圆锥曲线解题十招全归纳
高中数学圆锥曲线解题的十个大招(适用于2020高考)

1高中数学圆锥曲线解题的十个大招招式一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。
解:依题意知,直线的斜率存在,且不等于0。
设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。
由2(1)y k x y x=+⎧⎨=⎩消y 整理,得2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2242(21)4410k k k ∆=--=-+> 即2104k <<② 由韦达定理,得:212221,k x x k -+=-121x x =。
则线段AB 的中点为22211(,)22k k k--。
线段的垂直平分线方程为:221112()22k y x k k k --=--令y=0,得021122x k =-,则211(,0)22E k - ABE ∆为正三角形,∴211(,0)22E k -到直线AB 的距离d 32。
221212()()AB x x y y =-+-222141k k k -=+212k d k+=222314112k k k k -++=39k =053x =。
【涉及到弦的垂直平分线问题】2这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理........产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
圆锥曲线的解题方法(精选4篇)

圆锥曲线的解题方法(精选4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、应急预案、演讲致辞、规章制度、合同协议、条据书信、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, work plans, emergency plans, speeches, rules and regulations, contract agreements, document letters, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!圆锥曲线的解题方法(精选4篇)圆锥曲线的七种题型归纳:篇1一、求圆锥曲线方程(1)轨迹法:设点建立方程,化简证明求得。
圆锥曲线解题技巧归纳

圆锥曲线解题技巧归纳圆锥曲线是数学中的重要主题之一、它涉及到许多重要的概念和技巧,可以用于解决各种问题。
本文将归纳总结圆锥曲线解题的一些常用技巧,帮助读者更好地理解和应用这一主题。
1.判别式法:对于给定的二次方程,可以根据判别式的符号来判断它表示的曲线类型。
当判别式大于零时,曲线是一个椭圆;当判别式小于零时,曲线是一个双曲线;当判别式等于零时,曲线是一个抛物线。
2.参数方程法:对于给定的圆锥曲线,可以使用参数方程来表示。
通过选取合适的参数,可以将曲线表示为一系列点的集合。
这种方法可以简化问题,使得求解过程更加直观和方便。
3.极坐标方程法:对于给定的圆锥曲线,可以使用极坐标方程来表示。
通过将直角坐标系转换为极坐标系,可以更好地描述和分析曲线的特性。
这种方法在求解对称性等问题时非常有用。
4.曲线拟合法:对于给定的一组数据点,可以使用曲线拟合的方法来找到一个最适合的圆锥曲线。
通过将数据点与曲线进行比较,可以得出曲线的参数和特性。
这种方法在实际应用中非常常见,例如地图估算、经济预测等领域。
5.曲线平移法:对于给定的圆锥曲线,可以通过平移坐标系来使其简化。
通过选取合适的平移距离,可以将曲线的对称轴对准到坐标原点,从而更方便地进行分析和求解。
6.曲线旋转法:对于给定的圆锥曲线,可以通过旋转坐标系来改变其方向和形状。
通过选取合适的旋转角度,可以使曲线变得更简单和易于处理。
这种方法在求解对称性、求交点等问题时非常有用。
7.曲线对称性法:对于给定的圆锥曲线,可以通过研究其对称性来简化问题。
根据曲线的对称轴、对称中心等特性,可以快速得到曲线的一些重要参数和结论。
8.曲线的几何性质法:对于给定的圆锥曲线,可以通过研究其几何性质来解决问题。
例如,对于椭圆可以利用焦点、半长轴、半短轴等参数来求解问题;对于双曲线可以利用渐近线、渐近点等参数来求解问题。
9.曲线的微积分法:对于给定的圆锥曲线,可以通过微积分的方法来求解其一些重要特性。
圆锥曲线解题技巧归纳(9篇)

圆锥曲线解题技巧归纳(9篇)化为一元二次方程,利用判别式求最值篇一如果能把圆锥曲线的最值问题转化为含有一个未知量的一元二次方程,利用,解得要求未知量的范围,然后确定其最值。
