课程设计管壳式换热器的选型

合集下载

管壳式换热器的课程设计

管壳式换热器的课程设计
注意事项
避免选用不合适的材料导致设备损坏 或安全事故;注意材料的兼容性和与 其他材料的接触情况;考虑材料的可 加工性和安装维护的便利性。
04
管壳式换热器的优化设计
传热效率优化
01
传热效率
通过选择合适的材料、优化管程和壳程流体的流速和温度,以及采用强
化传热技术,如增加翅片、改进管子形状等,提高换热器的传热效率。
管件与结构
优化换热器内部的管件和 结构,减少流体流动过程 中的局部阻力,降低压力 损失。
结构强度优化
1 2
应力分析
对换热器进行详细的应力分析,确保其在正常操 作条件下具有足够的结构强度和稳定性。
材料选择
根据使用条件和要求,选择合适的材料和厚度, 以提高换热器的结构强度和耐腐蚀性。
3
支撑与固定
合理设计换热器的支撑和固定结构,以减小应力 集中和振动,提高其结构强度和使用寿命。
新材料与新技术的应用
新型材料
采用高导热性能的复合材料、纳米材料等,提高换热器的传热效率。
新型涂层
利用先进的涂层技术,如陶瓷涂层、金属氧化物涂层等,增强换热器的抗腐蚀和 耐磨性能。
节能减排与环保要求
高效节能
研发低能耗的换热器,优化换热器结构,降低运行过程中的能源消耗。
环保设计
采用无毒、无害的材料,减少换热器对环境的影响,同时对换热器产生的废弃物进行环保处理。
能源与动力工程领域的应用
发电厂
管壳式换热器可用于加热和冷却发电厂中的各种 流体,如锅炉给水、凝结水和冷却水等。
船舶工程
在船舶工程中,管壳式换热器可用于船舶发动机 的冷却和加热,以及生活用水的加热和冷却。
采暖系统
在供暖系统中,管壳式换热器可用于将热量从热 源传递到水中,为建筑物提供热水供暖。

管壳式换热器设计内容选型

管壳式换热器设计内容选型

管壳式换热器设计内容选型1.热负荷计算:首先需要确定换热器需要处理的热负荷,即需要传递的热量。

这可以通过分析工艺流程和温度要求来确定。

2.流体选择:根据热负荷计算结果,选择合适的流体作为热源和冷却剂。

常见的流体包括水、空气、油等。

3.材料选择:根据流体的性质和工作条件,选择合适的材料用于制造换热器。

常见的材料包括不锈钢、碳钢、铜等。

4.管子和壳体的设计:确定管子和壳体的尺寸和布局,以最大程度地增加传热面积,并确保流体在换热过程中能够充分接触。

通常,换热面积越大,传热效果越好。

5.流体流量计算:根据热负荷和流体性质,计算出换热器的流体流量。

流体流量的选择需要考虑热负荷和流体压降之间的平衡。

6.管子和壳体的布局:根据工艺要求和空间限制,确定管子和壳体的布局。

在设计过程中,需要考虑流体的流动路径,以确保换热器的效率和可靠性。

7.管束和管板的设计:根据流体的特点,确定管束和管板的形式和结构。

管束和管板的设计主要是为了增加流体的混合,从而提高传热效果。

8.密封设计:保证换热器的密封性能,防止流体泄漏。

密封设计需要考虑材料的选择和密封结构的设计。

9.清洗和维护:确保换热器易于清洗和维护,以保持其良好的运行状态。

清洗和维护的设计需要考虑换热器的结构和布局。

总之,管壳式换热器的设计内容包括热负荷计算、流体选择、材料选择、管子和壳体的设计、流体流量计算、管子和壳体的布局、管束和管板的设计、密封设计以及清洗和维护等方面。

