多层框架结构中次梁设计论文

合集下载

次梁对主梁的承载影响分析

次梁对主梁的承载影响分析

次梁对主梁的承载影响分析第18卷第2期.18.No.2攀枝花大学l0fPanzhihuaIJ2001年6月J岫.2001自然科学研究?次梁对主梁的承载影响分析陈代秉(攀枝花大学土木系,攀枝花617C03)摘要在结构手算及部分电算设计计算中,一般只考虑次粱端集中荷载对主粱的影响.很少甚至没有考虑次粱端不平衡弯距对主粱承载力的影响.当主粱新截面承载力富余不足时,此设计将是很危险的.但通过一定的结构措施,可以调控次粱对主粱的承载影响.关键词主梁;次粱;承载影响;降低扭矩1规范规定为了控制钢筋砼构件由于箍筋超限而引起的构件斜面压破,GBJ一89,砼结构设计规范对此作了严格限制:对一般矩形抗剪梁:≤025fo对一般矩形剪扭梁:+毒≤0.25c显然,当梁上既有剪力又有扭矩时,等式右边增加一项v,WL,由此很可能造成不能满足此式,而必须调增截面尺寸,否则将引起斜压破坏.因此,扭矩的存在降低了主梁的斜截面承载能力.2主粱扭矩的形成如图A,当主框梁与次梁整体现浇时,次梁的变形受到主梁的约束,使次梁的i端形成不平衡弯矩M,(如图B),此弯矩由主梁的.和L啦段产生扭矩和来平衡,即:.+=M (如图C),扭矩T.,和将降低主梁的斜截面承载能力.围A(平面图)镀接弯炬周围B(竖向作用下姨粱弯矩围)围C(节点平衡图)3降低主粱扭矩的方法.和Tu的大小不仅与M.有关,还与次梁的相对位置有关,因此可通过如下两种方法降低主梁所受扭矩.3.1合理布置次梁位置由材料力学很容易得知下列各图中主梁扭矩的分布情况.显然次梁的相对位置在很大程度上影响主梁的扭矩分布.因此在进行结构布置时,在不影响结构使用的情况下,应合理布置次梁71?第l8卷攀枝花大学第2期的位置,以使作用于主梁的扭矩分布均匀,避免扭矩集中,从而大大提高主梁斜截面承载能力.令u=fu一分配系数如下表K0Ol0.20.30.40.51.02O5.0l0.OOO.09O.17O.23O.29O.33O.5067O.g3O.911.O由上表可以看出:(1)当}一>0时,即KT《时,相当于主次梁铰接,:0,则作用于主粱上的扭矩也等于O(最小).(2)当KT一*时,即KT《K,相当于主固接,则作用于主梁上的扭矩最大(等于).因此,在进行主次梁的连接设计时,可以根据主次梁的斜截面承载力富余情况,采用不同的K值,以最大限度地利用主次梁的斜截面承载潜力.具体到结构设计时,就是对次梁固端弯矩的台理调幅,但应注意以下几点:(1)当次梁的i端为悬挑时,i端只能按完全固接计算.(2)i端次梁按固接设计时,上部负弯矩钢筋按固接弯矩计算确定,且按刚性连接要求锚人主梁内.(3)i端次梁按铰接连接时,上部仅按构造要求设置架立钢筋(宜取小值),并按铰接要求锚人主梁内.(4)i端按刚弹性连接设计时,上部钢筋按调幅后的弯矩计算确定,并按刚性连接要求锚人主粱内.(5)由钢筋砼特有的刚度特性,因此在计算其抗扭,抗弯线刚度时,应采用长期刚度..次梁对主粱的承载影响不仅仅表现在端部的集中荷载,端部的不平衡弯矩对主梁的斜截面承载影响是不可忽视的,但此影响在一程度上又是可以调控的.参考文献[1]刘鸿文.材料力学(第二暖)[M].高教出版社.[2]李廉锟等.结构力学(第二皈)EM].高教出版社.[3]昊立信等.TUS/ADBW空间结构计算[M].清华大学出版社72?。

