数的性质经典习题附答案

利用函数的图像探究函数的性质经典习题附答案题型一、运用图像研究函数零点的个数知识点拨:运用函数的图像研究函数的零点问题的关键要正确做出函数的图像,观察图像交点的个数。
由于答案依赖于图像因此,要正确规范的做出图像,该标的关键的点、线要标出,另外有时为了更好地作图也要多对函数进行调整,变成常见的函数。
例题1、定义在R上的奇函数f(x)满足f(x+4)=f(x),且在区间[2,4)上【解析】因为f(x+4)=f(x),可得f(x)是周期为4的奇函数,先画出函数f(x)在区间[2,4)上的图像,根据奇函数和周期为4,可以画出f(x)在R上的图像,由y=f(x)-log5|x|=0,得f(x)=log5|x|,分别画出y=f(x)和y =log5|x|的图像,如下图,由f(5)=f(1)=1,而log55=1,f(-3)=f(1)=1,log5|-3|<1,而f(-7)=f(1)=1,而log5|-7|=log57>1,可以得到两个图像有5个交点,所以零点的个数为5.本题考查了函数的零点问题,以及函数的奇偶性和周期性,考查了转化与化归、数形结合的思想,函数的零数问题,常转化为函数的图像的交点个数来处理,其中能根据函数的性质作出函数的图像并能灵活地运用图像,找到临界点是解题的关键也是难点.题型二、根据函数的零点确定参数的范围知识点拨:求解函数的零点问题的填空题,其基本策略是应用数形结合的方法来加以解决,在应用数形结合思想时,一般地会将函数的零点问题转化为两个函数的图像的交点问题来加以解决,此时,为了方便起见,转化后的两个函数,其中一个是不含参数的函数,另一个是含有参数的函数,即转化为“一静一动”两个函数,这样,通过研究“动”函数的图像与“静”函数的图像的相对位置关系就可以得到问题的解。
例题2、【解析】注意到x<-1时,f(x)=x2-2ax的零点是可求的,即x=0(舍去)或x=2a,为此,就需要对2a是否小于-1来进行讨论,若2a大于或等于-1,则需要x≥-1时,f(x)有三个零点,从而通过数形结合的方式来加以研究;若2a小于-1,则需要x≥-1时,f(x)有两个零点,从而通过数形结合的方式来加以研究,进而得到问题的答案.由x2-2ax=0得x=0或x=2a,因为x<-1,所以x=0不合题意.题型三、运用函数图像解决多元问题知识点拨:解决多元问题的最值问题主要思想就是把多元问题转化为单元问题,要通过函数的图像找到各个参数的关系,但要注意参数的范围。
高考数学重难点分析:函数的零点与函数的图像(题型战法)(原卷版)

第二章 函数2.7.1函数的零点与函数的图像(题型战法)知识梳理一 函数的零点1.函数的零点一般地,如果函数y =f (x )在实数α处的函数值等于零,即f (α)=0,则称α为函数y =f (x )的零点.函数的零点方程的根函数图象与轴交点的横坐标两函数交点的横坐标 2.零点存在性定理(判定函数零点的) 如果函数在区间上的图象是连续不断的一条曲线,并且有,那么函数在区间内有零点,即存在,使得,这个也就是方程的根。
注意:①不满足的函数也可能有零点.②若函数在区间上的图象是一条连续曲线,则是在区间内有零点的充分不必要条件. 一 函数的图像变换1.平移变换图象左、右平移 图象上、下平移2.对称变换,图象关于轴对称 ,图象关于轴对称3.翻折变换:,把轴右边的图象保留,然后将轴左边部分关于轴对称把轴上方的图象保留,轴下方的图象关于轴对称题型战法⇔⇔x ⇔()y f x =[],a b ()()0f a f b ⋅<()y f x =(,)a b (,)c a b ∈()0f c =c ()()0f a f b ⋅<()f x [],a b()()0f a f b ⋅<()f x [],a b ()()a x f y x f y +=→=()0>a ()0<a ()()b x f y x f y +=→=()0>b ()0<b ()()x f y x f y -=→=y ()→=x f y ()x f y -=x ()→=x f y ()x f y =y y y ()→=x f y ()x f y =x x x题型战法一 求函数的零点典例1.函数()2f x x =+的零点为( ) A .2 B .1 C .0 D .2-变式1-1.二次函数221y x x =+-的零点是( )A .12,1- B .12-,1 C .1,02⎛⎫- ⎪⎝⎭,()1,0 D .1,02⎛⎫ ⎪⎝⎭,()1,0-变式1-2.函数11y x=+的零点是( ) A .(1,0)- B .1x =- C .(0,1) D .0x =变式1-3.函数()422x xf x =--的零点是( )A .()1,0B .1C .12D .1-变式1-4.函数()8f x ax =+的零点为4,则实数a 的值为( ) A .2 B .2-C .12D .12-题型战法二 求函数的零点的个数典例2.函数()ln 26f x x x =+-的零点的个数为( ) A .0 B .1 C .2 D .3变式2-1.函数()3ln xf x x =+的零点个数为( )A .0B .1C .2D .3变式2-2.已知函数2,1,()2, 1.x x f x x x x ⎧+<⎪=⎨+≥⎪⎩,则函数()||y f x x =-零点个数为( )A .0B .1C .2D .3变式2-3.已知函数f (x )是定义在R 上的偶函数,满足f (x +2)=f (﹣x ),当x ∈[0,1]时()2sin f x x π=,则函数()y f x x =-的零点个数是( ) A .5 B .6 C .7 D .8变式2-4.已知定义域为R 的奇函数()f x 满足(4)()(2)f x f x f +-=,当(0,2)x ∈时,2()231=-+f x x x ,则函数()y f x =在[4,4]-上零点的个数为( )A .10B .11C .12D .13题型战法三 比较零点的大小与求零点的和典例3.已知函数()24x f x x =+-,()e 4x g x x =+-,()ln 4h x x x =+-的零点分别是a ,b ,c ,则a ,b ,c 的大小顺序是( ) A .a b c << B .c b a << C .b a c << D .c a b <<变式3-1.