病毒遗传分析方法
第五章病毒的遗传分析

第五章病毒的遗传分析(3h)教学目的:掌握噬菌体的突变类型以及λ噬菌体的基因组;明确噬菌体的噬菌体的重组;了解噬菌体的互补测验。
教学重点:噬菌体的重组。
教学难点:噬菌体的互补测验。
第一节噬菌体的繁殖和突变型一、噬菌体的繁殖二、噬菌体突变型第二节噬菌体突变型的互补测验一、φX174条件致死突变型的互补测验二、T4突变型的互补测验第三节噬菌体突变的重组实验一、T2突变型的两点测交二、T4突变型的三点测交第四节λ噬菌体基因组与λ原噬菌体一、λ噬菌体的基因组二、原噬菌体的插入与切除第五节环状排列与末端重复(自学)一、线状DNA具有环状遗传图二、环状排列与末端重复的形成第五章病毒的遗传分析(3h)第一节噬菌体的繁殖和突变型一、噬菌体的繁殖感染周期:是指噬菌体从吸附细菌到子代噬菌体从宿主细菌细胞中放出来的过程。
1、烈性噬菌体的感染周期:烈性噬菌体T4,其宿主是大肠杆菌,故称之为大肠杆菌T4-噬菌体。
T4-噬菌体对大肠杆菌的侵染过程,就是我们在前面讲过的噬菌体感染周期。
大肠杆菌T4-噬菌体:头、尾两部分组成,外为蛋白质外壳+内部DNA分子。
侵染过程:侵染时T4噬菌体的尾部吸附在大肠杆菌的细胞壁上,放出溶菌酶将细胞壁溶成一小孔,借助于尾鞘的收缩,将自己的DNA(T4-DNA)通过小孔注入大肠杆菌细胞内,T4-噬菌体的基因e立即有顺序地进行表达。
T4-噬菌体DNA上约有160个基因,已定位的有70多个基因,装配成完整的噬菌体的全部信息也都在此DNA上。
T4-噬菌体的基因的表达:早前期基因表达—多为调节基因。
其作用是启动自身基因表达。
而抑制宿主大肠杆菌细胞的DNA合成。
晚前期基因表达—是与DNA复制有关的基因。
其产物是:核酸酶:降解大肠杆菌的DNA,为自己DNA 合成提供游离的核苷酸;DNA复制有关的酶:大量合成新T4-DNA。
晚期基因表达—是控制形态发生过程的基因;编码噬菌体结构蛋白的基因。
其产物是大部分直接参与外壳的建成和少数具有酶的作用。
10细菌和病毒的遗传-性导、转导

如果研究三因子转导(three-factor transduction),只需分析一个实 验的结果就可以推出三个基因的次序。
普遍性转导
例如:供体基因型a+b+c+,受体的基因型为a- b- c- 。 供体用P1噬菌体感染,P1的后代再用来感染受体细胞,
然后把受体细胞接种在选择培养基上。
如果通过中断杂交已知三个基因中的一个如a不在中 间,就可对a+进行选择,即在对a+进行选择的选择培 养基上,把可以生长的a+细胞选出来。然后,再把被 选择的受体细胞重复接种在其他对b+或c+进行选择的 选择培养基上,检查a+细胞是否同时具有b+和c+。
突变子和重组子都是一个核苷酸对或者碱基对(bp)。所
以基因内每个碱基均可能发生突变,任意两个碱基间均能 发生交换重组
噬菌体突变型的互补试验
属于同一基因(功能单位)还是两个基因突变产生的呢
p59
对于两个独立起源的、表型相似的隐性突变,如何判定是 在二倍体生物中,可以建立双突变杂合体。双突变体杂合 体有两种形式:顺式(cis)和反式(trans)
普遍性转导
最少的一类转导体应当代表最难于转导的情况,
这种转导体是同时发生交换次数最多的一类。
这种转导子的基因排列应为两边是供体基因,而
中间为受体基因。
假定由实验得到的最少的转导体类别为a+b+c- ,
那么就可以确定,这三个基因的正确次序应当是 acb或bca,而不是abc。
普遍性转导
如λ的DNA,既可以以自主的状态存在,也可以整合在细菌染色 体中。这种有两种状态的遗传因子叫做附加体(episome)。
细菌和病毒的遗传学分析

用不同的Hfr菌株进行中断杂交实验所作出的大肠杆菌基因连锁图,其基因向F-细胞转移的顺序大不相同。
重组作图
01
当转移时间间隔在两分钟之内, 如已知lac与ade紧密连锁,距离约为1分钟,中断杂交作图就不可靠,须用传统的重组作图(recombination mapping)
01
