数学建模优秀范文
全国数学建模大赛范文

全国数学建模大赛范文一、引言全国数学建模大赛是我国高校中备受青睐的科学竞赛之一。
本文旨在回顾和总结我参加全国数学建模大赛的经历和心得体会,以及对这项竞赛的认识和理解。
二、参赛经历作为一名对数学和建模充满热情的学生,我积极报名参加了全国数学建模大赛。
在比赛前,我充分准备,学习了各种数学建模的方法和技巧,并且参与了各类模拟演练,提高自己的建模能力。
三、比赛内容全国数学建模大赛的比赛内容通常涉及实际问题的数学建模和解决方案的设计。
参赛选手需要运用数学知识和建模技巧,分析问题、提出假设、建立模型、进行计算和验证,并最终给出合理的结论和解决方案。
四、解题思路在比赛中,我遇到了一道关于交通流量优化的问题。
首先,我通过调研和数据分析,了解了城市交通流量的特点和问题所在。
然后,我采用了数学建模的方法,利用图论和线性规划等数学工具,建立了交通流量优化的数学模型。
在模型的基础上,我进行了计算和仿真实验,并对结果进行了合理的解释和分析。
五、团队合作全国数学建模大赛通常是以团队形式参赛,这也是我参加比赛的一大亮点。
在团队合作中,我学会了与队友进行有效的沟通和协作,共同解决问题。
每个人都发挥自己的特长,相互补充和支持,最终取得了良好的成绩。
六、收获和感悟通过参加全国数学建模大赛,我不仅提高了自己的数学建模能力,还培养了解决实际问题的能力和团队合作精神。
在比赛中,我深刻体会到了数学建模对于解决实际问题的重要性和应用价值。
数学建模不仅是一种学术竞赛,更是一种培养创新思维和解决问题能力的实践活动。
七、总结全国数学建模大赛是一项重要的科学竞赛,对于提高学生的数学建模能力和解决实际问题的能力具有重要的意义。
参加这项竞赛可以锻炼学生的思维能力和团队合作能力,培养他们的创新意识和实践能力。
希望更多的学生积极参与全国数学建模大赛,为我国科学技术的发展做出贡献。
八、致谢我要感谢我的导师和队友们对我的支持和帮助,没有他们的鼓励和指导,我无法取得这样的成绩。
大学数学建模论文范文3000字(汇总5篇)

大学数学建模论文范文3000字第1篇一、小学数学建模_数学建模_已经越来越被广大教师所接受和采用,所谓的_数学建模_思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为_数学建模_,其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。
叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。
二、小学数学建模的定位1.定位于儿童的生活经验儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。
_数学建模_要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。
同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的.挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。
2.定位于儿童的思维方式小学生的特点是年龄小,思维简单。
因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。
实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。
我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使_数量关系_与数学原型_一乘两除_结合起来,并且使学生利用抽象与类比的思维方法完成了_数量关系_的_意义建模_,从而创建了完善的认知体系。
建模美赛获奖范文

建模美赛获奖范文全文共四篇示例,供读者参考第一篇示例:近日,我校数学建模团队在全国大学生数学建模竞赛中荣获一等奖的喜讯传来,这是我校首次在该比赛中获得如此优异的成绩。
本文将从建模过程、团队合作、参赛经验等方面进行详细介绍,希望能为更多热爱数学建模的同学提供一些借鉴和参考。
让我们来了解一下比赛的背景和要求。
全国大学生数学建模竞赛是由中国工程院主办,旨在促进大学生对数学建模的兴趣和掌握数学建模的基本方法和技巧。
比赛通常会设置一些实际问题,参赛队伍需要在规定时间内通过建立数学模型、分析问题、提出解决方案等步骤来完成任务。