例3:直线,椭圆C:。
求以椭圆C的焦点F1、F2为焦点,且与直线l有公共点M的椭圆中长轴最短的。
分析:因为直线l与所求椭圆有公共点,可以由方程组得到一个一元二次方程,再利用判别式确定所求椭圆长轴的`最小值。
解:椭圆C的焦点。
说明:直线l与椭圆有公共点,可得方程组,消去一个未知数,得到一个一元二次方程,由一元二次方程有实根的条件得,构造参变量的不等式,确定的最小值,这种解法思路清晰、自然。
圆锥曲线的八大解题方法:篇二1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K参数、角参数)7、代入法中的顺序8、充分利用曲线系方程法圆锥曲线的解题方法:篇三一、求圆锥曲线方程(1)轨迹法:设点建立方程,化简证明求得。
例题:动点P(x,y)到定点A(3,0)的距离比它到定直线x=—5的距离少2。
求动点P的轨迹方程。
解析:依题意可知,{C},由题设知{C},{C}{C}。
(2)定义法:根据圆锥曲线的定义确定曲线的形状。
上述例题同样可以由定义法求出曲线方程:作直线x=—3,则点P到定点A与到定直线x=—3的距离相等,所以点P的轨迹是以A为焦点,以x=—3为准线的抛物线。
(3)待定系数法:通过题设条件构造关系式,待定参数即可。
例1:已知点(—2,3)与抛物线{C}的焦点的距离是5,则P=_____。
解析:抛物线{C}的焦点为{C},由两点间距离公式解得P=4。
例2:设椭圆{C}的右焦点与抛物线{C}的焦点相同,离心率为{C},则椭圆的方程为_____。
解析:抛物线{C}的焦点坐标为(2,0),所以椭圆焦半径为2,故离心率{C}得m=4,而{C},所以椭圆方程为{C}。
一、化为二次函数,求二次函数的最值依据条件求出用一个参数表示的二次函数解析式,而自变量都有一定的变化范围,然后用配方法求出限制条件下函数的最值,就可得到问题的解。
高中数学圆锥曲线解题技巧方法总结(最新整理)

(3)给出 PM PN 0 ,等于已知 P 是 MN 的中点;
(4)给出 AP AQ BP BQ ,等于已知 P,Q 与 AB 的中点三点共线;
( 5) 给 出 以 下情 形 之一 : ①AB // AC ; ② 存 在 实 数 ,使AB AC ; ③ 若 存 在 实 数
, , 且 1,使OC OA OB ,等于已知 A, B,C 三点共线.
如方程 (x 6)2 y2 (x 6)2 y2 8 表示的曲线是_____(答:双曲线的左支)
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):
x2 (1)椭圆:焦点在 x 轴上时
y2
1( a b 0 ),焦点在 y 轴上时
y2
x2
=1( a b 0
1 k 2 x1 x2 ,若 y1, y2 分别为 A、B 的纵坐标,则 AB =
1 1 k2
y1 y2 ,若弦 AB 所在直线方程
设为 x ky b ,则 AB = 1 k 2 y1 y2 。特别地,焦点弦(过焦点的弦):焦点弦的弦长的计算,
一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解。 抛物线:
c
a
e 2 , e 越小,开口越小, e 越大,开口越大;⑥两条渐近线: y b x 。 a
(3)抛物线(以 y2 2 px( p 0) 为例):①范围: x 0, y R ;②焦点:一个焦点 ( p , 0) ,其中 p 2
的几何意义是:焦点到准线的距离;③对称性:一条对称轴 y 0 ,没有对称中心,只有一个顶点(0,0);④
c
a
越小,椭圆越圆; e 越大,椭圆越扁。
如(1)若椭圆 x 2 y 2 1的离心率 e 10 ,则 m 的值是__(答:3 或 25 );
圆锥曲线解题方法技巧归纳(整理)

圆锥曲线解题方法技巧归纳一、知识储备:1.直线方程的形式(1)直线方程的形式有五种:点斜式、两点式、斜截式、截距式、一般式。
(2 )与直线相关的重要内容(3 )弦长公式直线y kx b 与圆锥曲线两交点 A(x 1,y 1), B(x 2,y 2)间的距离:AB 1 k 2 X 1 X2I ,:(1 k 2 )[(x1 X 2)4x 1X 2]或 AB(若A 点为交点,另一点不在圆锥曲线上,上式仍然成立。
)(4)两条直线的位置关系① l 1 l 2 k 1 k 2 =-1 ② h 〃l 2 k 1 k 2且b 1 b 22、圆锥曲线方程及性质(1)、椭圆的方程的形式(三种形式)2 2x y —1(m 0,n 0 且 m n) m n距离式方程:.(x c)2y 2 , (x c)2 y 22a参数方程:x a cos , y bsin (2)、双曲线的方程的形式有两种2 2标准方程:——1(m n 0)m n①倾斜角与斜率k tan , [0,)②点到直线的距离Ax o By 。