不用亲本类型 两对基因间的交换频率,必须在形成部分二倍体的条件下,计算重组率。 部分二倍体如果不发生重组,无法鉴别。 接合重组不产生相反的重组类型
低频重组与高频重组
高频重组(High frequence recombination, Hfr)
F因子整合到了细菌染色体上,与F-细胞接合后将供体染色体的一部分或全部传递给F-受体,当供体和受体的等位基因带有不同的遗传标记时,可观察到它们之间发生重组,频率可达到10-2以上,称为高频重组品系(菌株)
杂合DNA复制后,形成一个亲代类型的DNA和一个重组类型的DNA并导致转化细胞的形成与表达。
转化的进程
4 共转化与遗传图谱绘制
共转化:供体的一条DNA片段上的两个基因同时转换的现象。 利用共同转化绘制细菌连锁遗传图谱的基本原理: 相邻基因发生共同转化的概率与两者的距离间成正向关系,基因间距离越近,发生共同转化的频率越高,反之越低。 因此可能通过测定两基因共同转化的频率来指示基因间的相对距离。
数理与生物工程学院
单击添加副标题
遗 传 学
单击添加副标题
第七章细菌和病毒的遗传学分析
目录
1
2
二 细菌的接合与染色体作图
1.接合现象的发现
细菌的接合首先是莱德伯格( Lederberg )和塔特姆( Tatum )在1946大肠杆菌杂交试验中发现的。
医学-第四章病毒遗传分析

终止 5`UAG 3` 3`AUC 5` 酪氨酸
(2)噬菌体的抑制因子敏感突变型类型及表现 琥珀型(amber)UAG 赭石型(ocher)UAA 乳白型(opal) UGA
表5-2携带不同专一性抑制基因宿主中sus突变噬菌体的表现
(四)无义突变与无义抑制突变
无义突变:指一个为氨基酸编码的密码变为终止密码 的突变。
• Benzer所用 T4的 r II突变就是遗传学研究 中所用的第一个条件致死突变型。
• T4噬菌体有多个迅速裂解突变型,分别称为 rl, r II,rIII等,它们位于 T4染色体 DNA的不同区 段,这 3组突变型由于在大肠杆菌不同菌株上的 反应不同可以相互区别。
• T4 r II突变使所侵染细胞迅速裂解形成大噬菌 斑,所以称为 r II突变型。
(1)抑制因子敏感突变的概念: 例如:噬菌体mRNA基因 细菌tRNA基因反密码子
正常 突变
突变
正常
基因:5`TAC 3`5`TAG 3` 3`ATC 5`3`ATG 5`
mRNA 5`UAC 3` 5`UAG 3` 3`AUC 5` 3`AUG 5`
酪氨酸 酪氨酸
表型:酪氨酸
噬菌体生长的测定——一步生长曲线
一步生长曲线:定量描述一群菌体内毒性噬菌体生 长规律的实验曲线。
感染后培养过程
被噬菌体侵染的
菌群培养过程
定时取培养 液与敏
感菌混合平 板培养
不同取样时间培养液与敏感菌混合 平板培养产生的噬菌斑数量的动态
• 四、基本术语 • 1.涂布效率(e.o.p)=噬菌斑/感染噬菌体颗
2.1 互补测验原理和方法 基础遗传学研究首先须有突变型,然后
细菌及病毒的遗传分析h

trp2+ his2+ tyr1+转化trp2- his2- tyr1- 实验 trp2 34 his2 13 tyr1
Hfr菌株在切除F因子时发生错误切除,分离出一个携带F因子和部分宿主染色体基因的遗传因子,这种带有宿主染色体基因的F因子称为F΄因子。
T2噬菌体的基因重组
将两种不同的T2突变体进行杂交,对其杂交子代进行重组分析 杂交方法: 将Ttor和Ttos两种大肠杆菌细胞混合 同时接种高浓度的T2噬菌体的h-r+和h+r-两种突变体,保证绝大多数细菌都被一个以上噬菌体感染 两种不同的噬菌体DNA可能在宿主细胞内进行重组,从而产生非亲本型子代h+r+和h-r-。 亲本型 重组型
F因子在杂交中的行为——接合过程
(三)中断杂交实验作图
中断杂交实验作图
1分钟≈20%的重组值
二、转化
转化(transformation):指某些细菌(或其它生物)能通过其细胞膜摄取周围介质中的DNA片段,并将此外源DNA片段整合到自己染色体组中的过程。 (一)转化的过程 非感受态细胞 外源DNA被洗掉了 转化因子 感受态细胞 外源DNA仍与细胞结合 整合 吸收 整合 供体单链DNA进入受体细胞后与受体染色体的某一部分联会,并进一步置换受体的对应染色体区段的过程。