最终评选出的优胜队伍将获得一等奖、二等奖等不同级别的奖项。
在本次比赛中,我们团队选择了一道关于城市交通拥堵研究的题目,并从交通流理论、路网优化等角度进行建模和分析。
通过对城市交通流量、拥堵原因、路段限制等方面的研究,我们提出了一种基于智能交通系统的解决方案,有效缓解了城市交通拥堵问题。
在展示环节,我们通过图表、数据分析等方式清晰地呈现了我们的建模过程和成果,最终赢得了评委的认可。
在整个建模过程中,团队合作起着至关重要的作用。
每个成员都发挥了自己的专长和优势,在分析问题、建模求解、撰写报告等方面各司其职。
团队内部的沟通和协作非常顺畅,大家都能积极提出自己的想法和看法,达成共识后再进行实际操作。
通过团队合作,我们不仅完成了比赛的任务,也培养了团队精神和合作能力,这对我们日后的学习和工作都具有重要意义。
参加数学建模竞赛是一次非常宝贵的经历,不仅能提升自己的数学建模能力,也能锻炼自己的解决问题的能力和团队协作能力。
在比赛的过程中,我们学会了如何快速建立数学模型、如何分析和解决实际问题、如何展示自己的成果等,这些能力对我们未来的学习和工作都将大有裨益。
在未来,我们将继续努力,在数学建模领域不断学习和提升自己的能力,为更多的实际问题提供有效的数学解决方案。
我们也希望通过自己的经验和教训,为更多热爱数学建模的同学提供一些指导和帮助,共同进步,共同成长。
优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文第1篇摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。
建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。
本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。
关键词:数学建模;高等数学;教学研究一、引言建模思想使高等数学教育的基础与本质。
从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。
但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。
其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。
二、高等数学教学现状高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。
他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。
同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。
但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。
因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。
三、将数学建模思想融入高等数学的重要性第一,能够激发学生学习高数的兴趣。
建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。
把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。
中学数学建模论文精选范文赏析(共5篇)

中学数学建模论文精选范文赏析(共5篇)第1篇:新课程背景下中学数学建模教学的几点思考数学学习的观念正在发生转变,如何让数学回归生活、生产实际,如何让学生体验数学知识的形成过程,正是我们数学教师面临的重要问题。
因此笔者认为:在中学数学教学中落实数学建模教学迫在眉睫。
随着新课程的实施,新的《数学课程标准》中增设了“数学建模专题”,为我们中学数学建模教学搭建了一个很好的平台。
笔者在此借新课程实施的东风,来谈谈自已对数学建模教学的几点思考。
一、对中学数学建模教学的准确定位何为数学建模?一个比较准确的说法:数学建模是指通过对实际问题的抽象、简化,确定变量和参数,并应用某些规律建立起变量、参数间的确定的数学问题,求解该数学问题,从而确定能否用于解决问题的多次循环、不断深化的过程。
但是在中学阶段数学建模教学有它的特殊性,从数学应用角度分析,数学应用大致可分为以下四个层次:(1)直接套用公式计算;(2)利用现成的数学模型对问题进行定量分析;(3)对已经经过加工提炼的、忽略次要因素,保留下来的诸因素关系比较清楚的实际问题建立模型;(4)对原始的实际问题进行加工,提炼出数学模型,再分析数学模型求解。