正确的设计和选型能够提高换热器的效率和可靠性,降低能源消耗和维护成本。

管壳式换热器设计和选型

管壳式换热器设计和选型

管壳式换热器设计和选型首先,管壳式换热器的设计需要根据具体的换热要求来确定,主要包括换热量、换热介质、流体流量和温度等参数。

根据设计要求,可以确定壳程和管程的尺寸、管道布置、换热面积等参数。

在设计过程中,需要考虑以下几个方面:1.热力计算:根据热源和热负荷的温度和流量要求,进行热力计算,确定所需的换热面积。

2.材料选择:根据工作介质的性质和工作条件,选择合适的材料,如不锈钢、铜合金等,以确保换热器的耐腐蚀性和耐高温性。

3.管道布置:根据介质的流态和流速等因素,确定管道的布置方式,如串流、并流、交叉流等,以实现最佳的换热效果。

4.换热面积:根据设计要求和换热性能,确定所需的换热面积,以满足换热要求。

5.清洗和维护:在设计过程中,要考虑到换热器的清洗和维护,选择合适的结构和材料,以方便换热器的维护和清洗。

在选型过程中,需要考虑以下几个因素:1.流体性质:选型时需要考虑流体的性质,包括流体的物理性质、压力和温度范围、粘度等。

不同的流体对换热器的要求不同,需要选择适合的换热器类型和材料。

2.温度和压力:根据工作条件确定换热器的温度和压力范围,选择符合要求的换热器。

3.环境限制:考虑到环境因素,如空间限制、气候条件等,选择适合的换热器尺寸和类型。

4.经济效益:综合考虑设备造价、运行费用、维护保养成本等因素,选择经济、高效的换热器。

5.供应商选择:选择有经验和信誉良好的供应商,确保提供优质的产品和服务。

总之,管壳式换热器的设计和选型需要根据具体的应用要求和工艺条件来确定,需要综合考虑热力计算、材料选择、管道布置、换热面积、清洗和维护等因素,并在选型过程中考虑流体性质、温度和压力、环境限制、经济效益和供应商选择等因素,以确保设计符合要求,选型合理可靠,并能够实现高效换热。

管壳式换热器设计 课程设计

管壳式换热器设计 课程设计

管壳式换热器设计课程设计XXX课程设计:管壳式换热器设计学院:机械与XXX专业:热能与动力工程专业班级:11-02班指导老师:小组成员:目录第一章:设计任务书第二章:管壳式换热器简介第三章:设计方法及设计步骤第四章:工艺计算4.1 物性参数的确定4.2 核算换热器传热面积4.2.1 传热量及平均温差4.2.2 估算传热面积第五章:管壳式换热器结构计算管壳式换热器是常用的热交换设备,广泛应用于化工、石油、制药、食品等行业。

本次课程设计旨在设计一台管壳式换热器,以满足特定工艺条件下的换热需求。

在设计之前,需要了解管壳式换热器的基本结构和工作原理。

管壳式换热器由外壳、管束、管板、管箱、管夹等部分组成。

热量通过内置于管束中的流体在管内传递,再通过管壳间的流体传递到外壳中,从而实现热交换。

设计过程中,需要确定流体的物性参数,包括密度、比热、导热系数等。

同时,还需要核算换热器传热面积,以满足特定的传热需求。

传热量和平均温差是计算传热面积的重要参数,而估算传热面积则需要考虑流体的流动状态、管束的排布方式等因素。

最终,我们将根据设计要求进行管壳式换热器的结构计算,确定外壳、管束等部分的尺寸和数量,以满足特定工艺条件下的换热需求。

第一章设计任务书本项目旨在设计一台管壳式换热器,用于将煤油由140℃冷却至40℃。

处理能力为10t/h,压强降不得超过100kPa。

具体操作条件为:煤油的入口温度为140℃,出口温度为40℃,冷却水的入口温度为26℃,出口温度为40℃。

2.第二章管壳式换热器简介管壳式换热器是石油化工行业中应用最广泛的换热器。

尽管各种板式换热器的竞争力不断上升,但管壳式换热器仍然占据着换热器市场的主导地位。

目前,各国为提高这类换热器性能进行的研究主要集中在强化传热、提高对苛刻工艺条件的适应性以及开发适用于各类腐蚀介质的材料。

此外,结构改进也是向着高温、高压、大型化方向发展的必然趋势。

5.1 换热管计算及排布方式在设计管壳式换热器时,需要计算并确定换热管的数量、直径和排布方式。

化工原理课程设计——换热器

化工原理课程设计——换热器

化工原理课程设计管壳式换热器选型姓名:学号:10091693班级:工092指导老师:袁萍前言1.换热器的设备简介传热是热能从热流体间接或直接传向冷流体的过程。

其性质复杂,不但要考虑经过间壁的热传导,而且要考虑到间壁两边流体的对流传热,有时还须考虑到辐射传热。

在化学工业中常遇到的热交换问题,根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。

其中间壁式换热器詹用量最大,据统计,这类换热器占总用量的99%。

间壁式换热器又可分为管壳式和板壳式换热器两类,其中管壳式换热器以其高度的可靠性和广泛的适应性,在长期的操作过程中积累了丰富的经验,其设计资料基本齐全,在许多国家都有了系列化的标准。