第十章 细菌及病毒的遗传分析(2h)
1
第一节 细菌和病毒遗传研究的意义
2
第二节 噬菌体的基因重组
3
第三节 细菌基因重组
4
本章要求
5
思考题
繁殖世代所需时间短;
易于管理和进行化学分析;
便于研究基因的作用;
便于研究基因的突变;
遗传物质较简单,便于用作研究基因结构、功能及调控机制的材料。
遗传学_ 细菌和病毒的遗传分析_

1180 + 418 + 685 +107 +11940 +3660
100% = 2390 100% =13% 17990
trp2
tyr
34
his2
13 tyr1
his
40
trp
八、转导(transduction)
⚫ 普遍性转导(Generalized transduction)
转导是以噬菌 体为媒介,将 外源基因携带 入细菌,使受 体细胞发生遗 传重组的方式。
a、b间发生交换
单性状的转化子
a、b间不发生交换
双性状的转化子
七、转化作图的原理
细菌两连锁基因的交换率
=
单性状转化子的数 单性状转化子数+共转化的转化子数
100%
表7-1 枯草芽孢杆菌trp2+ his2+ tyr1+(供体)× trp2- his2- tyr1-(受体)的转化实验 座位转化子类型
噬菌体的遗传分析
一、细菌和病毒的遗传分析
7-1 T4噬菌体的电镜照片
二、病毒对遗传学研究的贡献
1952年 Hershey & Chase的同位素示踪试验
证明T4病毒的遗传物质 是脱氧核糖核酸(DNA) 【1969年诺贝尔奖】
二、病毒对遗传学研究的贡献
1956年Fraemkel Conrat的烟草花叶病毒的重建试验
滑,可致病)
粗糙型R菌株 (无荚膜,菌落粗
糙,不致病)
三、转化现象的发现——Griffth的肺炎双球菌实验
IIR菌株不致病 IIIS菌株致病
灭活的IIIS菌株不致病 灭活的IIIS菌株的某种物 质使IIR菌株发生性状改 变,变成致病的IIIS菌株
高通量测序及其应用于细菌和病毒的遗传学研究

高通量测序及其应用于细菌和病毒的遗传学研究随着高通量测序技术的不断发展,科学家们可以更加深入地研究微生物的遗传学。
在细菌和病毒研究领域,高通量测序技术已经成为必备的工具。
本文将介绍高通量测序技术的原理、应用范围及其对细菌和病毒遗传学研究的意义。
一、高通量测序技术原理高通量测序技术是对DNA或RNA序列进行快速、准确、高效的测序分析技术,通过高速测序平台、实时数据分析和大数据的存储,能够同时对众多生物样本进行测序分析。
测序分析主要包括以下步骤:1. 文库制备DNA或RNA样本需要先进行文库制备。
文库制备的方法包括PCR扩增文库和文库构建(例如用转录酶逆转录RNA并将其转换为cDNA)。
2. 测序平台高通量测序平台的种类有很多。
其中Illumina、Ion Torrent、PacBio和Oxford Nanopore等平台是应用较为广泛的。
3. 数据分析数据分析包括质量控制、比对、分析和注释等步骤,其目的是解释原始序列并从中提取有用的生物信息。
二、高通量测序技术的应用高通量测序技术在基因组学、转录组学、表观遗传学和染色体构象等领域的应用已经得到了广泛的认可。
在微生物学领域,高通量测序技术可应用于:1. 细菌基因组研究高通量测序技术可用于细菌基因组测序,从而深入研究细菌的基因组结构和本质特征。
细菌基因组测序可以帮助科学家们比较发现新的多样性、理解细菌的进化过程、挖掘和注释基因、发现新的生物学功能等。
此外,高通量测序技术也可以为细菌群落的DNA比对提供便利,从而更加全面地评估其进化和多样性。
2. 细菌转录组研究高通量测序技术可用于分析细菌的转录组,并帮助科学家们了解细菌在不同生活状态下基因表达的变化。
通过分析转录组数据,科学家们可以发现新的生物学过程并理解细菌的代谢途径等。
3. 病毒遗传学研究高通量测序技术也在病毒学研究中得到了广泛的应用,包括分析病毒基因组、检测病毒变异等。
病毒测序主要涉及到两个方面,即病毒本身的基因组信息和宿主对病毒的响应。