其中第四个层次属于典型的数学建模问题。
中学数学建模,一般定位在数学应用的第三层次。
在中学阶段,学生建模能力的形成是基础知识基本技能、基本数学方法训练的一种综合效果,建模能力的培养主要是打基础,但是,过分强调基础会导致基础与实际应用的分裂。
因此,在新课程标准中明确提出:在中学阶段至少要让学生进行一次完整的数学建模过程。
从这个意义上讲我们可以适当进入第四层次,而这个分寸的把握是一个很值得探讨的问题,同时也是我们教学的一个难点。
准确地给中学数学建模教学定位,有利于指导数学教学以及更好地开展中学数学建模活动,而不至于陷入盲目及极端地处理数学应用。
二、中学数学建模教学在数学课堂教学中得以渗透由于数学建模问题源于现实的生活情境,历来教师都将它作为相对独立的学习活动或选修课来安排,或者为了应付高考,对数学建模问题不闻不问。
数学建模竞赛获奖论文范文

数学建模竞赛获奖论文范文数学的运用越来越广泛了,利用建立数学模型解决实际问题的数学建模活动也应运而生了。
下面是店铺为大家推荐的数学建模论文,供大家参考。
数学建模论文范文篇一:《高中开设数学建模课程的意义与定位》1、高中开设数学建模课程的背景在高中设置的课程中,数学是一门必修课程,也是高考比重最大的一门课程,其最终目标是将数学知识融入现实问题中去,从而解决问题,这也是教育教学的最终目的。
要达到教育教学的最终目的,必须改革高中的数学课程教学,建设高中数学建模课程。
高中数学建模课程可以根据简单的现实问题设置,针对实际生活中的一些简单问题进行适当的假设,建立高中数学知识能解决该问题的数学模型,进而解决该实际问题。
因此,可以说高中数学建模课程是利用所学高中数学知识解决实际问题的课程,是将高中数学知识应用的一门课程,是培养出高技能人才的基础课程。
国家教育部制定的高中数学课程标准,重点强调:"要重视高中学生从自己的生活经验和所学知识中去理解数学、学习数学和应用数学,通过自己的感知和实际操作,掌握基本的高中数学知识和数学逻辑思维能力,让高中生体会到数学的乐趣,对数学产生兴趣,让其感觉到数学就在身边。
"但是现实中高中数学的教学情况堪忧,基本上都是满堂灌的教学,学生不会应用,对数学毫无兴趣可言,主要体现在三个方面。
第一,虽然有很多学生以高分成绩进入高中学习,但是其数学应用的基础非常差,基本上是会生搬硬套,不会解决实际问题,更不会将数学知识联系到生活中来;也有少数学生数学基础差,没有养成好的数学学习习惯,导致产生厌恶数学的情绪,数学基础知识都没学好,更不用说是用数学解决实际问题。
这少数学生就是上课睡觉混日子,根本不去学习,这与高中数学课程的开设目标截然不符。
第二,高中数学课程的教学内容与实际问题严重脱节,高中的数学教材中涉及的数学知识基本上都是计算内容,而不是用来处理和解决生活问题的,更是缺少数学与其他学科(比如化学、物理、生物、地理等)的相互渗透,即便高中数学课程中有一些数学应用的例子,也属于选学内容,教师根本不去讲、不涉及,这样导致高中数学课的教学达不到其教学目的,发挥不出功能。
[数学建模论文范文]数学建模论文优秀范文2篇
![[数学建模论文范文]数学建模论文优秀范文2篇](https://img.taocdn.com/s3/m/4e89c1f1960590c69ec376f5.png)
[数学建模论文范文]数学建模论文优秀范文2篇数学建模论文范文一:建模在高等数学教学中的作用及其具体运用一、高等数学教学的现状(一) 教学观念陈旧化就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。
作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二) 教学方法传统化教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。
一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。
这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。
最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。
虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。