若31log 3aa ⎛⎫= ⎪⎝⎭,313bb ⎛⎫= ⎪⎝⎭,133c c -=,则,,a b c 的大小关系是( )A . c a b <<B . c b a <<C . a c b <<D .b c a <<变式3-2.已知函数22()2,()log ,()log 2xf x xg x x xh x x =+=+=-的零点依次为,,a b c ,则A .a b c <<B .c b a <<C .c a b <<D .b a c <<变式3-3.函数()()1sin f x x x π=--在区间3722ππ⎡⎤-⎢⎥⎣⎦,上的所有零点之和为( ) A .0 B .2π C .4π D .6π变式3-4.已知函数()f x 是定义域在R 上的偶函数,且()()11f x f x =+-,当[]0,1x ∈时,()3f x x =,则关于x 的方程()cos f x x π=在15,22⎡⎤-⎢⎥⎣⎦上所有实数解之和为( )A .1B .3C .6D .7题型战法四 零点所在区间典例4.已知函数333y x x =+-的零点所在区间( ) A .()1,0-B .()0,1C .()1,2D .()2,3变式4-1.函数()e 26xf x x =+-的零点所在的区间是( )A .()3,4B .()2,3C .()1,2D .()0,1变式4-2.函数2()log 4f x x x =+-的零点所在的区间为( ) A .()0,2 B .()2,3 C .()3,4 D .()4,5变式4-3.若()2xf x x a =++的零点所在的区间为()2,1-,则实数a 的取值范围为( )A .32,4⎛⎫- ⎪⎝⎭ B .73,4⎛⎫- ⎪⎝⎭ C .11,2⎛⎫-- ⎪⎝⎭D .50,4⎛⎫⎪⎝⎭变式4-4.设0x 是函数()23xf x x =+的零点,且()0,1x k k ∈+,k Z ∈,则k =( )A .0B .1C .1-D .2题型战法五 根据函数的零点求参数典例5.已知函数()()221,11,1x x f x x x ⎧-<⎪=⎨--≥⎪⎩,若函数()()g x f x k =-有两个不同的零点,则实数k 的取值范围是( )A .(],0-∞B .(]0,1C .(]1,0-D .[)0,1变式5-1.函数2()2f x x x a =-+在区间(2,0)-和(2,3)内各有一个零点,则实数a 的取值范围是( ) A .(3,0)- B .(3,)-+∞ C .(,0)-∞ D .(0,3)变式5-2.若直线y =2a 与函数21xy =-的图象有且只有一个公共点,则a 的取值范围( ) A .1(0,)2B .1[,)2+∞C .1{0}(,)2⋃+∞D .1{0}[,)2⋃+∞变式5-3.设函数()2,0,0x x f x x x ⎧≥=⎨-<⎩,则使方程()f x k =的实数解个数为1时,k 的取值范围为( ) A .(−∞,0)B .0,1C .0,1D .()1,+∞变式5-4.已知函数()2log ,1,2,1x x f x x a x ⎧=⎨-<⎩恰有2个零点,则a 的取值范围是 A .()2,+∞ B .[)2,+∞ C .() ,2-∞ D .(],2-∞题型战法六 图像的变换问题典例6.函数2x y -=的图象大致是( )A .B .C .D .变式6-1.函数1()2xf x ⎛⎫= ⎪⎝⎭与2()log g x x =-的大致图像是( )A .B .C .D .变式6-2.函数()ln(1)f x x =-向右平移1个单位,再向上平移2个单位的大致图像为( )A .B .C .D .变式6-3.函数3x y -=的大致图像是( )A .B .C .D .变式6-4.函数2log ||y x =的图像大致是( )A .B .C .D .题型战法七 利用函数解析式选择图像典例7.函数()ln xf xx=的图像大致为()A.B.C.D.变式7-1.已知函数()() e e1x x xf xx--=-,则()f x的图象大致是()A.B.C.D.变式7-2.函数sin xyx=的大致图象为()A .B .C .D .变式7-3.函数sin exx xy =的图象大致为( ) A . B .C .D .变式7-4.函数()e e 2||x x f x x -=+-的大致图像是( )A .B .C .D .题型战法八 利用动点研究函数图像典例8.如图所示,已知正方形ABCD 的边长为4,动点P 从B 点开始沿折线BCDA 向A 点运动.设P 点运动的路程为x ,△ABP 的面积为S ,则函数S =f (x )的图像是( )A .B .C .D .变式8-1.如图,OAB 是边长为2的正三角形,记OAB 位于直线(0x t t =<≤2)左侧的图形的面积为()f t ,则()y f t =的大致图像为( )A .B .C.D.变式8-2.明清时期,古镇河口因水运而繁华.若有一商家从石塘沿水路顺水航行,前往河口,途中因故障停留一段时间,到达河口后逆水航行返回石塘,假设货船在静水中的速度不变,水流速度不变,若该船从石塘出发后所用的时间为x(小时)、货船距石塘的距离为y(千米),则下列各图中,能反映y与x之间函数关系的大致图象是A.B.C.D.变式8-3.某科技公司为测试新型无人机的操控能力,设计了如图所示的平面路线图A→B→C→D.无人机从A处出发匀速飞行到B处,沿圆弧BC飞行到C处后提速,沿CD飞行到D处停止.记无人机飞行的时间为t,与D处的距离为h,则下列四个图象中与该事件吻合最好的是()A .B .C .D .变式8-4.直角梯形OABC 中,//AB OC ,1AB =,2OC BC ==,直线l :x t =截该梯形所得位于l 左边图形面积为S ,则函数()S f t =的图象大致为( )A .B .C .D .。
函数的零点专题含答案

