高一数学(必修1)专题复习三 指数函数和对数函数
北师大版必修1数学教学练习课件第三章指数函数和对数函数第二节指数扩充及其运算性质

第三章 指数函数和对数函数
〔跟踪练习 4〕 (1)设|x|<3,化简 x2-2x+1- x2+6x+9; (2)如果 m<-5,化简:|6-m|-|2m+1|+ m2+10m+25; (3)已知 y= 3x-2+ 2-3x+ 26,求实数 x 及 y 的值.
数 学 必 修 ① 北 师 大A 版
返回导航
A.-1
B.14
C.12 [解析]
因为 f(-2)=2-2=14,
D.32
数 学 必
所以 f[f(-2)]=f(14)=1- 14=1-12=12,故答案选 C.
修
①
北 师 大A 版
返回导航
第三章 指数函数和对数函数
3.若 b-3n=5m(m,n∈N+),则 b=_5_-__3m_n___.
[解析] 若 bn=am(m,n∈N+,a>0,b>0),则 b=amn ,所以由 b-3n=5m 知 b
数 学
3x-2≥0 2-3x≥0
,解得xx≥≤2323
.
必
修 ① 北
∴x=23,从而 y= 26.
师
大A
版
返回导航
第三章 指数函数和对数函数
空间
典例 5 已知 x-82- x-102=2x-18 成立,求 x 的取值范围.
[错解] ∵ x-82=x-8, x-102=x-10,
∴原方程可转化为(x-8)-(x-10)=2x-18.解得 x=10.
数
∴原方程可化为(8-x)-(10-x)=2x-18,解得 x x 的取值范围为 8≤x≤10.
北 师 大A 版
返回导航
·
第三章 指数函数和对数函数
『规律总结』 熟练掌握指数运算的性质及公式,是正确、迅速地化简、 求值的条件.
高一数学指数函数对数函数知识点

高一数学指数函数对数函数知识点导语:在高中数学中,指数函数与对数函数是一个非常重要的数学概念和知识点。
它们在不同领域的应用非常广泛,比如金融、科学等。
本文将深入探讨高一数学中的指数函数和对数函数的基本概念、性质以及它们之间的关系。
一、指数函数的基本概念与性质1. 指数函数的定义指数函数是以常数e(自然对数的底)为底的函数,表示为f(x) = a^x,其中a > 0且a ≠ 1,x为实数。
举例来说,函数f(x) = 2^x就是一个指数函数,其中以2为底。
2. 指数函数的性质①指数函数的定义域为实数集, 即所有实数x。
②指数函数的值域为正数集, 即所有大于0的实数。
③指数函数是递增函数,即当x1 < x2时,a^x1 < a^x2。
④当a > 1时,指数函数的图像是递增的;当0 < a < 1时,指数函数的图像是递减的。
二、对数函数的基本概念与性质1. 对数函数的定义对数函数是指数函数的反函数。
以常数e为底的对数函数称为自然对数函数,记作ln(x)。
举例来说,函数g(x) = log2(x)就是一个以2为底的对数函数。
2. 对数函数的性质①对数函数的定义域为正数集,即只有正实数才有对数。
②对数函数的值域为实数集。
③对数函数是递增函数,即当x1 < x2时,log(x1) < log(x2)。
④对数函数与指数函数互为反函数,即loga(a^x) = x,a^loga(x) = x。
三、指数函数与对数函数之间的关系注意:以下的例子仅为了便于理解,具体数值仅供参考。
1. 自然对数与指数函数的关系e^x = a 可以转化为 ln(a) = x。
例如,e^2 = 7.39 可以转化为 ln(7.39) = 2。
2. 对数函数的性质与指数函数的性质对数函数的一些基本性质与指数函数的一些基本性质是相互关联的,如:① loga(xy) = loga(x) + loga(y)② loga(x/y) = loga(x) - loga(y)③ loga(x^y) = y * loga(x)④ loga(b) = logc(b) / logc(a)3. 指数函数与对数函数的实际应用指数函数与对数函数在实际中有着广泛的应用,主要体现在以下几个方面:①金融领域:在复利计算、投资分析等方面,指数函数与对数函数被广泛应用。
高一对数指数函数知识点

高一对数指数函数知识点在高中数学中,对数和指数函数是重要的数学概念。
它们在各个科学领域中都有广泛的应用。
本文将探讨高一阶段涉及的对数和指数函数的知识点。
一、指数函数指数函数是一种形如f(x) = a^x(a为常数)的函数。
其中,a称为底数。