某带地下室多层钢框架结构设计

某带地下室多层钢框架结构设计

某带地下室多层钢框架结构设计A Multi-Storey Steel Frame Structure Design with Basement于澎涛(上海环境工程设计研究院有限公司,上海200072)YU Peng-tao(Shanghai Environmental Engineering Design and Research Institute Co. Ltd., Shanghai 200072, China)【摘要】主要介绍上海某办公及质检楼的结构设计过程。

上部结构形式为多层钢框架,地下室采用桩承台+防水板的基础形式。

同时,对结构方案、设计过程中遇到问题的解决方法进行详细介绍,为类似工程提供借鉴。

【A bst 「a c t】This paper introduces the structural design process of a n office and quality inspection building in Shanghai. The superstructure is amulti-storey steel frame, and the basement is a pile cap with waterproof slab foundation,meanwhile, it gives a detailed introduction to the structural scheme and the solutions to the problems encountered in the design process, so as to provide reference for similar projects.【关键词】多层钢框架;桩承台+防水板;箱形截面【Keywords 】multistory steel frame structure; pile cap + waterproof p late; box section【中图分类号】TU 398+.2【文献标志码】A【文章编号】1007-9467(2021)02-0009-03[DOI ] 10.13616/j .cnki .gcjsysj .2021.02.203建筑与结构设计A rchitectural and Structural Design1工程概况本工程位于上海市松江东部工业区书敏路以北、申港路以 西,单体名称为办公及质检楼。

土木工程毕业设计论文某多层办公楼的设计含全套cad图纸-精品

土木工程毕业设计论文某多层办公楼的设计含全套cad图纸-精品

土木工程毕业设计论文某多层办公楼的设计含全套cad图纸-精品2020-12-12【关键字】方案、情况、台阶、方法、条件、质量、增长、整体、平衡、基础、工程、作用、标准、结构、水平、分析、简化、满足、调整、方向、规范、核心(1)设计标高:室内设计标高±0.000,室内外高差450mm.(2)墙身做法:采用加气混凝土块,用M5混合砂浆砌筑,内粉刷为混合砂浆底,纸筋灰面,厚20mm,“803”内涂料两度。

外墙采用贴面砖,1:3水泥砂浆底厚20mm。

(3)楼面作法:楼板顶面为水磨石地面,楼板底面为15mm厚白灰砂浆天花抹面,外加V型轻钢龙骨吊顶。

(4)屋面作法:现浇楼板上依次铺20mm厚水泥砂浆找平层、300mm厚水泥珍珠制品隔热找平层、20mm厚水泥砂浆找平层和SDC120复合卷材,下面依次为15mm厚白灰砂浆天花抹面和V型轻钢骨龙吊顶。

(5)基本风压:ωo=0.3KN/m2(地面粗糙度属C类)。

(6)基本雪压:S0=0.3KN/m2。

(7)抗震设防烈度:八度(0.2g)第二组,框架抗震等级为二级。

地质条件:全套CAD图纸,计算书,联系6由上至下:人工添土:厚度为1m粉质粘土:厚度为7m,地基承载力特征值为500KPa中风化基岩:岩石饱和单轴抗压强度标准值为3.6MPa建筑场地类别为Ⅱ类;无地下水及不良地质现象。

活荷载:上人屋面活荷载2.0KN/m2,办公室楼面活荷载2.0KN/m2,走廊楼面活荷载2.5KN/m2,档案室楼面活荷载2.5KN/m2。

二、结构布置及结构计算简图的确定结构平面布置如图1所示。

各梁柱截面尺寸确定如下:主梁:取h=1/9l=1/9×7200=800mm,取h=800mm,取b=350mm,次梁:取h=1 /16l=1/16×7200=450mm,取h=500mm,取b=250mm,柱子:取柱截面均为b×h=600×600mm,现浇板厚为100mm。