病毒进化和生态遗传学特征分析

病毒进化和生态遗传学特征分析在当前的全球环境中,病毒的进化和变异是一个备受关注的话题。
随着科技的不断进步,我们越来越了解到病毒的生态遗传学特征,这对于我们预测和控制病毒传播具有重要的意义。
一、病毒生态系统及其进化病毒生态系统包括病毒、寄主和环境因素等。
病毒的进化和演化是受到这些因素的共同影响的。
寄主的免疫力不断发展,病毒需要不断的适应和进化才能在寄主中存活下来。
此外,环境因素如气候、地理位置等也会对病毒的演化和分布产生影响。
病毒的进化是非常快速和复杂的过程,它可能产生新的病毒毒株,这可能对大众的健康和医疗产生很大的危害。
正确的预测和有效的控制是相当重要的。
二、生态遗传学特征的分析生态遗传学的研究重点是遗传变异和环境适应性之间的关系,这对于理解病毒的进化规律和遗传策略有着重要的启示。
1. 基因突变病毒的存在依赖于基因组的完整性和准确性,任何基因的突变都可能影响病毒的功能。
这种突变可能是病毒DNA或RNA序列改变、插入、删除等,导致了在病毒毒株中的遗传变异。
2. 基因重组基因重组是指两种不同病毒的基因互相组合形成新的毒株。
这个过程通常发生在两种病毒感染同一个寄主的情况下,遗传物质之间的交互会产生新的遗传特征。
3. 病毒适应性进化随着寄主的进化和免疫系统的演化,病毒也在不断地调整自己的适应性属性以避免被免疫系统攻击。
病毒分成两种:一种是利用旧的特征来适应新的环境;另一种则是在新的环境中产生新的变化,以适应当前的情况。
三、对于病毒进化和生态遗传学特征的控制策略基因突变和重组是病毒演化的关键,控制的策略有以下几个方面:1. 加强公共卫生意识对于病毒的早期检测和隔离是非常重要的,通过大力宣传公共卫生意识,增加大众的疫情认知度和疫情预防意识,是真正有效遏制病毒的传播和进化。
2. 病毒监测和追踪对于不同地区不同时期的病毒状况进行监测和追踪,并及时报告疫情情况,可以获得及时的消息,为疫情预测和控制提供更有意义的信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
病毒遗传分析方法
(三) 条件致死突变型
1 温度敏感突变型
2 抑制因子敏感突变(sus)
噬菌体
细菌
正常基因
sus+
su-
突变基因
sus
suamber+opal+
表5-6 174突变型之间杂交观察到的双因子重组率
病毒遗传分析方法
X174的三点测交
1 确定三个基因的顺序的前提条件 只有两种可能顺序的条件下进行;
例如:要确定amA、amB、tsC三基因的顺序 已知:amA与amB较近,amA和amB离tsC都较远;
表5-5 T4的 m r tu x + + + 三点试验结果
亲本类型 单交换型 单交换型 双交换型
合计
类 型 噬菌斑数 %
重组频率%
m-r r-tu m-tu
m r tu +++
3467 3279
69.6%
m++ + r tu
520 474
9.6%
∨
∨
mr+ + + tu
853 965
17.5%
∨∨
amA+ amB+ amA- amB-
A+B+ X 2
amA-amB间重组值:
X 100%
su+:amA、amB总数
病毒遗传分析方法
两个不同抑制因子敏感突变型间的杂交 sus amber x sus opal
su+amber;su+opal
10-6
10-2
限制条件:su+amber、opal
基因型:amb-opal+ amb+opalamb+opal+ amb-opal-
3`AUC 5` 酪氨酸
病毒遗传分析方法
(2)噬菌体的抑制因子敏感突变型类型及表现 琥珀型(amber)UAG 赭石型(ocher)UAA 乳白型(opal) UGA
表5-2携带不同专一性抑制基因宿主中sus突变噬菌体的表现
宿主菌基因型 噬菌体基因型 su- su+amb su+och su+op
↓释放 子噬菌体。
病毒遗传分析方法
图8-2 T4噬菌体的生病活毒遗周传分期析方法
图8-3 λ 噬菌体的生活病毒周遗传期分析方法
二 噬菌体的突变型
(一)快速溶菌突变型(r) 由于基因突变能快速复制,并裂解细菌的噬菌体类型。