1.指数函数的性质- 当a>1时,指数函数在整个定义域上是递增的;当0<a<1时,指数函数在整个定义域上是递减的。
- 指数函数在x轴上的图像必过点(0,1)。
2.指数函数的图像与性质- 当底数a<1时,指数函数的图像逐渐接近x轴,但永远不会触及。
- 当底数a=1时,指数函数的图像是一条水平线y=1。
- 当底数a>1时,指数函数的图像在x<0时位于y轴下方,经过点(0,1),在x>0时逐渐远离x轴。
二、对数函数对数函数是指形如f(x) = loga(x)(a为正实数且a≠1)的函数。
1.对数函数与指数函数之间的关系对数函数与指数函数是互逆的。
即,如果y = f(x)是指数函数,那么x = f^(-1)(y) = loga(y)是对数函数。
2.对数函数的性质- 当0<a<1时,对数函数在整个定义域上是递减的;当a>1时,对数函数在整个定义域上是递增的。
- 对数函数在y轴上的图像必过点(1,0)。
3.对数函数的图像与性质- 当底数a>1时,对数函数的图像从负无穷趋近于y轴,经过点(1,0),在x>1时逐渐远离y轴。
- 当底数0<a<1时,对数函数的图像在x>0时位于y轴上方,在x<1时逐渐向y轴靠近。
三、指数方程与对数方程指数方程和对数方程是数学问题中常见的类型。
在解决这些问题时,需要应用指数函数和对数函数的性质。
1.指数方程指数方程是指形如a^x = b(a、b为常数)的方程。
解这种方程时,可将两边同时取以底数为a的对数,然后运用对数函数的性质。
举个例子,解方程2^x = 8:取以底数为2的对数,得到x = log2(8) = 3。
高中数学必修一指数函数对数函数知识点

高中数学必修一指数函数对数函数知识点高中数学必修一中,指数函数和对数函数是重要的知识点。
指数函数是一种以指数为自变量的函数,形式为y = a^x,其中a为底数,x为指数。
而对数函数是指数函数的逆运算,形式为y = loga(x),其中a为底数,x为真数。
以下是关于指数函数和对数函数的具体知识点。
一、指数函数的图像和性质1.指数函数的基本形式:-y=a^x,其中a>0且a≠12.指数函数的基本性质:-当0<a<1时,指数函数呈现递减的图像;-当a>1时,指数函数呈现递增的图像;-当a=1时,指数函数为常数函数y=1二、对数函数的图像和性质1.对数函数的基本形式:- y = loga(x),其中a > 0且a≠12.对数函数的基本性质:- 对数函数与指数函数互为反函数,即loga(a^x) = x,a^loga(x) = x;-对数函数的图像关于直线y=x对称;-对数函数的定义域为正实数集,值域为实数集。
三、指数函数和对数函数的运算性质1.指数函数的运算性质:-a^x*a^y=a^(x+y);- (a^x)^y = a^(xy);- (ab)^x = a^x * b^x;-a^0=1,其中a≠0。
2.对数函数的运算性质:- loga(xy) = loga(x) + loga(y);- loga(x^y) = y * loga(x);- loga(x/y) = loga(x) - loga(y);- loga(1) = 0,其中a≠0。
四、指数函数和对数函数的应用1.指数函数在生活中的应用:-经济增长模型中的应用;-指数衰减与物质的半衰期计算;-大自然中的指数增长现象。
2.对数函数在生活中的应用:-pH值的计算;-放大器的功率增益计算;-数字音乐的音量计算。
综上所述,指数函数和对数函数是高中数学必修一中的重要知识点。
掌握了指数函数和对数函数的基本形式、性质以及运算规律,能够理解其图像特征和在实际问题中的应用。
高一数学必修1第三章《指数函数、对数函数和幂函数》测练题及解析

高一数学必修1第三章《指数函数、对数函数和幂函数》测练题(满分:150分;考试时间:100分钟)一、选择题(本大题共10小题. 每小题5分,共50分.在每小题给出的四个选项中,只有一个项是符合题目要求的) 1.指数函数y=a x 的图像经过点(2,16)则a 的值是 ( )A .41 B .21C .2D .4 2.化简)31()3)((656131212132b a b a b a ÷-的结果 ( )A .a 6B .a -C .a 9-D .29a3.在区间),0(+∞上不是增函数的是 ( )A.2x y =B.x y log 2=C.xy 2= D.122++=x x y 4.