钢筋混凝土框架结构毕业设计论文.doc

钢筋混凝土框架结构毕业设计论文.doc

国航办公楼框架结构设计(7轴)摘要:本设计为国航办公楼框架结构设计,该结构为钢筋混凝土框架结构体系。

该建筑平面为规则矩形,有五层,建筑总面积约为3705.4平方米,结构总长58.5米,总宽14.35米,总高19.5米,占地约4326平方米。

该结构设计包括以下几部分:首先,根据功能和使用要求进行结构布置,确定梁、柱截面尺寸;其次,计算重力荷载代表值和结构侧移刚度以及在水平荷载和竖向荷载作用下的内力,其中水平力考虑了风荷载和地震水平作用力。

第三步,考虑五种内力组合,选取最不利的组合进行梁、柱配筋计算。

最后是配筋。

关键词:框架结构;抗震;刚度;配筋Air China officeFrame design (7 axis)Abstract: The design framework for the design office of Air China, the structure ofreinforced concrete frame structure. The rectangular building plan for the rules, there arefive, the total construction area of approximately 3,705.4 square meters, the structurelength of 58.5 m, with a total width of 14.35 meters, total height of 19.5 meters, covering about 4326 square meters.The structural design includes the following sections: First, according to structuralfeatures and layout requirements to determine the beam andcolumn section size;Secondly, the calculation of representative values of gravity load and structural stiffnessand the horizontal load and vertical load of the internal forces , Where the level of forceconsidered the level of wind and earthquake forces. The third step, consider the combination of the five internal forces to select the most unfavorable combination of beam and column reinforcement calculation. Finally, reinforcement.Keywords: frame structure; seismic; stiffness; reinforcement目录前言 (6)1工程概况 (7)2结构布置及计算简图 (8)3重力荷载计算 (11)3.1屋面及楼面的永久荷载标准值 (11)3.2屋面及楼面的可变荷载标准值 (11)3.3梁、柱、墙、窗、门重力荷载计算 (12)3.4重力荷载代表值 (12)4框架侧移刚度计算 (16)4.1横向框架侧移刚度计算 (16)4.1.1框架结构梁、柱线刚度计算 (16)4.1.2框架结构柱的侧移刚度计算 (17)4.2纵向框架侧移刚度计算 (19)5横向水平荷载作用下框架结构的内力和侧移计算 (19)5.1横向水平地震作用下框架结构的内力和侧移计算 (19)5.1.1横向自震周期计算 (19)5.1.2水平地震作用及楼层地震剪力计算 (20)5.1.3水平地震作用下的位移验算 (22)5.1.4水平地震作用下的框架内力计算 (23)5.2横向水平风荷载作用下框架结构的内力和侧移计算 (30)5.2.1风荷载标准值计算 (30)5.2.2风荷载作用下的水平位移验算 (32)5.2.3风荷载作用下框架结构内力计算 (33)6竖向荷载作用下框架结构的内力计算 (36)6.1横向框架内力计算 (36)6.1.1计算单元 (36)6.1.2竖向荷载作用下框架结构内力计算 (37)6.1.2.1荷载计算 (37)6.1.3内力计算 (47)6.1.3.1固端弯矩计算 (47)6.1.3.2分配系数计算 (47)6.1.3.3传递系数 (48)6.1.3.4弯矩分配 (48)6.1.3.5梁端剪力及柱轴力计算 (48)6.2横向框架内力组合 (55)6.2.1结构抗震等级 (55)6.2.2框架梁内力组合 (55)6.2.3框架柱子内力组合 (60)7截面设计 (66)7.1框架梁 (65)7.1.1梁的正截面设计 (65)7.1.2梁的斜截面设计 (67)7.2框架柱配筋 (69)7.2.1 柱正截面承载力计算 (69)7.2.2柱斜截面受剪承载力计算 (72)7.3 框架梁柱节点截面设计和抗震验算 (75)8楼梯设计 (76)8.1梯段设计 (76)8.2平台设计 (77)8.3平台梁设计 (78)9楼板设计 (80)设计总结 (83)致谢 (84)参考文献 (85)英文翻译 (86)前言毕业设计是一门重要的实践课程,通过具体的设计能够将平时所学的理论知识系统的联系起来。