C .■ A 2 B 2③夹角公式:tan 1 k 2k 1④两直线距离公式I CT -C S I标准方程:参数方程:u 二atane , y = b⑶、三种圆锥曲线的通径⑹、记住焦半径公式:(1)椭圆焦点在x 轴上时为a ex o ;焦点在y 轴上时为a ey 0 ,可简记为“左加右减,上加下减”。
(2)双曲线焦点在x 轴上时为e|X o | a(3)抛物线焦点在x 轴上时为|X i | $焦点在y 轴上时为|%|(6)、椭圆和双曲线的基本量三角形 二、方法储备 1点差法(中点弦问题)2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办?设直线的方程,并且与曲线的方程联立, 消去一个未知数,得到一个二次方程,使用判 别式 0,以及根与系数的关系,代入弦长公式,设曲线上的两点 A(x ,, y 1), B(x 2, y 2), 将这两点代入曲线方程得到 ①②两个式子,然后01 -②,整体消元•母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点椭圆:空;双曲线: a 竺;抛物线:2pa⑷、 圆锥曲线的定义 ⑸、 焦点三角形面积公式:P 在椭圆上时,S F 1PF 2P 在双曲线上时,S F 1PF 2(其中F 1PF 2,cos 卅护b 2cot —2,P F 1?P F 2|P F1设A X i , y i 、B X 2, y2 ,yi 为椭圆专+詈二L ab的弦AB 中点则有x 1 x 2 x 1X 2Vi T =1;两式相减得y 1 y 2 屮 y_K AB =,若有两个字F共线解决之。
圆锥曲线解题技巧和方法综合(全)

圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为,,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
如:(1)与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有。
(2)与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有(3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线。
过A (2,1)的直线与双曲线交于两点 及,求线段的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点、构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆上任一点,,为焦点,,。
(1)求证离心率;(2)求的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
(,)x y 11(,)x y 22)0(12222>>=+b a b y a x 02020=+k b y a x )0,0(12222>>=-b a b y a x 02020=-k b y a x x y 2221-=P 1P 2P 1P 2F 1F 2x a y b 22221+=F c 10(,)-F c 20(,)∠=PF F 12α∠=PF F 21ββαβαsin sin )sin(++=e |||PF PF 1323+抛物线方程,直线与轴的交点在抛物线准线的右边。
圆锥曲线解题技巧归纳

圆锥曲线解题技巧归纳1.球面坐标系与圆锥曲线:在球面坐标系中,圆锥曲线可以看作是一个直线在球面上的投影。
通过利用球面坐标系的相关性质,可以简化圆锥曲线的解题过程。
2.圆锥曲线的标准方程:圆锥曲线的标准方程是通过平移和旋转的方式将一般方程转化成一种特殊形式的方程。
通过将一般方程转化成标准方程,可以方便地研究圆锥曲线的性质。
3.圆锥曲线的分类与特点:根据圆锥曲线的二次项和四次项的系数可以将圆锥曲线分为椭圆、双曲线和抛物线三类。
每一类圆锥曲线都有其特有的性质和特点,熟悉这些特点可以帮助我们更好地解题。
4.圆锥曲线的参数方程:圆锥曲线的参数方程是通过引入一个参数来表示曲线上的点的坐标。
通过使用参数方程,可以简化圆锥曲线的分析和解题过程。
5.圆锥曲线的对称性:圆锥曲线具有多种对称性,包括关于坐标轴、原点和直线的对称性。
利用这些对称性可以简化问题的分析和解题过程。
6.圆锥曲线的焦点与准线:焦点和准线是圆锥曲线的两个重要特点。
了解焦点和准线的性质可以帮助我们理解圆锥曲线的形状和性质,并解决相关的问题。