式子82log 9log 3的值为 ( ) A .23 B .32C .2D .3 5.已知0ab >,下面四个等式中:①lg()lg lg ab a b =+; ②lg lg lg a a b b=-;③b ab a lg )lg(212= ;④1lg()log 10ab ab =.其中正确命题的个数为 ( )A .0B .1C .2D .36.已知2log 0.3a =,0.32b =,0.20.3c =,则c b a ,,三者的大小关系是( ) A .a c b >> B .c a b >> C .c b a >> D .a b c >> 7.已知函数)(x f y =的反函数)21(log )(211-=-x x f,则方程1)(=x f 的解集是( )A .{1}B .{2}C .{3}D .{4} 8.图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =, l g d y o x =的图象,,,,a b c d 的关系是( )A. 0<a <b <1<d<cB. 0<b<a <1<c<dC. 0<d<c<1<a<bD. 0<c<d <1<a<b9.函数y= | lg (x-1)| 的图象是 ( )xyOy=log a xy=log x y=log c x y=log d x110.给出幂函数①f (x )=x ;②f (x )=x 2;③f (x )=x 3;④f (x )=;⑤f (x )=1x .其中满意条件f 12()2x x + >12()()2f x f x + (x 1>x 2>0)的函数的个数是 ( )A .1个B .2个C .3个D .4个二、填空题(.每小题5分,共20分) 11.函数21()log (2)f x x =-的定义域是 .12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .13.函数)x 2x (log y 221-=的单调递减区间是_________________.14.关于函数21()lg (0,R)||x f x x x x +=≠∈有下列命题:①函数()y f x =的图象关于y 轴对称;②在区 间(,0)-∞上,函数()y f x =是减函数;③函数()y f x =的最小值为lg 2;④在区间(1,)+∞上,函 数()y f x =是增函数.其中正确命题序号为_______________. 三、解答题(6小题,共80分)15.(本小题满分12分)4160.250321648200549-+---)()()16. (本小题满分12分)设函数421()log 1x x f x x x -⎧<=⎨>⎩,求满意()f x =41的x 的值.C17.(本小题满分14分)已知()2xf x =,()g x 是一次函数,并且点(2,2)在函数[()]f g x 的图象上,点(2,5)在函数[()]g f x 的图象上,求()g x 的解析式.18.(本小题满分14分)若0≤x ≤2,求函数y=523421+⨯--x x 的最大值和最小值.19.(本小题满分14分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为x 块玻璃后强度为y .(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下? ( lg30.4771)≈20.(本小题满分14分)已知定义域为R 的函数12()22x x bf x +-+=+是奇函数.(1)求b 的值;(2)推断函数()f x 的单调性;(3)若对随意的R t ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.高一数学必修1第三章《指数函数、对数函数和幂函数》测练题参考答案及解析一、选择题1.D 解析:由a 2=16且a >0得a =42.C 解析:原式a ab ba9990653121612132-=-=-=-+-+3.C 解析:依据反比例函数的性质4.A 解析:因log 89=22232log 32log 3log 23=,故原式=23 5.B 解析:ab >0,故a 、b 同号;当a 、b 同小于0时,①②不成立;当ab =1时,④不成立,故只有③对。
高中数学北师大版必修1课件第三章指数函数和对数函数本章整合2

)
A. -∞,
C.