有关多层建筑框架结构设计论文

有关多层建筑框架结构设计论文

有关多层建筑框架结构设计的探析摘要:本文通过对我国的多层建筑进行分析,论述了多层建筑框架结构中的梁、柱、板等部分的设计,并且指出了以往设计中存在的问题。

因此,本文具有较强的实用性以及较广的适用性,可以供各个施工单位交流借鉴。

关键词:多层建筑;框架结构;实用性;借鉴中图分类号:tu378.4文献标识码: a 文章编号:随着中国改革的稳步前行,现代化的不断发展,人民群众的生活越来越富足,社会也正在以很高的速度良性发展。

为了满足人们对物质的要求以及社会发展的需要,近年来我国各地大兴土木,工业厂房,商业基础建设以及民用住宅等都如雨后春笋一般的出现。

建筑物数量的增多就意味着问题的增多,笔者通过对一些建筑的了解发现,中国土建工程的问题主要出现在框架结构上,问了能使该问题更好的更深入的解决,我首先谈一些自己对该问题的看法,权当抛砖引玉,目的是促进该问题的交流。

文章中我们从框架结构中柱、梁、板三个部分作为分析的对象。

1 柱的结构设计(1)如果地上露出的部分为圆柱,为方便施工,在地下的部分以方柱为宜,且方柱的切面边长与圆柱的切面直径相等。

圆柱要能够承受足够的荷载,纵向的钢筋数量不可以少于8根,该8根钢筋同时连接方形柱,在柱体用螺旋箍,方柱用井字箍。

需要注意的是,幼儿园及小学不宜用方柱。

(2)柱体内的纵向钢筋直径越大越好,钢筋间的间距也要求大一些,但是这个间距值不能大于200毫米。

(3)在实际施工中,很容易遇到柱内需要埋设管线的情况。

在方柱的四角可以埋设较粗的管,如果管的横截面面积不到柱的横截面面积的4%,则可以忽略。

柱内严禁埋设暖气管线。

(4)在施工中,对于柱的横截面没有细致的妖气,但是在实际的工作中,施工人员与设计人员总结出,柱的横截面不能小于45厘米见方。

否则就达不到对于荷载的要求。

如果横截面小,又要保证荷载,就要多加一些柱。

这样在浇筑混凝土的时候,十分的不方便。

对于异性柱,要控制梁纵筋的数目,过多过密也会使之后的浇筑困难。

多层建筑框架结构设计论文

多层建筑框架结构设计论文

多层建筑框架结构设计摘要:对于框架结构的设计目前多采用计算机辅助软件来进行分析和计算,但是目前有的工程设计人员过份地依赖计算机的计算结果,而缺少独立分析问题、解决问题的能力,致使在一些图纸中出现不必要的问题,为以后事故的发生埋下隐患。

为此,本文针对钢筋混凝土多层框架结构设计中涉及的一些概念性、实际性问题,运用设计理论并结合实际经验提出了相应的解决措施。

关键词:框架结构;设计;建筑结构中图分类号:tu398+.2文献标识码: a 文章编号:引言:现代建筑逐渐朝着多元化方向发展,框架结构因为具有灵活的空间分隔性和自重轻的特点,已经成为我国建筑普遍采用的结构形式之一。