7.圆锥曲线的参数化方程:圆锥曲线的参数化方程是通过引入一个或多个参数来表示曲线上的点的坐标。
通过使用参数化方程,可以更灵活地处理圆锥曲线上的点和相关的问题。
8.圆锥曲线的极坐标方程:圆锥曲线的极坐标方程是通过将直角坐标系中的变量用极坐标表示来得到的。
利用极坐标方程,可以方便地研究圆锥曲线的性质,并解决相关的问题。
9.圆锥曲线的参数方程与极坐标方程的转换:圆锥曲线的参数方程和极坐标方程可以相互转换。
通过掌握参数方程和极坐标方程之间的转换关系,可以灵活地处理圆锥曲线的问题,并得到更加深入的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆锥曲线解题十招全归纳》 招式一:弦的垂直平分线问题 ............................................................................. 2 招式二:动弦过定点的问题 ................................................................................. 4 招式四:共线向量问题 ......................................................................................... 6 招式五:面积问题 ............................................................................................... 12 招式六:弦或弦长为定值、最值问题 ............................................................... 15 招式七:直线问题 ............................................................................................... 18 招式八:轨迹问题 ............................................................................................... 22 招式九:对称问题 ............................................................................................... 29 招式十、存在性问题 ........................................................................................... 32 招式一:弦的垂直平分线问题 例题1、过点T(-1,0)作直线l与曲线N :2yx交于A、B两点,在x轴上是否存在一点E(0x,0),使得ABE是等边三角形,若存在,求出0x;若不存在,请说明理由。 解:依题意知,直线的斜率存在,且不等于0。 设直线:(1)lykx,0k,11(,)Axy,22(,)Bxy。
由2(1)ykxyx消y整理,得2222(21)0kxkxk ① 由直线和抛物线交于两点,得2242(21)4410kkk 即2104k ②
由韦达定理,得:212221,kxxk121xx。则线段AB的中点为22211(,)22kkk。 线段的垂直平分线方程为: 221112()22kyxkkk
令y=0,得021122xk,则211(,0)22Ek
ABE为正三角形,211(,0)22Ek到直线AB的距离d为32AB。
221212()()ABxxyy
22
2
141kkk212kdk
222
2
3141122kkkkk解得3913k满足②式此时053x。
【涉及到弦的垂直平分线问题】 这种问题主要是需要用到弦AB的垂直平分线L的方程,往往是利用点差或者韦达定理........产生弦AB
的中点坐标M,结合弦AB与它的垂直平分线L的斜率互为负倒数,写出弦的垂直平分线L的方程,然后解决相关问题,比如:求L在x轴y轴上的截距的取值范围,求L过某定点等等。有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB的中点问题,比如:弦与某定点D构成以D为顶点的等腰三角形(即D在AB的垂直平分线上)、曲线上存在两点AB关于直线m对称等等。 例题分析1:已知抛物线y=-x2+3上存在关于直线x+y=0对称的相异两点A、B,则|AB|等于