如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。
数学建模获奖论文(优秀范文10篇)11000字

数学建模获奖论文(优秀范文10篇)11000字数学建模竞赛从1992年始,到现如今已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。
本篇文章就为大家介绍一些数学建模获奖论文,供给大家欣赏和探讨。
数学建模获奖论文优秀范文10篇之第一篇:高中数学核心素养之数学建模能力培养的研究摘要:数学建模是一种比较重要的能力,教师在进行高中数学教学的过程中应该让学生们学习这种能力,这对于解决高中数学问题是比较有效的,而且对于学生们未来接受高等教育有更重要的意义。
教师在进行高中数学教学的过程中需要让学生们的能力得到锻炼,提升能力是教学的主要目的,学习知识是比较基础的教学目的,教师如果想让学生们的能力得到锻炼应该对教学方法进行更新,高中数学对于很多学生们来说都是比较困难的,所以教师应该不断更新教学方法,让学生们能理解教师的教学目的,而且找到适合自己的学习方法,这也是核心素养的基本内涵。
本文将对高中数学核心素养之数学建模能力培养进行研究。
关键词:高中数学; 核心素养; 数学建模; 能力培养; 应用研究;建模活动是一项比较有创造性的活动,学生们在学习的过程中一定要具备创新思维和自主学习能力,建模活动进行过程中可以让学生们独立,自觉运用数学理论知识去探索以及解决问题,构建模型解决实际问,教学活动中,让学生们的基础知识更加牢固、基本技能得到锻炼是最根本的目的。
学生们的运算能力以及逻辑思维能力也能在建模活动中得到锻炼,提升学生们的空间观念以及增强应用数学意识是延伸目的。
一、对数学建模的基本理解概述高中数学建模最简单的解释就是利用学生们学习过的理论知识来建立数学模型解决遇到的问题。
数学建模的基本过程就是对生活中或者课本中比较抽象问题解决的过程。
通过抽象可以建立刻画出一种较强的数学手段,通过运用数学思维也能观察分析各种事物的基本性质和特点。
学生们可以从复杂的问题中抽离出自己熟悉的模型,然后在利用好数学模型去解决实际问题基本就是事半功倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模竞赛例题B题温室中的绿色生态臭氧病虫害防治2009年12月,哥本哈根国际气候大会在丹麦举行之后,温室效应再次成为国际社会的热点。
如何有效地利用温室效应来造福人类,减少其对人类的负面影响成为全社会的聚焦点。
臭氧对植物生长具有保护与破坏双重影响,其中臭氧浓度与作用时间是关键因素,臭氧在温室中的利用属于摸索探究阶段。
假设农药锐劲特的价格为10万元/吨,锐劲特使用量10mg/kg-1水稻;肥料100元/亩;水稻种子的购买价格为5.60元/公斤,每亩土地需要水稻种子为2公斤;水稻自然产量为800公斤/亩,水稻生长自然周期为5个月;水稻出售价格为2.28元/公斤。
根据背景材料和数据,回答以下问题:(1)在自然条件下,建立病虫害与生长作物之间相互影响的数学模型;以中华稻蝗和稻纵卷叶螟两种病虫为例,分析其对水稻影响的综合作用并进行模型求解和分析。
(2)在杀虫剂作用下,建立生长作物、病虫害和杀虫剂之间作用的数学模型;以水稻为例,给出分别以水稻的产量和水稻利润为目标的模型和农药锐劲特使用方案。
(3)受绿色食品与生态种植理念的影响,在温室中引入O3型杀虫剂。
建立O3对温室植物与病虫害作用的数学模型,并建立效用评价函数。
需要考虑O3浓度、合适的使用时间与频率。
(4)通过分析臭氧在温室里扩散速度与扩散规律,设计O3在温室中的扩散方案。
可以考虑利用压力风扇、管道等辅助设备。
假设温室长50 m、宽11 m、高3.5 m,通过数值模拟给出臭氧的动态分布图,建立评价模型说明扩散方案的优劣。
(5)请分别给出在农业生产特别是水稻中杀虫剂使用策略、在温室中臭氧应用于病虫害防治的可行性分析报告,字数800-1000字。