多层框架结构设计由于比较普遍,所以也是一种较为基础且较为重要的设计课题。

目前的框架建筑结构设计大多采用电脑辅助设计,所以,很多设计过程中存在的问题容易被忽视,进而导致一些安全隐患的发生。

一、多层建筑框架结构的设计要点1.1 尽量避免短柱的出现在对框架结构进行设计时,应该尽量避免出现短柱现象。

因为短柱的抗震性能通常较差。

但是在框架结构设计过程中,由于楼梯间休息平台梁或者楼层的高矮等原因,有些短柱的出现很难避免。

所以,如果存在短柱,就应该按照建筑抗震设计规范进行处理,尽量提高短柱的抗震性能。

另外,如果在同一楼层中,均为短柱,且各柱之间的刚度比较均匀、相差不大,则认为其结构是可以得到保证。

1.2 中心线应该符合规定框架梁与柱的中心线应该符合相关规定,也就是框架梁、柱中心应该尽量重合,如果中心线存在偏移现象时,需要全面考虑偏心对梁柱节点核心区受力和构造可能产生的影响,同时也应该考虑到梁上荷载对柱子的偏心影响。

如果偏心距大于该方向上柱宽度的四分之一时,可以考虑采用增加梁水平方向加腋等措施。

而当梁、柱偏心大于该方向柱宽的四分之一时,可采用梁水平腋的措施。

加腋后的梁在验算梁的剪压比和受弯承载力时,通常不会计算加腋部分截面的有利影响。

1.3 避免砌体墙的出现在多层框架结构建筑的设计当中,通常不可以采用部分砌体墙承重的混合形式。

多层厂房框架设计毕业设计论文

多层厂房框架设计毕业设计论文

摘要在大学四年的学习生涯行将结束的时候,我拿到了这份设计任务书和相关数据资料,怀着期盼渴望的心情,开始了工作。

本计算书是针对华中科技大学土木工程专业xxx级毕业设计:教学楼为五层现浇钢筋混凝土框架结构。

长51.5m,宽25m,高27m。

在“建筑设计”部分中,经过层层考虑选择最终方案,针对最终建筑方案,确定了其具体建筑构造、做法与材料。

在“结构设计”部分中,首先按照要求选择一榀框架为本次手算的任务,明确其计算简图与各个计算参数;然后根据建筑做法确定其所受荷载,计算梁、柱、板与基础的内力;最后分别进行各构件的配筋计算。