函数的零点专题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 已知函数f (x )=x 3−2x +2,在下列区间中,一定包含f (x )零点的区间是( )A.(−2,−1)B.(−1,0)C.(0,1)D.(1,2)2. 下列函数中,既是偶函数又存在零点的是( )A.y =ln xB.y =x 2+1C.y =cos xD.y =sin x3. 函数f (x )={x +1,x ≤0,lg x,x >0的零点是( ) A.(−1,0),(1,0)B.−1,1C.(−1,0)D.−14. 函数f (x )=√x −x 的零点的个数是( )A.3个B.2个C.1个D.0个5. 我国古代数学典籍《九章算术》第七章“盈不足”中有一道两鼠穿墙问题:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠日—尺,大鼠日自倍,小鼠日自半,问何日相逢”( )A.第2天B.第3天C.第4天D.第5天6. 函数y =x 2−1的零点是( )A.1B.±1C.(1,0)D.(±1,0)7. 函数f(x)=2x −2x −a 的一个零点在区间(1, 2)内,则实数a 的取值范围是( ) A.(1, 3)B.(1, 2)C.(0, 3)D.(0, 2)8. 已知实数a ,b 满足2a =3,3b =2,则f(x)=a x +x −b 的零点所在的区间是( )A.(−2, −1)B.(−1, 0)C.(0, 1)D.(1, 2)9. 函数y =(2x −2−x )sin x 在[−π,π]的图象大致为( )A.B.C.D.10. 已知三次函数f (x )=13x 3−(4m −1)x 2+(15m 2−2m −7)x +2在定义域R 上无极值点,则m 的取值范围是( )A.m <2或m >4B.m ≥2或m ≤4C.2≤m ≤4D.2<m <411. 已知函数f(x)={e x ,x ≤0,ln x,x >0,g(x)=f(x)+x +a ,若g(x)存在2个零点,则a 的取值范围是( )A.[−1, 0)B.[0, +∞)C.[−1, +∞)D.[1, +∞)12. 已知函数f (x )=2x +ln x ,下列判断正确的是( ) A.函数f (x )的单调递减区间为(−∞,2]B.x =2是函数f (x )的极大值点C.函数g (x )=f (x )−x 有且只有一个零点D.函数g (x )=f (x )−x 在其定义域内单调递增13. 已知函数f (x )={x +1x ,x >2,ln (x +a ),x ≤2的图象上存在关于直线x =2对称的不同两点,则实数a 的取值范围是( )A.(e,+∞)B.(e 52−2,+∞)C.(−∞,2e −1)D.(−∞,e 52)14. 函数f (x )=|x −2|−2−x 的零点的个数为( )A.0B.1C.2D.315. 已知函数f (x )=xe x ,要使函数g (x )=m [f (x )]2−2f (x )+1恰有一个零点,则实数m 的取值范围是( )A.[−e 2−2e,0]B.[−e 2+2e,0]C.(−e 2−2e,0]∪{1}D.(−e 2+2e,0]∪{1}16. 已知定义在R 上的函数y =f (x ),对任意x 都满足f (x +2)=f (x ),且当−1≤x ≤1时f (x )=2x 2,则函数g (x )=f (x )−ln |x|的零点个数为( )A.12B.14C.15D.1617. 函数f (x )=(3x −1)ln x 的零点个数是________.18. 若函数f(x)=log 2(x +a)的零点为2,则a =________.19. 函数f(x)=(x+1)ln x x−3的零点是________.20. 已知函数f(x)={2x +3,x ≤−32,x 2,−32<x <1,4x,x ≥1.若f(x)=2,则x =________.21. 设函数y =a x −4,(a >0, a ≠1),若其零点为2,则a =________.22. 已知λ∈R ,函数f (x )={x −4,x ≥λ,x 2−4x +3,x <λ.当λ=2时,不等式f (x )<0的解集是________.若函数f (x )恰有2个零点,则λ的取值范围是________.23. 已知函数y =f (x )在R 上连续且可导, y =f (x +1)为偶函数且f (2)=0,其导函数满足(x −1)f ′(x )>0,则函数g (x )=(x −1)f (x )的零点个数为________.24. 给出一个满足以下条件的函数f (x )=________.①f (x )的定义域是R ,且其图象是一条连续不断的曲线;②f (x )是偶函数;③f (x )在(0,+∞)不是单调函数;④f (x )有无数个零点.25. 已知函数f (x )={2x −3,x ≥1x 2−x −1,x <1,则y =f [f (x )]−5的所有零点之和为________.26. 已知函数g(x),ℎ(x)分别是定义在R 上的偶函数和奇函数,且满足g(x)+ℎ(x)=e x +sin x −x ,则函数g(x)的解析式为________;若函数f(x)=3|x−2020|−λg(x −2020)−2λ2有唯一零点,则实数λ的值为________.27. 已知函数f (x )={e ln x x (x >1),x 2−1(x ≤1),若函数g (x )=f(f (x ))−af (x )+a +1恰有5个不同的零点,则实数a 的取值范围是________.28. 已知函数 f (x )={1−12|1−x|,x ≤2,12f (x −2),2<x ≤6, 则函数g (x )=xf (x )−1的零点个数为________.29. 定义在R 上的函数f (x )满足f (−x )=−f (x ),f (x +4)=f (x ),当x ∈[0,2)时,f (x )={x 2,0≤x <1,2−x ,1≤x <2,则函数y =f (x )−log 5|x|的零点个数为________.30. (10分) 已知函数f(x)=log a (5−2x),其中a >0,且a ≠1.(Ⅰ)求f(x)的定义域;(Ⅲ)比较f(−1)与f(1)的大小.参考答案与试题解析函数的零点专题含答案一、 选择题 (本题共计 16 小题 ,每题 3 分 ,共计48分 )1.【答案】A【考点】函数的零点【解析】无【解答】解:f (−2)=−2,f (−1)=3,根据零点存在性定理可知答案.故选A .2.【答案】C【考点】函数的零点函数奇偶性的判断【解析】利用函数奇偶性的判断一件零点的定义分别分析解答.【解答】解:对于A ,y =ln x 的定义域为(0, +∞),则函数不是偶函数;对于B ,由y =x 2+1≥1,得函数y =x 2+1没有零点,不满足条件;对于C ,cos (−x)=cos x ,即函数y =cos x 是偶函数且函数存在零点,满足条件. 