论文题目:温室中的绿色生态臭氧病虫害防治姓名1:万微学号:******** 专业:数学与应用数学姓名1:卢众学号:******** 专业:数学与应用数学姓名1:张强学号:******** 专业:数学与应用数学2010 年5月3日目录一.摘要 (4)二.问题的提出 (5)三.问题的分析 (5)四.建模过程 (6)1)问题一 (6)1.模型假设 (6)2.定义符号说明 (6)3.模型建立 (6)4.模型求解 (7)2)问题二 (9)1.基本假设 (9)2.定义符号说明 (10)3.模型建立 (10)4.模型求解 (11)3)问题三 (12)1.基本假设 (12)2.定义符号说明 (12)3.模型建立 (13)4.模型求解 (13)5.模型检验与分析 (14)6.效用评价函数 (15)7.方案 (16)4).问题四 (17)1.基本假设 (17)2.定义符号说明 (17)3.模型建立 (18)4.动态分布图 (19)5.评价方案 (19)五.模型的评价与改进 (20)六.参考文献 (21)一.摘要:“温室中的绿色生态臭氧病虫害防治”数学模型是通过臭氧来探讨如何有效地利用温室效应造福人类,减少其对人类的负面影响。
由于臭氧对植物生长具有保护与破坏双重影响,利用数学知识联系实际问题,作出相应的解答和处理。
问题一:根据所掌握的人口模型,将生长作物与虫害的关系类似于人口模型的指数函数,对题目给定的表1和表2通过数据拟合,在自然条件下,建立病虫害与生长作物之间相互影响的数学模型。
因为在数据拟合前,假设病虫害密度与水稻产量成线性关系,然而,我们知道,当病虫害密度趋于无穷大时,水稻产量不可能为负值,所以该假设不成立。
从人口模型中,受到启发,也许病虫害密度与水稻产量的关系可能为指数函数,当拟合完毕后,惊奇地发现,数据非常接近,而且比较符合实际。
接下来,关于模型求解问题,顺理成章。
问题二,在杀虫剂作用下,要建立生长作物、病虫害和杀虫剂之间作用的数学模型,必须在问题一的条件下作出合理假设,同时运用数学软件得出该模型,最后结合已知数据可算出每亩地的水稻利润。
对于农药锐劲特使用方案,必须考虑到锐劲特的使用量和使用频率,结合表3,农药锐劲特在水稻中的残留量随时间的变化,可确定使用频率,又由于锐劲特的浓度密切关系水稻等作物的生长情况,利用农业原理找出最适合的浓度。
问题三,在温室中引入O3型杀虫剂,和问题二相似,不同的是,问题三加入了O3的作用时间,当O3的作用时间大于某一值时才会起作用,而又必须小于某一值时,才不会对作物造成伤害,建O3对温室植物与病虫害作用的数学模型,也需用到数学建模相关知识。
问题四,和实际联系最大,因为只有在了解O 3的温室动态分布图的基础上,才能更好地利用O3。
而该题的关键是,建立稳定性模型,利用微分方程稳定性理论,研究系统平衡状态的稳定性,以及系统在相关因素增加或减少后的动态变化,最后。
通过数值模拟给出臭氧的动态分布图。
问题五,作出农业生产特别是水稻中杀虫剂使用策略、在温室中臭氧应用于病虫害防治的可行性分析。
关键词:绿色生态生长作物杀虫剂臭氧二.问题的提出自然状态下,农田里总有不同的害虫,为此采用各种杀虫剂来进行杀虫,可是,杀虫时,发现其中存在一个成本与效率的问题,所以,必须找出之间的一种关系,从而根据稻田里的害虫量的多少,找出一种最经济最有效的方案。
而由于考虑到环境的因素,同样在种蔬菜时,采用O进行杀毒,这样就对环境的破坏3比较小,但O的浓度与供给时间有很大的关系,若两者处理不当,则极有可能3出现烧苗等现象,所以未来避免这种现象,必须找出一个合理的方案,可以严格O的供给量与时间,使害虫杀掉,并且蔬菜正常生长。
在以上各问题解的控制3O时,整个矩形温决之后,设想,在一间矩形温室里,如何安置管道,使通入3O,使之健康成长。
室里的蔬菜都可以充分利用到3三.问题的分析由题意可知,目的就是为了建立一种模型,解决杀虫剂的量的多少,使用时间,频率,从而使成本与产量达到所需要的目的。
问题一中,首先建立病虫害与生长作物之间的关系。
在这个问题中,顺理成章的就会想到类似的人口模型,因此,利用所学过的类似的人口模型建立题中的生长作物与病虫害的模型,然后根据题中说给的数据,分别求解出中华稻蝗和稻纵卷叶螟对生长作物的综合作用。
而问题二,数据拟合的方法进行求解,以问题一的中华稻蝗对生长作物的危害为条件,求解出锐劲特的最佳使用量。
问题三,采用线性回归的方法,求解出生长O的浓度和使用时间的综合效应。
从而求解出对农作物生长的最作物的产量与3O浓度和时间,进而求解出使用的频率。
问题四中,采用气体的扩散规律和佳3速度,将其假设为一个箱式模型,从而不知管道,是一个房间里的各个地方都能O杀毒。
最后,根据网上提供的知识,再结合自己的亲身体验,写充分利用到3出杀虫剂的可行性方案。
四.建模过程1)问题一模型假设:1.在实验中, 除施肥量, 其它影响因子如环境条件、种植密度、土壤肥力等,均处于同等水平2.在实际问题中, 产量受作物种类、植株密度、气候条件以及害虫对杀虫剂的抵抗等各种因素的作用,而忽略以上各种因素的影响,仅仅考虑杀虫剂的种类和量的多少对生长作物的影响。