在“结构设计”部分中,穿插进行“PKPM”电算,以保证计算成果的可靠性。

并达到同手算成果对比、分析的目的。

关键词:毕业设计,多层厂房,框架,抗震设计,电算AbstractI got the mission book and other datas when my campus time would go by, and with a good and hopeful feeling, I have started my work.The calculation report is written for the graduation design whose name is “XinHua Middle School Build ing”. The buil ding is reinforcement concrete structure with five stories The length of the building is 58.5m, the width is 18m and the height is 21.45m.In the process of “Architecture D esign”, I determine the detailed conformation and the material of the building.In the process of “Structure D esign”, firstly, I determined to by hand and determined the sketch and the parameters of the frame. Secondly, I determined the loads on the frame and calculated the internal forces of the beams, second beam, the planes, the columns and the foundations. Lastly, how much reinforcement is necessary can be determined.In the process of the graduation design, I made use of the computer program named “PKPM” to au diting and analysis my result which was calculated by hand.Keywords:Graduation design, School Building, FamesAnti-seismic Design, Earthquake Function.目录-摘要 (I)Abstract .................................................................................................................. I I 目录....................................................................................................................... I II 1、工程概况与建筑设计.. (7)1.1工程概况 (7)1.2建筑设计 (8)1.2.1建筑平面设计 (8)1.2.2建筑立面设计 (9)2、结构选型及结构布置 (10)2.1材料选择 (10)2.1.1混凝土强度等级 (10)2.1.2 钢筋 (10)2.2板、梁、柱截面尺寸估算 (10)2.2.1板厚估算原则 (10)2.2.2板厚确定 (10)2.2.3梁尺寸估算原则 (10)2.2.4梁尺寸确定 (11)2.2.5柱截面尺寸估算 (11)2.3框架计算简图 (13)3、荷载计算 (14)3.1 各构件自重计算 (14)3.2恒荷载计算 (16)3.3活荷载计算 (18)3.4风荷载计算 (19)3.5水平地震荷载计算 (21)3.5.1重力荷载代表值计算 (21)3.5.2梁柱刚度计算 (22)3.5.3结构自振周期计算 (25)3.5.4横向地震作用计算 (26)3.6抗震变形验算 (27)4、○4轴框架内力计算 (29)4.1恒荷载作用下结构内力计算 (29)4.1.1计算杆端弯矩分配系数 (30)4.1.2计算杆件固端弯矩 (32)4.1.3 采用弯矩二次分配法计算杆端弯矩 (32)4.1.4 恒载作用下○4轴框架剪力计算 (33)4.1.5 恒载作用下○4轴框架轴力计算 (35)4.2 活荷载作用下结构内力计算 (37)4.3重力荷载代表值下结构内力计算 (44)4.4左风荷载作用下结构内力计算 (48)4.5水平地震荷载作用下结构内力计算 (53)5、内力组合 (57)5.1弯矩调幅 (57)5.2内力调整 (59)5.2.1竖向荷载内力调整 (60)5.2.2水平荷载内力调整 (61)5.3内力组合 (63)5.3.1框架梁内力组合 (63)5.3.2框架柱内力组合 (69)5.4地震作用效应调整 (74)5.4.1框架梁剪力调整 (74)5.4.2框架柱弯矩调整 (78)5.4.3框架柱剪力调整 (81)6、框架截面设计 (82)6.1框架梁截面设计 (82)6.1.1跨中及支座截面底部钢筋计算 (83)6.1.2支座截面负筋计算 (85)6.1.3箍筋计算 (87)6.1.4构造要求 (89)6.2框架柱截面设计 (89)6.2.1 框架柱弯矩、轴力汇总 (90)6.2.2纵筋计算 (93)6.2.3箍筋计算 (97)6.2.4构造要求 (100)6.3、框架平面内核心区抗震验算 (101)7、部分板及次梁的设计 (102)7.1.1荷载计算 (104)7.1.2内力计算 (104)7.1.3配筋计算 (105)7.2次梁设计 (109)7.2.1荷载计算 (110)7.2.2内力计算 (110)7.2.3配筋计算 (111)8、楼梯设计 (113)8.1踏步板设计(以一层一跑TB1楼梯计算为例) (113)8.1.1荷载计算 (113)8.1.2截面设计 (114)TL (114)8.2楼梯斜梁计算18.2.1荷载计算 (114)8.2.2截面设计 (115)8.3平台梁TL-1设计 (117)8.3.1荷载计算 (117)8.3.2截面设计 (117)9、基础设计 (120)9.1 设计参数、资料、方法 (120)9.1.1 水文地质资料 (120)9.1.2 设计参数 (120)9.2 桩基设计 (121)9.2.1 桩基布置 (121)9.2.2 计算桩顶荷载设计值 (121)9.2.3 抗力验算 (122)9.2.4承台梁设计 (124)10、电算校核 (125)10.1 PKPM电算 (125)10.1.1 建筑模型与荷载输入 (125)10.1.2 楼面荷载传导计算 (126)10.1.3 PK计算第○4轴横向框架 (127)10.2 电算内力与手算内力对比分析 (127)10.2.1 恒荷载内力 (127)10.2.2风荷载内力 (129)11、总结 (130)12、参考文献 (131)13、致谢 (132)1、工程概况与建筑设计1.1工程概况1:建筑地点及拟建基地平面:该工程位于某市干道旁。

浅谈钢筋混凝土多层框架结构设计5000字

浅谈钢筋混凝土多层框架结构设计5000字

浅谈钢筋混凝土多层框架结构设计5000字摘要:在工业与民用建筑钢筋混凝土框架结构设计过程中,时常会产生结构方案设计的优化及结构设计荷载取值的合理性、框架计算简图合理性及结构计算中几个重要设计参数的选取的合理性等问题,本文主要结合笔者多年来的工程设计实践经验,并针对性地提出切实有效的经验方法,供同仁参考。