对于D ,sin (−x)=−sin x ,即函数y =sin x 为奇函数.故选C .3.【答案】B【考点】函数的零点【解析】根据函数解析式,对x 的取值范围所对应的直线进行求解即可,属于基础题.【解答】解:已知函数f(x)={x +1,x ≤0,lg x,x >0,当x ≤0时,设函数g(x)=x +1,令g(x)=0,解得x =−1,则函数g(x)=x +1的零点为−1,当x >0时,设函数ℎ(x)=lg x ,令ℎ(x)=0,解得x =1,综上可得,函数f(x)={x +1,x ≤0,lg x,x >0的零点是−1,1. 故选B .4.【答案】B【考点】函数的零点【解析】根据方程√x −x =0根的个数判断,利用函数零点和方程根之间的关系,求解即可.【解答】解:由题意知函数f(x)=√x −x 的定义域为[0,+∞),令f(x)=0,则√x −x =0,即√x =x ,解得x 1=0,x 2=1,故函数f(x)=√x −x 的零点的个数是2个.故选B .5.【答案】B【考点】数列的求和函数的零点【解析】此题暂无解析【解答】解:设需要n 天时间才能打穿,则2n −12−1+1−(12)n 1−12≥5,化为:2n −22n −4≥0,令f(n)=2n −22n −4, 则f(3)=8−14−4>0,f(2)=4−12−4<0,∴ f(x)在(2, 3)内存在一个零点.又函数f(x)在x ≥1时单调递增,因此f(x)在(2, 3)内存在唯一一个零点,∴ 需要3天时间才能打穿.故选B .6.【答案】B函数的零点与方程根的关系【解析】首先使得函数等于0,解出关于x的一元二次方程的解,即可得到函数的零点. 【解答】解:令y=x2−1=0,解得x=1或−1,∴函数y=x2−1的零点为±1.故选B.7.【答案】C【考点】函数的零点【解析】由题意可得f(1)f(2)=(0−a)(3−a)<0,解不等式求得实数a的取值范围.【解答】解:由题意可得f(1)f(2)=(0−a)(3−a)<0,解得0<a<3,故实数a的取值范围是(0, 3).故选C.8.【答案】B【考点】函数的零点指数式与对数式的互化【解析】根据对数,指数的转化得出f(x)=(log23)x+x−log32单调递增,根据函数的零点判定定理得出f(0)=1−log32>0,f(−1)=log32−1−log32=−1<0,判定即可.【解答】解:∵实数a,b满足2a=3,3b=2,∴a=log23>1,0<b=log32<1,∵函数f(x)=a x+x−b,∴f(x)=(log23)x+x−log32单调递增,∵f(0)=1−log32>0,f(−1)=log32−1−log32=−1<0,∴根据函数的零点判定定理得出:函数f(x)=a x+x−b的零点所在的区间是(−1, 0). 故选B.9.【答案】B【考点】函数奇偶性的判断【解析】本题主要考查了函数的奇偶性和零点以及函数的图象,属于基础题,根据奇偶性的定义可得f(x)为偶函数,排队B;再令f(x)=0可得函数的零点为−π,0,π,排队CD,从而得到结论.【解答】解:函数定义域[−π,π]关于原点对称,且f(−x)=(2−x−2x)sin(−x)=−(2x−2−x)(−sin x)=(2x−2−x)sin x=f(x),∴ f(x)是偶函数,故排除A;令f(x)=0,即(2x−2−x)sin x=0,∴2x−2−x=0或sin x=0,又x∈[−π,π],∴解得x=−π,0,π,排除C,D.故选B.10.【答案】C【考点】利用导数研究函数的极值函数的零点【解析】由题意,对函数进行求导,由其导函数无变号零点,根据根的判别式可求得m的取值范围.【解答】x3−(4m−1)x2+(15m2−2m−7)x+2,定义域为R,解:已知函数f(x)=13则f′(x)=x2−2(4m−1)x+15m2−2m−7,因为函数f(x)在定义域上无极值点,则f′(x)=x2−2(4m−1)x+15m2−2m−7无变号零点,所以x2−2(4m−1)x+15m2−2m−7≥0恒成立,而Δ=4(4m−1)2−4(15m2−2m−7)=64m2−32m+4−60m2+8m+28=4(m2−6m+8)≤0,解得2≤m≤4.故选C.11.【答案】C【考点】函数的零点【解析】由g(x)=0得f(x)=−x−a,分别作出两个函数的图象,根据图象交点个数与函数零点之间的关系进行转化求解即可.解:由g(x)=0得f(x)=−x−a,作出函数f(x)和y=−x−a的图象如图:当直线y=−x−a的截距−a≤1,即a≥−1时,f(x)和y=−x−a的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[−1, +∞).故选C.12.【答案】C【考点】利用导数研究函数的单调性利用导数研究函数的极值函数的零点【解析】利用导数判断函数的单调性即可逐项判定.【解答】解:由题意得,函数的的定义域为(0,+∞),函数的导数f′(x)=−2x2+1x=x−2x2,当x∈(0,2)时,f′(x)<0,函数f(x)单调递减,当x∈(2,+∞),f′(x)>0,函数f(x)单调递增,∴x=2时,f(x)取得极小值,故A错误,B错误.∵g(x)=f(x)−x=2x+ln x−x,x>0,则g′(x)=−x2+x−2x2<0,∴函数g(x)=f(x)−x=2x+ln x−x在(0,+∞)上单调递减,∵f(1)−1=2+ln1−1=1>0,f(2)−2=1+ln2−2=ln2−1<0,∴函数g(x)=f(x)−x有且只有1个零点,故C正确,D错误. 故选C.13.B【考点】函数的零点分段函数的应用利用导数研究函数的单调性【解析】此题暂无解析【解答】解:依题意,函数f(x)的图象上存在关于x=2对称的不同两点,则存在x1>2,x2≤2,且x1+x2=4,使得x1+1x1=ln(x2+a),则e x1+1x1=x2+a,因此a=e x1+1x1−x2=e x1+1x1+x1−4,设g(x)=e x+1x+x−4,x>2.故问题转化为存在x∈(2,+∞),使得函数g(x)=e x+1x+x−4与y=a有交点,又g′(x)=e x+1x⋅(1−1x2)+1>0在x∈(2,+∞)上恒成立,所以函数g(x)在x∈(2,+∞)上单调递增,故g(x)>g(2)=e 52−2,因此,为使函数g(x)=e x+1x+x−4与y=a有交点,只需a>e 52−2.故选B.14.