因此,作为广泛应用于各个领域的工业设备,它在国民经济中具有非常重要的作用。

换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。

管壳式换热器按结构特点分为固定管板式换热器、浮头式换热器、U型管式换热器、双重管式换热器、填料函式换热器和双管板换热器等。

前3种应用比较普遍。

固定管板式换热器的结构:主要有外壳、管板、管束、顶盖(又称封头)等部件构成。

它的特点是结构简单,没有壳侧密封连接,相同的壳体内径排管最多,在有折流板的流动中旁路最小,管程可以分成任何管程数,因两个管板由管子互相支撑,故在各种管壳式换热器中它的管板最薄,造价最低,因而得到广泛应用。

这种换热器的缺点是:壳程清洗困难,有温差应力存在。

这种换热器适用于两种介质温差不大,或温差较大但壳程压力不高及壳程介质清洁,不易结垢的场合。

在满足工艺过程要求的前提下,换热器应达到安全与经济的目标。

换热器设计的主要任务是参数选择和结构设计、传热计算及压降计算等。

设计主要包括壳体形式、管程数、换热管类型、管长、管子排列、管子支承结构、冷热流体的流动通道等工艺设计和封头、壳体、管板等零部件的结构、强度设计计算。

管壳换热器课程设计

管壳换热器课程设计

管壳换热器课程设计一、教学目标本课程的学习目标包括知识目标、技能目标和情感态度价值观目标。

知识目标要求学生掌握管壳换热器的基本原理、结构类型、设计计算方法和应用范围。

技能目标要求学生能够运用所学知识进行管壳换热器的选型、设计和分析。

情感态度价值观目标培养学生对热能工程领域的兴趣,提高学生解决实际工程问题的责任感和使命感。

通过分析课程性质、学生特点和教学要求,明确课程目标,将目标分解为具体的学习成果,以便后续的教学设计和评估。

二、教学内容根据课程目标,选择和教学内容,确保内容的科学性和系统性。

制定详细的教学大纲,明确教学内容的安排和进度。

1.管壳换热器的基本原理:包括热传递过程、传热速率、对数平均温度差等。

2.管壳换热器的结构类型:光管换热器、壳管换热器、板式换热器等。

3.管壳换热器的设计计算方法:包括换热面积计算、壳程压力降计算、管程压力降计算等。

4.管壳换热器的应用范围:石油、化工、电力、制冷等领域的实际应用案例。

三、教学方法选择合适的教学方法,如讲授法、讨论法、案例分析法、实验法等。

通过教学方法应多样化,以激发学生的学习兴趣和主动性。

1.讲授法:系统地传授管壳换热器的基本原理、设计方法和应用案例。

2.讨论法:学生针对实际工程问题进行讨论,培养学生的思辨能力和团队协作精神。

3.案例分析法:分析石油、化工、电力、制冷等领域的实际应用案例,加深学生对管壳换热器的理解。

4.实验法:安排实验课程,让学生动手操作,培养学生的实践能力和实验技能。

四、教学资源选择和准备适当的教学资源,包括教材、参考书、多媒体资料、实验设备等。

教学资源应该能够支持教学内容和教学方法的实施,丰富学生的学习体验。

1.教材:选用权威、实用的教材,如《管壳换热器设计与应用》。

2.参考书:推荐学生阅读相关领域的经典著作和最新研究成果。

3.多媒体资料:制作课件、教学视频等,以图文并茂的形式呈现教学内容。

4.实验设备:配置相应的实验设备,为学生提供实践操作的机会。

化工原理课程设计管壳式换热器的设计

化工原理课程设计管壳式换热器的设计

西北大学化工学院列管式换热器的工艺设计说明书题目: 列管式换热器的工艺设计和选用课程名称: 化工原理课程设计专业: 化学工程与工艺班级: 09级学生姓名: 李哲学号: 2009115057指导教师: 吴峰设计起止时间:2012 年1月1日至2012 年 1月13日设计题目:列管式换热器的工艺设计和选用一、设计条件炼油厂用循环水将煤油油从230℃冷却到120℃。