关键词:结构设计:计算模式;参数选取中图分类号:TU375文献标识码:A 文章编号:Abstract: In the industrial and civil building reinforced concrete frame structure design process, it often will produce the structure design of the optimization of the structure and design load determination rationality, frame diagram rationality and calculation structure calculation of several important the rationality of the selection of design parameters and so on, this paper mainly based on the author's engineering design for years practical experience, and pointed proposed practical and effective method of experience for reference to colleagues.Key Words: structure design: calculation mode; parameter selection一、结构计算模式中几个问题1.框架底层层高及计算简图的确定对于无地下室的钢筋混凝土多层框架结构设计,合理地采用结构设计方案,可以有效地控制结构的最大层间位移角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈多层框架结构中次梁的设计
摘要:通过工程模型的对比分析,证明了多层框架结构的次梁布置对结构整体刚度的影响,进而影响结构的抗震。

为框架结构尤其是平面狭长的框架结构设计提供参考。

关键词:次梁;刚度;抗震;结构布置
abstract: through the comparison of the engineering model, and prove the multilayer frame structure of the second beam layout of the influence of the whole structure stiffness, and affect the structure of earthquake. as a frame structure especially plane long and narrow frame structure provides reference for the design.
keywords: second beam; stiffness; seismic; structure layout
【中国分类号】tu208.2 ;tu375 【文献标志码】a【文章编号】框架结构因为具有建筑平面布置灵活、房间空间大等优点,在工业厂房及公共建筑中有着广泛的应用。

一般而言,框架结构就其承重方案一般有三种:横向承重,纵向承重和双向承重。

对应的次梁布置方式分别为沿纵向布置,沿横向布置和双向布置(即十字梁或井字梁)。

当框架结构的主要结构构件框架柱、框架梁尺寸确定的情况下,次梁对结构整体抗震设计有何贡献呢?目前有不少的工程设计人
员持有以下观点:设计中次梁不参与抗震,其布置方式对框架结构整体抗震没有影响。

此观点的主要依据是在早期结构设计阶段,框架结构的抗震设计计算为手算,次梁只考虑其导荷作用,不考虑其对主体结构的刚度贡献。

手算设计的框架结构在使用过程中也没有出现大范围的问题。

实践经验从侧面支持了该观点。

但是不能说这种观点在工程设计中是完全正确的,次梁是客观存在的,必然对整体刚度有影响。

忽略次梁对结构整体刚度的影响只是限于当时的设计手段,对计算模型进行了很大程度的简化。

近年来计算机辅助设计软件的成熟,为准确评价次梁对整体刚度的影响提供了条件。

笔者曾经设计过各种体型的多层框架结构,从长宽比不大的矩形到狭长的一字型。

总结设计过程的体会,笔者认为在框架结构中,次梁本身截面设计确实不需要考虑抗震作用的,但是次梁对整体框架的刚度贡献和抗震变形分析还是有影响的。

下面我们通过一个简化的工程设计进行次梁对整体刚度的定性分析。

设定工程为三层框架结构,层高均为3.3m。

计算软件采用由中国建筑科学研究院开发的计算机辅助设计pkpm系列软件:stawe 2010版(2011年9月
图1.1 标准层结构布置图
升级)。

各计算模型除次梁(截面均为250x600)布置方式不同外,其他计算参数相同。

标准层框架梁和框架柱结构布置图见图1.1 (横向框架梁截面为300x600,纵向框架梁截面为300x800,框架柱
截面为500x500,均居中布置,楼板均为100mm厚现浇板;混凝土的强度等级均为c30)。