【答案】D【考点】函数的零点【解析】此题暂无解析【解答】解:如图所示,在同一平面直角坐标系中作出函数y=|x−2|,y=2−x的图象.由图可知函数f(x)在定义域内的零点个数为3.故选D.15.【答案】C【考点】利用导数研究函数的单调性函数的零点函数的零点与方程根的关系根的存在性及根的个数判断【解析】本题考查了根据函数零点个数求解参数范围.由导数求f(x)的最值.可得草图.借助图象将问题转化为二次函数的根的分布问题.分情况求解.【解答】解:∵ f(x)=xe x.∴f′(x)=(x+1)e x,易知f(x)在(−∞,−1)单调递减,(−1,+∞)单调递增,∴ f(x)min=f(−1)=−1e,且当x<0时,f(x)<0;当x>0时,f(x)>0,故f(x)大致图象如下:令f(x)=t,若g(x)有且只有一个零点,则方程mt2−2t+1=0只有一个实根t满足t≥−1e,当m=0时,显然t=12满足,当m≠0时,Δ=4−4m≥0,∴ m≤1,当m=1时,方程只有一个根t=1满足,当m<1且m≠0时,若m>0,则方程两根t1+t2=2m >0,t1t2=1m>0,∴t1>0,t2>0,不满足题意,∴ m<0,则t1=2+√4−4m2m ,t2=2−√4−4m2m,∵t1t2=1m<0,∴t1,t2异号,只需2+√4−4m2m =1+√1−mm<−1e,解得m>−e2−2e,∴−e2−2e<m<0,综上所述.m的范围为(−e2−2e,0]∪{1}.故选C.16.【答案】B【考点】函数的零点函数的图象【解析】本题考查函数图象交点问题.【解答】解:∵ f(x+2)=f(x),∴ T=2,∵当−1≤x≤1时,f(x)=2x2,即可平移获得f(x)图象,函数g(x)=f(x)−ln(x)零点个数即f(x)与ln|x|交点个数,可知f(x)与ln|x|均为偶函数,故只零考虑x>0部分,当x>0时,f(x)与ln|x|的图象如图所示,当x>0,ln|x|=2时,x=e2,∵7<e2<9,∴当x>0,共7个交点,故x<0部分也有7个交点,∴7+7=14(个).故选B.二、填空题(本题共计 13 小题,每题 3 分,共计39分)17.【答案】1【考点】函数的零点【解析】先得出方程,求出方程的根,再判断零点的个数.【解答】解:函数f(x)=(3x −1)ln x 定义域为(0,+∞),令f (x )=(3x −1)ln x =0,解得x =1,则零点个数为1个.故答案为:1.18.【答案】−1【考点】函数的零点【解析】函数f(x)=log 3(ax 2−x +a)有零点可化为方程ax 2−x +a =1有解,从而解得.【解答】解:根据题意,若函数 f(x)=log 2(x +a) 的零点为2,则f(2)=log 2(a +2)=0 ,即 a +2=1,解得 a =−1.故答案为:−1.19.【答案】1【考点】函数的零点【解析】令f(x)=0,求出方程的根即函数的零点即可.【解答】函数f(x)的定义域是(0, 3)∪(3, +∞),显然x +1>0,x −3≠0,令f(x)=0,即(x+1)ln x x−3=0,即ln x =0,解得:x =1,20.【答案】 −√2【考点】函数的零点【解析】根据题意,在每个段上求值,检验,求出x 即可.【解答】当x ≤−32时,f(x)=2x +3=2,得x =−12,不成立;当−32<x <1时,x 2=2,x =±√2,所以x =−√2;当x ≥1时,4x =2,x =12,不合题意;综上x =−√2,21.【答案】2【考点】函数的零点【解析】此题暂无解析【解答】此题暂无解答22.【答案】(1,4),(1,3]∪(4,+∞)【考点】函数零点的判定定理函数的零点【解析】此题暂无解析【解答】当λ=2时,由f (x )<0得{x −4<0x ≥2’或{x 2−4x +3<0x <2,’解得2≤x <4或1<x <2,所以f (x )<0的解集为(1,4).由x −4=0得x =4,由x 2−4x +3=0得x =1或x =3,因为函数f(x )恰有2个零点,所以{4>λ1<λ3≥λ,或{4<λ1<λ3<λ,解得1<λ≤3或λ>4.本题考查分段函数的性质.求解分段函数问题,要根据自变量的值分别讨论函数在每一段上的性质.23.【答案】3【考点】利用导数研究函数的单调性函数的零点函数奇偶性的性质【解析】由题意得到函数关于x =1对称,且当x >1时,函数单调递增,x <1时函数单调递减,进而得到函数的零点个数.【解答】解:∵ y =f(x +1)为偶函数,∴ y =f(x)关于x =1对称,∵ f(2)=0,∴ f(0)=0.又(x −1)f′(x)>0,∴ 当x >1时,函数单调递增,x <1时函数单调递减,∴ f(x)有两个零点,分别为0和2,又当x =1时,g(x)=(x −1)f(x)=0,∴ 函数g(x)=(x −1)f(x)的零点有0,1,2,共有三个零点.故答案为:3.24.【答案】x sin x (答案不唯一)【考点】函数的零点奇偶性与单调性的综合【解析】根据题意,分析可得则f (x )可以由三角函数变换得到,由此可得答案.【解答】解:根据题意,要求函数f (x )满足4个条件,则f (x )可以由三角函数函数变换得到,比如f (x )=x sin x .故答案为:x sin x (答案不唯一).25.【答案】4−√212【考点】函数的零点【解析】此题暂无解析【解答】解:根据题意,令t =f (x ),则易得f (t )=5的解为: t 1=4, t 2=−2, 当f (x )=4时,结合f (x )={2x −3,x ≥1x 2−x −1,x <1,得: x 1=72,x 2=1−√212, 当f (x )=−2时,结合f (x )={2x −3,x ≥1x 2−x −1,x <1,可知方程f (x )=−2无解. 故y =f [f (x )]−5的所有零点之和为: x 1+x 2=72+1−√212=8−√212=4−√214. 故答案为:4−√212. 26.【答案】g (x )=e x +e −x 2,−1或12 【考点】函数的零点函数奇偶性的性质【解析】此题暂无解析【解答】解:因为函数g (x ),ℎ(x )分别是定义在R 上的偶函数和奇函数,所以g (−x )=g (x ),ℎ(−x )=−ℎ(x ).