1 3
,
2 2
1
2
B. -∞,
D.
1
2
∪
3
,+∞
2
3
,+∞
2
解析:∵f(x)是定义在R上的偶函数,且在区间(-∞,0)上单调递增,
∴f(x)在(0,+∞)上单调递减.
∴由 f(2 )>f(- 2)=f( 2)可得 2 < 2 =
对数计算、化简、证明常用的技巧.
专题一
专题二
专题三
专题四
应用(1)若log34·log48·log8m=log42(m>0),求m的值;
1
(2)计算:
1 -2
4
·
( 4-1 )3
1(a>0,b>0).
0.1-2 (3 -3 )2
提示:(1)中对数的底数不同,应先利用换底公式化为同底的对数
再求解;(2)是关于指数的运算,要把握指数幂的运算性质.
∴f(6-a)=f(-1)=2
1
7
-2= -2=- .
4
4
-1-1
答案:A
1
2
3
4
5
பைடு நூலகம்
6
7
5
2
7(2016 浙江高考)已知 a>b>1,若 logab+logba= ,ab=ba,则
a=
,b=
.
解析:设logba=t,由a>b>1,知t>1.
1
5
2
由题意,得 t+ = ,解得 t=2,则 a=b2.
高中数学北师大版必修1课件第三章指数函数和对数函数

A.a B.b
C.c D.d
解析:根据四种函数的变化特点,指数函数是变化最快的函数.当
运动时间足够长时,最前面的物体一定是按照指数函数关系运动的
物体.
答案:D
题型一
题型二
题型三
题型三 函数的增长差异在实际中的应用
【例3】 某公司为了实现1 000万元利润的目标,准备制定一个激
励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进
这说明,按模型y=log7x+1进行奖励,奖金不超过利润的25%.
综上所述,模型y=log7x+1符合公司要求.
反思从这个例题可以看到,底数大于1的指数函数模型比一次项
系数为正数的一次函数模型增长速度要快得多,而后者又比真数大
于1的对数函数模型增长速度要快,从而我们可以体会到对数增长、
直线上升、指数爆炸等不同函数类型增长的含义.
时,y>5,因此该模型不符合要求.
对于模型y=1.002x,利用计算器,可知1.002806≈5.005,由于y=1.002x
在(-∞,+∞)上是增函数,故当x∈(806,1 000]时,y>5,因此,也不符合题
意.
对于模型y=log7x+1,它在区间[10,1 000]上是增加的,且当x=1 000
是增函数,但它们增长的速度不同,而且不在一个“档次”上,随着x的
增大,y=ax(a>1)的增长速度会越来越快,会超过并远远大于
y=xn(x>0,n>1)和y=logax(a>1)的增长速度.由于指数函数值增长非
常快,人们常称这种现象为“指数爆炸”.
【做一做1】 当x(x>0)增大时,下列函数中,增长速度最快的是
数学高一专题 指数函数与对数函数

数学高一专题 指数函数与对数函数一、指数函数:一般地,形如y=a x (a>0且a≠1) (x ∈R)的函数叫做指数函数。
也就是说以指数为自变量,底数为大于0且不等于1的常量的函数称为指数函数,它是初等函数中的一种。
(1)由指数函数y=a x 与直线x=1相交于点(1,a )可知:在y 轴右侧,图像从下到上相应的底数由小变大。
(2)由指数函数y=a x 与直线x=-1相交于点(-1,a1)可知:在y 轴左侧,图像从下到上相应的底数由大变小。
(3)指数函数的底数与图像间的关系可概括的记忆为:在y 轴右边“底大图高”;在y 轴左边“底大图低”。
(如右图)。
(4)与的图像关于y 轴对称。
二、对数函数:对数的定义:一般地,函数y=logax (a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
值域:实数集R ,显然对数函数无界。
定点:函数图像恒过定点(1,0)。
单调性:a >1时,在定义域上为单调增函数; 0<a <1时,在定义域上为单调减函数。
奇偶性:非奇非偶函数 周期性:不是周期函数对称性:无 最值:无 零点:x=1 注意:负数和0没有对数。