pkpm设计参数的总信息见图1.2,地震信息见图1.3。

图1.2pkpm计算总信息
图1.3pkpm计算地震信息
模型编号及说明:
a: 将次梁定义为pkpm结构布置中的“次梁”(只考虑次梁的导荷作用,不考虑对主体结构的刚度贡献)输入,每跨沿纵向布置一道次梁,二等分横向框架梁。

b: 将次梁定义为pkpm结构布置中的“次梁”输入,每跨沿横向布置一道次梁,二等分纵向框架梁。

c: 将次梁定义为pkpm结构布置中的“主梁”(既考虑次梁的导荷作用,又考虑其对主体结构的刚度贡献,计算中考虑主梁和次梁的空间作用)输入,每跨沿纵向布置一道次梁,二等分横向框架梁。

d: 将次梁定义为pkpm结构布置中的“主梁”输入,每跨沿横向布置一道次梁,二等分纵向框架梁;
e: 将次梁定义为pkpm结构布置中的“主梁”输入,每跨沿横纵向各布置一道次梁,二等分纵横向框架梁,即十字梁;
f: 将次梁定义为pkpm结构布置中的“主梁”输入,每跨沿横向布置两道次梁,三等分纵向框架梁;
各模型下前三振型的周期及最大层间位移角摘录于表1.1中。

表1.1各计算模型下的参数对比
模型编号考虑扭转耦联时的振动周期(秒) 最大层间位移角
x,y 方向的平动系数 x方向
第一振型第二振型第三振型 y方向
a 0.48190.43120.42381/1248
1.00 ( 0.00+1.00 ) 0.00 ( 0.00+0.00 )1.00 ( 1.00+0.00 ) 1/926
b 0.47780.42270.42021/1270
1.00 ( 0.00+1.00 ) 0.00 ( 0.00+0.00 )1.00 ( 1.00+0.00 ) 1/941
c 0.50650.44600.42311/1253
1.00 ( 0.00+1.00 ) 0.00 ( 0.00+0.00 )1.00 ( 1.00+0.00 ) 1/828
d 0.47580.43510.42311/1168
1.00 ( 0.00+1.00 ) 1.00 ( 1.00+0.00 )0.00 ( 0.00+0.00 ) 1/950
e 0.51060.44700.44411/1123
1.00 ( 0.00+1.00 ) 0.00 ( 0.00+0.00 )1.00 ( 1.00+0.00 ) 1/816
f 0.48700.45650.43341/1053
1.00 ( 0.00+1.00 ) 1.00 ( 1.00+0.00 )0.00 ( 0.00+0.00 )
1/908
模型计算结果分析:
1. 对比模型a和c,b和d的计算结果,我们可以看出将次梁定义为pkpm结构布置中的“次梁”输入和将次梁定义为pkpm结构布置中的“主梁”输入对结构的整体刚度有不同的影响;
2. 对比模型c、d和e的计算结果,可以看出d模型的次梁布置是三个模型中最好的。

此时结构前三个振型的整体空间振动呈现为“平平扭”,这是模型调整的一个大控制方向,同时两方向的最大层间位移角相对最为接近。

3. 对比模型b、d和f的计算结果,我们可以看出虽然模型d
和f都使得结构前三个振型的整体空间振动呈现为”平平扭”,但是对于模型b而言,模型d使得x方向最大层间位移角变大,y方向最大层间位移角减小,模型f却使得x、y两方向的最大层间位移角均增大。

虽然该工程案例的设计存在着一定的片面性,但是通过比对,我们可以定性的得出以下结论:框架结构中的次梁布置对结构整体刚度有影响,进而影响结构整体的抗震变形,不宜忽略,设计中应将次梁定义为pkpm结构布置中的“主梁”输入。

同时,框架结构,尤其是长宽比较大的狭长框架结构,次梁宜布置在刚度较弱方向。

【参考文献】
【1】 gb50010-2010 混凝土结构设计规范【s】.
【2】gb50011-2010 建筑抗震设计规范【s】.。

相关文档
最新文档