解:设直线AB的方程为yxb,由22123301yxxxbxxyxb,进而可求出AB 的中点11(,)22Mb,又由11(,)22Mb在直线0xy上可求出1b,∴220xx,由弦长公式可求出221114(2)32AB. 招式二:动弦过定点的问题
例题2、已知椭圆C:22221(0)xyabab的离心率为32,且在x轴上的顶点分别为A1(-2,0),A2(2,0)。 (I)求椭圆的方程;
(II)若直线:(2)lxtt与x轴交于点T,点P为直线l上异于点T的任一点,直线PA1,PA2分别与椭圆交于M、N点,试问直线MN是否通过椭圆的焦点?并证明你的结论
解:(I)由已知椭圆C的离心率32cea,2a,则得3,1cb。从而椭圆的方程为2214xy (II)设11(,)Mxy,22(,)Nxy,直线1AM的斜率为1k,则直线1AM的方程为1(2)ykx,由122
(2)44ykxxy
消y整理得222121(14)161640kxkxk12x和是方程的两个根,
21121164214kxk则211212814kxk,1121414kyk,即点M的坐标为2112211
284(,)1414kkkk,
同理,设直线A2N的斜率为k2,则得点N的坐标为2222222824(,)1414kkkk 12(2),(2)ppyktykt12122kkkkt,直线MN的方程为:121121
yyyyxxxx
,
令y=0,得211212xyxyxyy,将点M、N的坐标代入,化简后得:4xt
又2t,402t椭圆的焦点为(3,0)43t,即433t 故当433t时,MN过椭圆的焦点。 招式三:过已知曲线上定点的弦的问题 例题4、已知点A、B、C是椭圆E:22221xyab (0)ab上的三点,其中点A(23,0)是椭圆的右顶点,直线BC过椭圆的中心O,且0ACBC,2BCAC,如图。(I)求点C的坐标及椭圆E的方程;(II)若椭圆E上存在两点P、Q,使得直线PC与直线QC关于直线3x对称,求直线PQ的斜率。 解:(I) 2BCAC,且BC过椭圆的中心O OCAC0ACBC2ACO
又A (23,0)点C的坐标为(3,3)。
A(23,0)是椭圆的右顶点,23a,则椭圆方程为:222112xyb
将点C(3,3)代入方程,得24b,椭圆E的方程为221124xy
(II) 直线PC与直线QC关于直线3x对称, 设直线PC的斜率为k,则直线QC的斜率为k,从而直线PC的方程为:
3(3)ykx,即3(1)ykxk,由223(1)3120ykxkxy消y,整理得:
222(13)63(1)91830kxkkxkk3x
是方程的一个根,
229183313Pkkxk
即2291833(13)Pkkxk同理可得:2291833(13)Qkkxk
3(1)3(1)PQPQyykxkkxk=()23PQkxxk=2123(13)kk
2222918391833(13)3(13)PQkkkkxxkk
=2363(13)kk13PQPQPQyykxx
则直线PQ的斜率为定值13。 招式四:共线向量问题 1:如图所示,已知圆MAyxC),0,1(,8)1(:22定点为圆上一动点,点P在AM上,点N在CM上,且满足NAMNPAPAM点,0,2的轨迹为曲线E. (I)求曲线E的方程;(II)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足FHFG,求的取值范围. 解:(1).0,2AMNPAPAM∴NP为AM的垂直平分线,∴|NA|=|NM| 又.222||||,22||||ANCNNMCN∴动点N的轨迹是以点 C(-1,0),A(1,0)为焦点的椭圆.且椭圆长轴长为,222a
焦距2c=2. .1,1,22bca∴曲线E的方程为.1222yx (2)当直线GH斜率存在时,设直线GH方程为,12,222yxkxy代入椭圆方程 得.230.034)21(222kkxxk得由设),,(),,(2211yxHyxG )2(216213),1(21821422212221kkxxkkkkxx则
)2,()2,(,2211yxyxFHFG又,,2121xxxx,
)21(332)21(33221)2()1(2222kk
k
.331.316214.316)21(3324,2322解得kk.131,10又 又当直线GH斜率不存在,方程为.31,31,0FHFGx)1,31[,131的取值范围是即所求 2:已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是抛物线214yx的焦点,离心率
为255.(1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点作直线l交椭圆C于A、B两点,交y轴于