运算换底公式三、区别与联系:6)一般地,指数函数y=a x在a>1和0<a<1的情况下,它的图像特征和函数性质如下表所示.②值域:)③过点时y=1题型一:基础回顾1.若函数y =x 2+bx +c(x ∈[0,+∞))是单调函数,则实数b 的取值范围是( ) A .b ≥0 B .b ≤0 C .b>0 D .b<0 2.若,则. 3.若,则.变式练习6.(2016·福州模拟)若f(x)是幂函数,且满足f (4)f (2)=3,则f(12)=( )A .3B .-3 C.13D .-137.(2016·陕西宝鸡中学期中)设a =20.1,b =ln 52,c =log 3910,则a ,b ,c 的大小关系是( )A .b>c>aB .a>c>bC .b>a>cD .a>b>c8.(2014·山东理)已知实数x ,y 满足a x <a y (0<a<1),则下列关系式恒成立的是( ) A.1x 2+1>1y 2+1 B .ln(x 2+1)>ln(y 2+1) C .sinx>siny D .x 3>y 35.设a <b ,函数y =(x -a)2(x -b)的图像可能是( )9.(2015·安徽文)下列函数中,既是偶函数又存在零点的是( ) A .y =lnx B .y =x 2+1 C .y =sinxD .y =cosx10.对于定义在R 上的任意奇函数f(x),均有( ) A .f(x)-f(-x)>0 B .f(x)-f(-x)≤0 C .f(x)·f(-x)>0D .f(x)·f(-x)≤011.(2016·山东师大附中月考)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .y =cos2x ,x ∈RB .y =log 2|x|,x ∈R 且x ≠0C .y =x|x|,x ∈RD .y =x 3+1,x ∈R题型二:技能拓展1.设函数f(x)=|x +1|+|x +2|-a. (1)当a =5时,求函数f(x)的定义域;(2)若函数f(x)的定义域为R ,试求a 的取值范围. 变式练习2.若函数f(x)=e xx 2+ax +a的定义域为R ,求实数a 的取值范围.3.已知函数y =log 21(x 2-ax +a)在区间(-∞,2)上是增函数,求实数a 的取值范围.1..(2016·山东理)已知[x]表示不超过实数x 的最大整数,如[1.8]=1,[-1.2]=-2.x 0是函数f(x)=lnx -2x 的零点,则[x 0]等于________.2.(2015·福建理)若函数f(x)=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x>2(a>0,且a ≠1)的值域是[4,+∞),求实数a 的取值范围3.(2014.安徽理)已知函数f(x)是(-∞,+∞)上的偶函数,若对于x ≥0,都有f(x +2)=-f(x),且当x ∈[0,2)时,f(x)=log 2(x +1),求: (1)f(0)与f(2)的值; (2)f(3)的值;(3)f(2 013)+f(-2 014)的值.课后练习1.(2014·上海理)设f(x)=⎩⎪⎨⎪⎧(x -a )2,x ≤0,x +1x +a ,x>0.若f(0)是f(x)的最小值,则a 的取值范围为( )A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]2.函数y =|x|(x -1)的定义域为( ) A .{x|x ≥1} B .{x|x ≥1或x =0} C .{x|x ≥0} D .{x|x =0}3.若函数y =x 2-4x 的定义域是{x|1≤x<5,x ∈N },则其值域为( ) A .[-3,5) B .[-4,5) C .{-4,-3,0}D .{0,1,2,3,4} 4.已知函数f(x)=-x 2+4x 在区间[m ,n]上的值域是[-5,4],则m +n 的取值范围是( ) A .[1,7] B .[1,6] C .[-1,1] D .[0,6]1.(2014·天津理)函数()()4log 221-=x x f 的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)2.若0<a<1,则在区间(0,1)上函数f(x)=log a (x +1)是( ) A .增函数且f(x)>0 B .增函数且f(x)<0 C .减函数且f(x)>0D .减函数且f(x)<03.(2016·江南十校联考)设函数f(x)=⎩⎪⎨⎪⎧-x ,x ≤0,x 2,x>0.若f(a)=4,则实数a =( )A .-4或-2B .-4或2C .-2或4D .-2或24.