柴油流量位28700kg/h;循环水初温为22℃,经换热后升温到46℃。

换热器的热损失可忽略。

管、壳程阻力压降不大于100kPa。

试设计能完成上述任务的列管式换换热器。

二、设计说明书的内容1、设计题目及原始数据;2、目录;3、设计方案的确定;4、工艺计算及主体设备设计;5、辅助设备的计算及选型;(主要设备尺寸、衡算结果等);6、设计结果概要或设计结果汇总表;7、参考资料、参考文献;目录一.设计任务及设计条件 (3)二.设计方案 (3)1.换热器类型选择 (3)2.流程选择 (3)3.流向选择 (3)三.确定物性数据 (3)四.估算传热面积 (3)五.工艺结构尺寸计算 (3)1.管径及管内流速选择 (3)2.传热管数和传热管程数 (4)3.平均传热温差校正及壳程数 (5)4.传热管排列和分程方法 (5)5.壳体内径 (5)6.折流板 (5)7.其他主要附件 (6)8.接管 (6)9.壁厚的确定、封头 (7)六.换热器核算 (7)(一).热流量核算 (7)1.壳程表面传热系数核算 (8)2.管程表面传热系数核算 (8)3.污垢热阻 (9)4.传热面裕度 (9)(二)传热管壁温及壳体壁温计算 (9)(三)阻力计算 (10)1.管程流体阻力计算 (10)2.壳程流体阻力计算 (10)七.换热器主要计算结果汇表 (11)八.主要符号说明 (11)九.换热器主要结构尺寸图和管子布置图 (12)十.参考文献 (15)一.设计任务及设计条件:用循环冷却水将流量为28700Kg/h 的煤油从230℃降至120℃,冷却水为清净河水,进口温度22℃,选定冷却水出口温度46℃,设计一台列管换热器完成冷却任务。

化工原理课程设计之管壳式换热器选型

化工原理课程设计之管壳式换热器选型

化工原理课程设计之管壳式换热器选型管壳式换热器是化工行业中一种常见的设备,用于进行热能转移。

在化工原理课程设计中,学生需要进行管壳式换热器的选型,以达到最佳的热能转移效果,同时保证安全和经济性。

本文将探讨化工原理课程设计之管壳式换热器选型。

一、管壳式换热器的原理和结构管壳式换热器是一种常见的热交换器,由壳体、管束、管板、导流板、管箱、堵头等部分组成。

壳体与管束之间形成机械密封,壳体内外分别为热源侧和冷却侧。

当热源流经壳体内部,热量会通过管壁传递到管子内部的冷却液;当冷却液流经壳体的外部,管子内部的冷却液会释放热量,从而实现热能的转移。

管壳式换热器具有传热效率高、适用范围广、耐腐蚀性好等优点。

二、管壳式换热器的选型方法选择合适的管壳式换热器是化工原理课程设计的关键,以下是一些选择管壳式换热器的要点。

1.计算热量传递量在选型时,需要计算出热量传递量,以此来进行匹配。

热负荷是指单位时间内传递的热量,通常以热量流通的单位时间的百分比表示。

2.计算传热系数传热系数是指达到热量传递所需的热传导度、传热表面积、传热温度差、传热介质之间热传导特性等因素综合影响下的综合因素。

在选型时,需要计算出传热系数,以此来判断热量传递的效果。

传热系数越高,则热量传递效果越好。

3.计算换热面积在计算传热系数和热量传递量的基础上,可以计算出所需的换热面积。

换热面积要考虑到热传载体的流量、热传载体的温度差、传热介质之间的传热系数等因素。

4.考虑设备材质、耐压、操作温度等因素在选型时,还需要考虑设备材质、耐压和操作温度等因素。

这些因素在不同的工艺流程中都有可能影响热能转移的效果。

在选择管壳式换热器的时候,需要根据具体的工艺流程来判断哪些因素是需要考虑的。

三、工程实践应用在工程实践中,化工原理课程设计之管壳式换热器选型是非常重要的。

适当的设计可以提高生产效率和质量、减少能源消耗和资源浪费,从而实现经济效益和社会效益的双赢。

在实际操作中,我们可以根据具体的工艺流程,选择合适的管壳式换热器,进行换热的工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档