因为g (x )+ℎ(x )=e x +sin x −x ①,所以g(−x)+ℎ(−x)=e−x−sin x+x,即g(x)−ℎ(x)=e−x−sin x+x②,①②联立,可解得g(x)=e x+e−x2.令F(x)=3|x|−λg(x)−2λ2,则F(−x)=F(x),所以F(x)为偶函数,所以f(x)=F(x−2020)=3|x−2020|−λg(x−2020)−2λ2关于x=2020对称,因为f(x)有唯一的零点,所以f(x)的零点只能为x=2020.即f(2020)=1−λ−2λ2=0,解得λ=−1或λ=12.故答案为:g(x)=e x+e−x2;−1或12.27.【答案】−12<a<0【考点】利用导数研究与函数零点有关的问题分段函数的应用由函数零点求参数取值范围问题函数的零点【解析】无【解答】解:分析f(x)的图像以便于作图,当x>1时,f′(x)=e(1−ln x)x2,f′(x)>0⇒1<x<e,f′(x)<0⇒x>e,所以f(x)在(1,e)上单调递增,在(e,+∞)上单调递减,f(e)=e ln ee=1,且当x→+∞时f(x)>0且f(x)→0,所以x轴为曲线f(x)的水平渐近线;当x≤1时,f(x)=x2−1,所以f(x)在(−∞,0)上单调递减,在(0,1)上单调递增,且f(0)=−1.由此作图,图像如图,设f(x)=t,则由g(x)=f(f(x))−af(x)+a+1=0得f(t)−at+a+1=0⇒f(t)=at−a−1=a(t−1)−1,若函数g(x)=f(f(x))−af(x)+a+1恰有5个不同的零点,则关于x的方程g(x)=f(f(x))−af(x)+a+1=0恰有5个不同的实根,则结合函数y=f(x)的图像及直线y=a(x−1)−1得f(t)=a(t−1)−1恰有2个不等的实根,得t=t1=f(x)∈(−1,0),t=t2=f(x)∈(0,1),t1=t=f(x)∈(−1,0)有2个不等的实根,t=t2=f(x)∈(0,1)有3个不等的实根,∴−12<a<0.故答案为:−12<a<0.28.【答案】7【考点】函数的零点与方程根的关系函数的零点分段函数的应用【解析】无【解答】解:令g(x)=0可得:f(x)=1x ,画出y=f(x)和y=1x的图象可以,共有7个交点.故答案为:7.29.【答案】5【考点】函数的周期性函数的零点函数奇偶性的判断函数的图象【解析】由题可知f (x )为奇函数,且周期为4,在同一直角坐标系中作出函数f (x )与y =log 5|x|在R 上的图象,根据函数图形的交点个数即可得到函数y =f (x )−log 5|x|的零点个数.【解答】解:∵ f (−x )=−f (x ),∴ f (x )为奇函数.又∵ f (x +4)=f (x ),∴ f (x )的周期为4.根据x ∈[0,2)时,f (x )={x 2,0≤x <1,2−x ,1≤x <2,在同一直角坐标系中作出函数f (x )与y =log 5|x|在R 上的图象,如图所示,由图可知,共有5个交点,故函数y =f (x )−log 5|x|的零点个数为5个.故答案为:5.三、 解答题 (本题共计 1 小题 ,共计10分 )30.【答案】(1)因为函数f(x)=log a (5−2x),所以令7−2x >0,所以函数f(x)的定义域为;(2)令f(x)=0,即log a (5−4x)=0,即5−4x =1,所以f(x)的零点为2; (Ⅲ)f(−6)=log a 7,f(1)=log a 3,当a >8时,函数y =log a x 为增函数,所以log a 7>log a 3,即f(−7)>f(1); 当0<a <1时,函数y =log a x 为减函数,所以log a 6<log a 3,即f(−1)<f(1).【考点】函数的零点【解析】此题暂无解析【解答】此题暂无解答。
函数零点练习题

函数零点练习题函数零点是指函数图像与x轴交点的横坐标之值,也就是函数f(x)= 0的解。
在数学中,寻找函数的零点是一个常见的问题,因为理解和求解函数的零点有助于我们对函数的性质和行为有更深入的了解。
本文将介绍一些函数零点练习题,帮助读者提高对函数零点的求解能力。
练习一:线性函数的零点首先我们来看一个简单的例子,求解线性函数的零点。
线性函数的一般形式为f(x) = ax + b,其中a和b为常数。
要求解线性函数的零点,我们需要找到一个横坐标x,使得f(x) = 0。
由于线性函数的图像是一条直线,所以零点即为直线与x轴的交点。
例如,考虑函数f(x) = 2x - 3,我们将f(x)置为零得到方程2x - 3 = 0。
解这个方程我们得到x = 3/2,即函数f(x) = 2x - 3与x轴交于点(3/2, 0)。
因此,线性函数f(x) = 2x - 3的零点为x = 3/2。
练习二:二次函数的零点接下来我们来看一个二次函数的例子,求解二次函数的零点。
二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b和c为常数。
同样地,要求解二次函数的零点,我们需要找到一个横坐标x,使得f(x) = 0。
而求解二次函数的零点,可以通过配方法、因式分解或者求根公式等方式进行。
例如,考虑函数f(x) = x^2 - 4x + 3,我们将f(x)置为零得到方程x^2 - 4x + 3 = 0。
通过因式分解得到(x - 1)(x - 3) = 0,解这个方程我们得到x = 1和x = 3,即函数f(x) = x^2 - 4x + 3与x轴交于点(1, 0)和(3, 0)。
因此,二次函数f(x) = x^2 - 4x + 3的零点为x = 1和x = 3。
练习三:三角函数的零点除了线性函数和二次函数,我们还可以考虑求解三角函数的零点。