(2016·沧州七校联考)下列函数中,与函数y =-3|x|的奇偶性相同,且在(-∞,0)上单调性也相同的是( ) A .y =-1xB .y =log 2|x|C .y =1-x 2D .y =x 3-15.下列四个数中最大的是( ) A .(ln2)2 B .ln(ln2) C .ln 2D .ln2 6.若二次函数g(x)满足g(1)=1,g(-1)=5,且图像过原点,则g(x)的解析式为( ) A .g(x)=2x 2-3x B .g(x)=3x 2-2x C .g(x)=3x 2+2xD .g(x)=-3x 2-2x7.若函数f(x)=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学(必修1)专题复习三
指数函数和对数函数
一.基础知识复习
(一)指数的运算: 1.实数指数幂的定义:
(1)正整数指数幂:
a
n n
a a a a 个⋅⋅⋅=(R a ∈)(2)零指数幂:10=a (0≠a ) (3)负整数指数幂:n n
a
a 1
=
-(0≠a ) (4)正分数指数幂:n m n m a a =(1,,,0≠∈≠+n N n m a )
(5)负分数指数幂:n
m
n
m a
a 1
=
-((1,,,0≠∈≠+n N n m a .
2.指数的运算性质: ① y
x y
x
a
a a +=⋅ ② y
x y x a a
a -= ③ xy y x a a =)( ④ x x x
b a ab =)(
1b 就叫做以a 为底N 的对数,记作b a log =.即:b N N a a b =⇔=log . (10 (2)当(3)1的对数是零,01log =a (4)底数的对数等于1,1log =a
2.对数恒等式:(1 (2)b a b a =log (3)m n a a n m log log =
3.对数的运算法则:
① ()N M MN a a a log log log += ② N M N
M
a a a
log log log -= ③ ()
N n N a n
a log log = ④ N n
N a n a log 1log =
4.对数换底公式:b
N
N a b log log log =.由换底公式推出一些常用的结论:
(1 (2)c c b a b a log log log =⋅
(3 (4 (5
(一)指数函数的图象和性质
1.x y a =(0a >且1a ≠)的定义域为R ,值域为()0,+∞. 2.x y a =(0a >且1a ≠) 的单调性: 当1>a 时,x y a =在R 上为增函数; 当01a <<时,x y a =在R 上是减函数. 3.x y a =(0a >且1a ≠)的图像特征: 当1>a 时,图象像一撇,过点()0,1, 且在y 轴左侧a 越大,图象越靠近y 轴;
当01a <<时,图象像一捺,过点()0,1,且在y 轴左侧a 越小,图象越靠近y 轴. 4.x y a =与x a y -=的图象关于y 轴对称. (二)对数函数的图象和性质
1.)10(log ≠>=a a x y a 且 的定义域为+
R ,值域为R . 2.)10(log ≠>=a a x y a 且的单调性: 当1>a 时,在()+∞,0单增, 当01a <<时,在()+∞,0单减. 3.)10(log ≠>=a a x y a 且的图象特征:
当1>a 时,图象像一撇,过()1,0点,在x 轴上方a 越大越靠近x 轴; 当01a <<时,图象像一捺,过()1,0点,在x 轴上方a 越小越靠近x 轴. 4.b a log 的符号规律(同正异负法则):
给定两个区间()0,1和()1,+∞,若a 与b 的范围处于同一个区间,则对数值大于零;否则若a 与b 的范围分处两个区间,则对数值小于零. 5.log a y x =与x y a
1log =的图像关于x 轴对称.
6.指数函数x
y a =与对数函数log a y x =互为反函数.
(1)互为反函数的图像关于直线x y =对称 (2)互为反函数的定义域和值域相反
(3)一般地,函数)(x f y =的反函数用)(1
x f
y -=表示,若点),(b a 在)
(x f y =的图像上,则点),(a b 在)(1x f y -=的图像上,即若b a f =)(,则a b f =-)(1
. (4)求反函数的步骤:①反解,用y 表示x ; ②求原函数的值域; ③x 与y 互换,
并标明定义域.