3.忽略植物各阶段的生长特点对杀虫剂的各种需求量。
4.农药是没有过期的,有效的。
5.忽略病虫的繁殖周期以及各阶段的生长情况,将它以为是不变的生长速率。
2.定义符号说明:x——单位面积内害虫的数量 y——生长作物的减产率3.模型建立:虫害与生长作物的模型,大致类似人口模型,因此,可以用人口模型的一些知识进行求解,对于虫害与生长作物的关系,依然将其类比于指数函数。
中华稻蝗的密度大小,由于中华稻蝗成取食水稻叶片,造成缺刻,并可咬断稻穗、影响产量,所以主要影响的是穗花被害率,最终影响将产率,所以害虫的密度,直接反映出减产率的大小,故虫害的密度与减产率有必然的关系。
通过密度与减产率的图形可知x=[0 3 10 20 30 40];y=[0 2.4 12.9 16.3 20.1 26.8];plot(x,y)grid onxlabel('中华稻蝗密度');ylabel('减产率');title('中华稻蝗密度与减产率的关系图')经过多次采用不同方法拟合之后,发现其大致类似于指数函数,其验证了之前的假设。
4.模型求解:表1中华稻蝗和水稻作用的数据穗花被害率结实率(%)千粒重(g)减产率(%)密度(头/m2)(%)0 —94.4 21.37 —3 0.273 93.2 20.60 2.410 2.260 92.1 20.60 12.920 2.550 91.5 20.50 16.330 2.920 89.9 20.60 20.140 3.950 87.9 20.13 26.8按以下程序拟合,减产率y的大小事按照自然状态下的产量减去有虫害的影响的减产。
则考虑一亩地里有x=2000/3*[ 3 10 20 30 40]';b=ones(5,1);y=[780.8 696.8 669.6 639.2 585.6 ]';z=log(y)-b*log(780.8);r= x\z可得: r = -1.0828e-005则 rx e x y 0= (8.7800=x )故 x e y 5100828.18.780-⨯-⨯=即中华稻蝗对水稻产量的函数为 x e y 5100828.18.780-⨯-=由于稻纵卷叶螟为害特点是以幼虫缀丝纵卷水稻叶片成虫苞,幼虫匿居其中取食叶肉,仅留表皮,形成白色条斑,致水稻千粒重降低,秕粒增加,造成减产而稻纵卷叶螟的作用原理是致水稻千粒重降低,秕粒增加,造成减产,故稻纵卷叶螟的密度,直接而影响卷叶率,以及空壳率,从而影响产量的损失率。
密度(头/m 2) 产量损失率(%)卷叶率(%) 空壳率(%) 3.750.73 0.76 14.22 7.501.11 1.11 14.43 11.252.2 2.22 15.34 15.003.37 3.54 15.95 18.755.05 4.72 16.87 30.006.78 6.73 17.10 37.507.16 7.63 17.21 56.259.39 14.82 20.59 75.0014.11 14.93 23.19 112.50 20.09 20.40 25.16通过以上数据可知,虫害的密度与产量之间有必然的联系,通过这两组数据的图像x=2000/3*[3.75 7.50 11.25 15.0 18.75 30 37.50 56.25 75 112.5];y=[794.16 791.12 782.4 770.96 759.6 745.76 742.72 724.88 687.12 639.28 ];plot(x,y)grid onxlabel('稻纵卷叶螟密度');ylabel('减产率');title('稻纵卷叶螟虫害与其减产率的关系图')可推测出其大致也是符合指数函数,故用指数函数的拟合可得x=2000/3*[3.75 7.50 11.25 15.0 18.75 30 37.50 56.25 75 112.5]';b=ones(10,1);y=[794.16 791.12 782.4 770.96 759.6 745.76 742.72 724.88 687.12 639.28 ]'; z=log(y)-b*log(794.16);r= x\z经拟合可得r = -2.8301e-006所以,水稻的产量与稻纵卷叶螟之间的关系有x e y 6108301.216.794-⨯-⨯=2)问题二1.基本假设:1.在一亩地里,害虫密度不同的地方,相应使用不同量的锐劲特,可以使害虫的量减少到一个固定的值,则产量也会是一个定值,故其条件类似于问题一的模型。