三角函数包括正弦函数、余弦函数和正切函数等,它们的零点是三角函数图像与x轴的交点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学函数的图像、零点一:选择题1.已知函数f (x )=x 2﹣2x+b 在区间(2,4)有唯一零点,则b 的取值围是( D ) A 、R B 、(﹣∞,0) C 、(﹣8,+∞) D 、(﹣8,0)2.设,用二分法求方程在(1,3)近似解的过程中,f (1)>0,f (1.5)<0,f (2)<0,f (3)<0,则方程的根落在区间( A ) A 、(1,1.5) B 、(1.5,2) C 、(2,3) D 、无法确定3.已知函数31)21()(x x f x-=,那么在下列区间中含有函数)(x f 零点的是( B )(A ))31,0( (B ))21,31((C ))32,21( (D ))1,32(4.设函数,则函数y=f (x )( A ) A 、在区间(0,1),(1,2)均有零点B 、在区间(0,1)有零点,在区间(1,2)无零点C 、在区间(0,1),(1,2)均无零点D 、在区间(0,1)无零点,在区间(1,2)有零点5.已知1x 是方程32=⋅x x 的根, 2x 是方程2log 3x x ⋅=的根,则21x x 的值为( B ) A.2 B.3 C.6 D.106.已知x 0是函数f (x )=2x +的一个零点.若x 1∈(1,x 0),x 2∈(x 0,+∞),则( B )A 、f (x 1)<0,f (x 2)<0B 、f (x 1)<0,f (x 2)>0C 、f (x 1)>0,f (x 2)<0D 、f (x 1)>0,f (x 2)>0 解答:解:∵x 0是函数f (x )=2x +的一个零点∴f (x 0)=0∵f (x )=2x +是单调递增函数,且x 1∈(1,x 0),x 2∈(x 0,+∞),∴f (x 1)<f (x 0)=0<f (x 2)故选B .7.如图是函数f (x )=x 2+ax+b 的部分图象,函数g (x )=e x ﹣f'(x )的零点所在的区间是(k ,k+1)(k ∈z ),则k 的值为( C )A.﹣1或0 B.0 C.﹣1或1 D.0或1解答:解;∵二次函数f(x)图象的对称轴x=﹣∈(﹣1,﹣),∴1<a<2,由g(x)=e x﹣2x﹣a=0得e x=2x+a分别作出函数y=e x和y=2x+a的图象,如图所示.从而函数y=e x和y=2x+a的图象的两个交点的横坐标分别在区间(﹣1,0)和(1,2)上.∴函数g(x)=e x﹣f'(x)的零点所在的区间是(﹣1,0)和(1,2);∵函数g(x)=e x﹣f'(x)的零点所在的区间是(k,k+1)(k∈z),∴k=﹣1或1故选C.8.若函数f(x)的零点与g(x)=4x+2x﹣2的零点之差的绝对值不超过0.25,则f(x)可以是(A)A.f(x)=8x﹣2 B.f(x)=(x+1)2C.f(x)=e x﹣1 D.f(x)=ln(x﹣)解答:解:∵g(x)=4x+2x﹣2在R上连续,且g()==<0,g()=2+1﹣2=1>0.设g(x)=4x+2x﹣2的零点为x0,则又f(x)=8x﹣2零点为x=;f(x)=(x+1)2的零点为x=﹣1f(x)=e x﹣1零点为x=0;f(x)=ln(x﹣)零点为x=,∴||,即A中的函数符合题意故选A.9.若2>a ,则方程03323=+-ax x 在(0,2)上恰好有(B )个根A .0B . 1C .2D . 3 10.已知函数f (x )=,若方程f (x )+2a ﹣1=0恰有4个实数根,则实数a 的取值围是( A ) A . (﹣,0] B .[﹣,0] C .[1,)D .(1,]解答: 解:由f (x )=,要使方程f (x )+2a ﹣1=0有4个不同的实根,即函数y=f (x )与函数y=1﹣2a 的图象有4个不同的交点,如图, 由图可知,使函数y=f (x )与函数y=1﹣2a 的图象有4个不同的交点的1﹣2a 的围是[1,2), ∴实数a 的取值围是(﹣,0]. 故选A .11.函数f (x )=tanx ﹣(﹣2π≤x ≤3π)的所有零点之和等于( B ) A . π B . 2πC . 3πD . 4π解答:解:函数f (x )=tanx ﹣(﹣2π≤x ≤3π)的零点即函数y=tanx 与函数y==的交点的横坐标.由于函数y=tanx 的图象关于点(,0)对称, 函数y=的图象也关于点(,0)对称,故函数y=tanx 与函数y=的交点关于点(,0)对称,如图所示:设函数f(x)=tanx﹣(﹣2π≤x≤3π)的零点分别为:x1、x2、x3、x4,则由对称性可得x1+x4=π,x2+x3=π,∴x1+x2+x3+x4=2π,故选B.12.定义域为R的偶函数f(x)满足对∀x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣log a(|x|+1)在(0,+∞)上至多三个零点,则a的取值围是(B)A.(,1)B.(,1)∪(1,+∞)C.(0,)D.(,1)解答:解:因为函数f(x)是偶函数,所以令x=﹣1得,f(﹣1+2)=f(﹣1)﹣f(1)=f(1),解得f(1)=0,所以f(x+2)=f(x)﹣f(1)=f(x),即函数的周期是2.由y=f(x)﹣log a(|x|+1)=0得f(x)=log a(|x|+1),令y=f(x),y=log a(|x|+1),当x>0时,y=log a(|x|+1)=log a(x+1),函数过点(0,0).若a>1,则由图象可知,此时数y=f(x)﹣log a(|x|+1)在(0,+∞)上没有零点,所以此时此时满足条件.若0<a<1,则由图象可知,要使两个函数y=f(x)与y=log a(x+1),有三个交点,则y=m(x)=log a(x+1)不能过点B(4,﹣2),即m(4)<﹣2,即log a5<﹣2,解得,此时.所以满足条件的a的取值围a>1或.故选B.13.已知定义在R上的奇函数f(x),当x>0时,f(x)=则关于x的方程6[f(x)]2﹣f(x)﹣1=0的实数根个数为(B)A.6 B.7 C.8 D.9 解答:解:设t=f(x),则关于x的方程6[f(x)]2﹣f(x)﹣1=0,等价6t2﹣t﹣1=0,解得t=或t=,当x=0时,f(0)=0,此时不满足方程.若2<x≤4,则0<x﹣2≤2,即f(x)==(2|x﹣3|﹣1),若4<x≤6,则2<x﹣2≤4,即f(x)==(2|x﹣5|﹣1),作出当x>0时,f(x)=的图象如图:当t=时,f(x)=对应3个交点.∵函数f(x)是奇函数,∴当x<0时,由f(x)=,可得当x>0时,f(x)=,此时函数图象对应4个交点,综上共有7个交点,即方程有7个根.故选:B14.已知函数,若方程f(x)=t(t∈R)有四个不同的实数根x1,x2,x3,x4,则x1x2x3x4的取值围是(C)A.(30,34)B.(30,36)C.(32,34)D.(32,36)解答:解:先画出函数,的图象,如图:∵a,b,c,d互不相同,不妨设a<b<c<d.且f(a)=f(b)=f(c)=f(d),0<a<1,1<b<4,4<c<6﹣,d>6.∴﹣log2a=log2b,c+d=12,cd>24.即ab=1,c+d=12,∴abcd=cd=c(12﹣c)=﹣c2+12c(4<c<6)的围为(32,34).故选C.二:填空题15.若函数2()4f x x x a =--的零点个数为3,则a =______。