二.训练题目
(一)选择题
1.设0a >( )
A .
B .
C
D 2.已知log 2a x =,log 1b x =,log 4c x =,则log abc x =( )
A .
47 B .27 C .72 D .74
3.若)3
log 4log 4log 3log ()3log 4(log 3log log 43342
4349+-+=⋅x ,则=x ( )
A .4
B .16
C .256
D .81
4.如图为指数函数x x x x d y c y b y a y ====)4(,)3(,)2(,)1(,
则d c b a ,,,与1的大小关系为( ) A .d c b a <<<<1 B .c d a b <<<<1 C .d c b a <<<<1 D .c d b a <<<<1 5.已知01a <<,log log 0a a m n <<,则( )
A .1n m <<
B .1m n <<
C .1m n <<
D .1n m <<
6.设c b a ,,均为正数,且a a
2
1log 2=,b b 21log 21=⎪⎭⎫ ⎝⎛,c c
2log 21=⎪⎭⎫ ⎝⎛.则( )
A .c b a <<
B . a b c <<
C . b a c <<
D . c a b << 7.设函数()log ()(0,1)a f x x b a a =+>≠的图像过点(2,1),其反函数的图像过点(2,8),则a b +等于( )
A .3
B .4
C .5
D .6
8.已知函数x
y e =的图象与函数()y f x =的图象关于直线y x =对称,则( )
A .()22()x
f x e x R =∈ B .)0(ln 2ln )2(>⋅=x x x f
C .()22()x
f x e x R =∈ D .()2ln ln 2(0)f x x x =+>
9.已知函数3()2x f x +=,1()f x -是()f x 的反函数,若16mn =(m n ∈+
R ,),则
11()()f m f n --+ 的值为( )
A .2-
B .1
C .4
D .10
10.若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( )
A .21x e -
B .2x e
C .21x e +
D .22
x e +
(二)填空题 1.函数32)(1
2-=-x a
x f (1,0≠>a a )的图象恒过定点 .
2.函数)232(log 2)(2
+--=x x x f a (1,0≠>a a )的图象恒过定点 .
3.设,0.(),0.
x e x g x lnx x ⎧≤=⎨>⎩则1
(())2g g = ____.
4.已知n y m x a a ==log ,log
,则log a ⎝= .
5.已知a =10log 3,b =25log 6,则用a 、b 表示=45log 4 .
(三)解答题
1.比较下列各组数的大小
(1)31)32(,32)3
1( (2)3.0log 2,3.02,2
3.0 (4)212,313,61
6
2.计算:(1) 5lg 2lg 35lg 2lg 33++ (2)8lg 3
136.0lg 2113
lg 2lg 2+++ 、
3.化简: (1)
3
4
323343
2x x
x x x
x x ⋅
⋅⋅⋅⋅ (2)
1
1
11
13
13
13
13
13
2---
+++
++-x x
x x x x x x
4.求下列函数的值域 (1)x
x y --=1123
(2))32(log 2
2
1++-=x x y (3)x
x x
x e e e e y --+-=
5.判断下列函数的奇偶性 (1)1
313)
2
1()(++-=x x x f (2
)())f x x = (3)11
()212
x
f x =
+-
6.对于函数)32(log )(2
2
1+-=ax x x f ,解答下述问题:
(1)若函数的定义域为R ,求实数a 的取值范围; (2)若函数的值域为R ,求实数a 的取值范围;
(3)若函数在),1[+∞-内有意义,求实数a 的取值范围; (4)若函数的值域为]1,(--∞,求实数a 的值.
7.(1)已知093109≤+⋅-x
x ,求函数2)2
1
(4)
41(1+-=-x x y 的最大值和最小值. (2)设不等式09)(log 9)(log 25.025.0≤++x x 的解集为M ,求当M x ∈时函数
)8
)(log 2(log 22x
x y =的最大和最小值.
8.已知)1(log )(-=x a a x f (1,0≠>a a )
(1)求)(x f 的定义域; (2)讨论)(x f 的单调性; (3)解方程)()2(1
x f x f -=.。