r+—野生型,r—突变型。 r+—小噬菌斑,r—大噬菌斑且边缘清晰。 (二)宿主范围突变型(h) h能感染野生型细菌和突变型细菌。野生型噬菌体用h+表 示,只能侵染野生型菌株。 例如: T2噬菌体
病毒的遗传分析
病毒遗传分析方法
病毒的形态结构与基因组
病毒的形态结构
病毒没有细胞结构,既不属于原核生 物,也不属于真核生物。
病毒结构十分简单,仅含DNA或RNA
和一个蛋白质外壳,没有合成蛋白质
外壳所必须的核糖体。所以,病毒必
须感染活细胞,改变和利用活细胞的
代谢合成机器,才能合成新的病毒后
代。
病毒遗传分析方法
m + tu +r+
162 172
3.3%
∨
∨
10342
12.9 20.8 27.1
作图:
m 12.9 r 20.8 tu
病毒遗传分析方法
X174突变型的两点和三点测交
(一) X174的两点测交 ——两个琥珀突变型间杂交
amA x amB
su+
su+: amA、amB
su-
基因型:amA- amB+ amA+ amB- amA+ amB+
+
- 半透明
+
+ 透明
病毒遗传分析方法
双重感染(混合感染、复感染):是指用两种噬 菌体同时感染某一菌株。 例如:噬菌体Ⅰ:hr+即能感染B和B/2菌株产生噬 菌斑小而边缘模糊,即透明、小噬菌斑。 噬菌体Ⅱ:h+r能感染B株,产生约大两倍 的边缘清楚的噬菌斑,即为半透明、大的噬菌斑。 用hr+和h+r两种噬菌体同时感染B株,进行双重 感染。 在双重感染(相当hr+ ×h+r)的过程中,hr+ 和h+r相互作用(即基因可以发生交换),所以 在其子代中可以得到hr和h+r+的重组体和hr+及 h+r4种噬菌体。
su+
病毒遗传分析方法
(1)抑制因子敏感突变的概念:
例如:噬菌体mRNA基因 细菌tRNA基因反密码子
正常 突变
突变
正常
基因:5`TAC 3`5`TAG 3` 3`ATC 5`3`ATG 5`
mRNA 5`UAC 3` 5`UAG 3` 3`AUC 5` 3`AUG 5`
酪氨酸 酪氨酸
表型:酪氨酸 终止 5`UAG 3`
5种琥珀抑制基因的性质
插入的 氨基酸
合成的蛋白质 占野生型%
丝氨酸
28
谷氨酰胺
14
酪氨酸
55
酪氨酸
16
赖氨酸
5
赭石型抑 制基因
+
T2突变型及特性
快速溶菌突变型:r 野生型:r+
T2宿主范围野生型: h T2宿主范围突变型: h-
细菌
B
B/2
大噬菌斑;
小噬菌斑;
野生型
+
+
+
+
sus amber -
+
+
-
sus ochre -
-
+
-
sus opal
-
-
-
+
病毒遗传分析方法
(二)无义突变与无义抑制突变 无义突变:指一个为氨基酸编码的密码变为终止密码的突变。 无义抑制突变:指能抑制无义突变表现的突变。
表5-3
琥珀型抑 制基因
su1+ su2+ su3+ su4+ su5+
总噬菌斑数
病毒遗传分析方法
图8-7 T2的h+r-与h- r+ 之间杂交重组后的4种噬菌斑形态
病毒遗传分析方法
表8-5 h+ rx- × h- rx+ 噬菌斑数目及重组值( rx- 代表不同 的r- 基因)
病毒遗传分析方法
病毒遗传分析方法
病毒遗传分析方法
病毒遗传分析方法
T4突变型的三点试验
结构简单: 蛋白质外壳、核酸、某些碳水化合物、
脂肪等。 多样性的原因:外壳的蛋白质种类、染
色体类型和结构。
病毒遗传分析方法
病毒遗传分析方法
表8-1 病毒的基因病组毒遗结传分构析方法
噬菌体的繁殖
(一)烈性噬菌体的感染周期 (二)温和性噬菌体的感染周期 1 溶源周期:
原噬菌体: 溶源性细菌: 溶源性细菌的特点: 2 裂解周期: 溶源性细菌自发或经诱发裂解细菌
病毒遗传分析方法
T2突变型的两点试验
(一) 噬菌体杂交
h-r+ X h+r-
Ecoli B
表现型 透明,小 半透明,大 透明,大 半透明,小
基因型 h-r+ 亲组合 h+r- 亲组合 h-r- 重组合 h+r+ 重组合
(二) 噬菌体重组值的计算
重组噬菌斑数
重组值 =
X100%
Ecoli:B + B/2