416.已知函数f (x )=k•4x ﹣k•2x+1﹣4(k+5)在区间[0,2]上存在零点,则实数k 的取值围是 (﹣∞,﹣4]∪[5,+∞) .解答:解:令t=2x ,则t ∈[1,4],∴f (t )=k•t 2﹣2k•t ﹣4(k+5)=k (t ﹣1)2﹣5(k+4)在[1,4]上有零点, ∴f (1)f (4)≤0即可,即﹣5(k+4)(4k ﹣20)≤0, 解得k≥5或k≤﹣4, 故答案为:(﹣∞,﹣4]∪[5,+∞).17.已知函数,则关于x 的方程f 2(x )﹣3f (x )+2=0的实根的个数是 5 . 解答:解:方程f 2(x )﹣3f (x )+2=0等价于f (x )=2或f (x )=1 ∵函数,∴﹣1≤x ≤1,f (x )∈[﹣1,1],|x|>1时,f (1)>0,∴f (x )=1时,cos或x 2﹣1=1,∴x=0或x=±,f (x )=2时,x 2﹣1=2,∴x=,综上知方程f 2(x )﹣3f (x )+2=0的实根的个数是5. 故答案为:5.18.若关于x的方程有四个不同的实根,则实数k的取值围是k>1.解答:解:由于关于x的方程有四个不同的实根,x=0是此方程的1个根,故关于x的方程有3个不同的非零的实数解.∴方程=有3个不同的非零的实数解,即函数y=的图象和函数g(x)=的图象有3个交点,画出函数g(x)的图象,如图所示:故0<<1,解得k>1,故答案为:k>1.三:解答题19.已知函数(k,m为常数).(1)当k和m为何值时,f(x)为经过点(1,0)的偶函数?(2)若不论k取什么实数,函数f(x)恒有两个不同的零点,数m的取值围.解答:解:(1)因为函数f(x)为偶函数,∴f(﹣x)=f(x)∴由此得6kx=0总成立,故k=0.∴,又该函数过点(1,0),∴,得m=所以,当m=,k=0时,f(x)为经过点(1,0)的偶函数.(2)由函数f(x)恒有两个不同的零点知,方程恒有两个不等实根,故△=>0恒成立,即恒成立,而﹣9k2+12k=,故只须,即,解得0<m<.所以,当0<m<时,函数f(x)恒有两个不同的零点.20.已知A,B,C是直线l上的不同的三点,O是直线外一点,向量,,满足,记y=f(x).(1)求函数y=f(x)的解析式;(2)若关于x的方程f(x)=2x+b在[0,1]上恰有两个不同的实根,数b的取值围.解答:解:(1)∵A,B,C三点共线,∴∴(2)方程f(x)=2x+b即令,∴当时,φ′(x)<0,φ(x)单调递减,当时,φ′(x)>0,φ(x)单调递增,∴φ(x)有极小值为=即为最小值.又φ(0)=ln2,,又﹣ln2=∴ln5﹣>ln2.∴要使原方程在[0,1]上恰有两个不同实根,必须使ln2.21.已知函数f(x)=lnx,,(I)设函数F(x)=ag(x)﹣f(x)(a>0),若F(x)没有零点,求a的取值围;(II)若x1>x2>0,总有m[g(x1)﹣g(x2)]>x1f(x1)﹣x2f(x2)成立,数m的取值围.解答:解:(I)F(x)=ag(x)﹣f(x)=ax2﹣lnx,F′(x)=ax﹣=(x>0)∴函数F(x)在(0,)上为减函数,在(,+∞)上为增函数若F(x)没有零点,须且只须F()>0,即+lna>0,即0设g(a)=,∵g′(a)=∴g(a)在(0,1)而为减函数,在(1,+∞)上为增函数,而g(1)=1>0∴g(a)>0,即当a>0时,0恒成立故若F(x)没有零点,则a的取值围为(0,+∞)(II)若x1>x2>0,总有m[g(x1)﹣g(x2)]>x1f(x1)﹣x2f(x2)成立,即若x1>x2>0,总有mg(x1)﹣x1f(x1)>mg(x2)﹣x2f(x2)成立,即函数h(x)=mg(x)﹣xf(x)=mx2﹣xlnx,在(0,+∞)上为增函数,即h′(x)=mx﹣lnx﹣1≥0在(0,+∞)上恒成立即m≥在(0,+∞)上恒成立设G(x)=,则G′(x)=∴G(x)在(0,1)上为增函数,在(1,+∞)上为减函数,∴G(x)≤G(1)=1∴m≥122.定义在R上的函数g(x)及二次函数h(x)满足:且h(﹣3)=﹣2.(Ⅰ)求g(x)和h(x)的解析式;(Ⅱ)对于x1,x2∈[﹣1,1],均有h(x1)+ax1+5≥g(x2)﹣x2g(x2)成立,求a的取值围;(Ⅲ)设,讨论方程f[f(x)]=2的解的个数情况.解答:解:(Ⅰ)∵,①,在①中以﹣x代替x得:,即,②由①②联立解得:g(x)=e x﹣3.∵h(x)是二次函数,且h(﹣2)=h(0)=1,可设h(x)=ax(x+2)+1,由h(﹣3)=﹣2,解得a=﹣1.∴h(x)=﹣x(x+2)+1=﹣x2﹣2x+1,∴g(x)=e x﹣3,h(x)=﹣x2﹣2x+1.(Ⅱ)设ϕ(x)=h(x)+ax+5=﹣x2+(a﹣2)x+6,F(x)=e x﹣3﹣x(e x﹣3)=(1﹣x)e x+3x﹣3,依题意知:当﹣1≤x≤1时,ϕ(x)min≥F(x)max,∵F′(x)=﹣e x+(1﹣x)(e x﹣3)+3=﹣xe x+3,在[﹣1,1]上单调递减,∴F′(x)min=F′(1)=3﹣e>0,∴F(x)在[﹣1,1]上单调递增,∴F(x)max=F(1)=0,∴,解得:﹣3≤a≤7,∴实数a的取值围为[﹣3,7].(Ⅲ)设t=a+5,由(Ⅱ)知,2≤t≤12,f(x)的图象如图所示:设f(x)=T,则f(T)=t当t=2,即a=﹣3时,T1=﹣1,T2=ln5,f(x)=﹣1有两个解,f(x)=ln5有3个解;当2<t<e2﹣3,即﹣3<a<e2﹣8时,T=ln(t+3)且ln5<T<2,f(x)=T有3个解;当t=e2﹣3,即a=e2﹣8时,T=2,f(x)=T有2个解;当e2﹣3<t≤12,即e2﹣8<a≤7时,T=ln(t+3)>2,f(x)=T有1个解.综上所述:当a=﹣3时,方程有5个解;当﹣3<a<e2﹣8时,方程有3个解;当a=e2﹣8时,方程有2个解;当e2﹣8<a≤7时,方程有1个解.。