2014-2015年四川省乐山外国语学校高二(上)期中数学试卷和参考答案(理科)
四川省乐山外国语学校高三数学上学期期中试卷文(含解析)

四川省乐山外国语学校2015届高三上学期期中数学试卷(文科)一.选择题:每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求.1.(5分)已知集合A={0,1,2,3},集合B={x∈N||x|≤2},则A∩B=()A.{3} B.{0,1,2} C.{1,2} D.{0,1,2,3}2.(5分)若复数z满足z(2﹣i)=5i(i为虚数单位),则z为()A.﹣1+2i B.﹣1﹣2i C.1+2i D.1﹣2i3.(5分)下列说法正确的是()A.“f(0)=0”是“函数f(x)是奇函数”的充要条件B.若p:∃x0∈R,x02﹣x0﹣1>0,则¬p:∀x∈R,x2﹣x﹣1<0C.若p∧q为假命题,则p,q均为假命题D.“若α=,则sinα=”的否命题是“若α≠,则sinα≠”4.(5分)已知向量=(k,3),=(1,4),=(2,1),且(2﹣3)⊥,则实数k=()A.﹣B.0 C.3 D.5.(5分)某算法程序框图如图所示,若a=,b=3,c=log23,则x=()A.B.a C.b D.c6.(5分)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥n B.若m⊥α,m∥n,n∥β,则α⊥βC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若α∥β,m⊂α,n⊂β,则m∥n7.(5分)我们处在一个有声世界里,不同场合,人们对声音的音量会有不同要求.音量大小的单位是分贝(dB),对于一个强度为I的声波,其音量的大小η可由如下公式计算:η=10lg(其中I0是人耳能听到的声音的最低声波强度),则70dB的声音强度I1是60dB的声音强度I2的()A.倍B.10倍C.10倍D.ln倍8.(5分)将函数y=sin(4x﹣)图象上各点的横坐标伸长到原来的2倍,再向左平移个单位,纵坐标不变,所得函数图象的一条对称轴的方程是()A.B.x=C.x=D.x=﹣9.(5分)设x∈R,若函数f(x)为单调递增函数,且对任意实数x,都有f[f(x)﹣e x]=e+1(e是自然对数的底数),则f(ln2)的值等于()A.1 B.e+l C.3 D.e+310.(5分)已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<e x的解集为()A.(﹣2,+∞)B.(0,+∞)C.(1,+∞)D.(4,+∞)二、填空题(每小题5分,共25分,把答案填在题中的横线上.)11.(5分)tan660°的值为.12.(5分)设S n为等比数列{a n}的前n项和,8a2﹣a5=0,则=.13.(5分)已知一个几何体的三视图如图所示,则该几何体的体积为cm314.(5分)如图,直角△POB中,∠PBO=90°,以O为圆心、OB为半径作圆弧交OP于A点.若圆弧等分△POB的面积,且∠AOB=α弧度,则=.15.(5分)已知f(x)=﹣2|2|x|﹣1|+1和g(x)=x2﹣2|x|+m(m∈R)是定义在R上的两个函数,则下列命题:①函数f(x)的图象关于直线x=0对称;②关于x的方程f(x)﹣k=0恰有四个不相等实数根的充要条件是k∈(0,1);③关于x的方程f(x)=g(x)恰有四个不相等实数根的充要条件是m∈[0,1];④若∃x1∈[﹣1,1],∃x2∈[﹣1,1],f(x1)<g(x2)成立,则m∈(﹣1,+∞);其中正确的例题有(写出所有正确例题的序号).三.解答题:本大题共6个小题,满分75分.解答应写出文字说明,证明过程或演算步骤. 16.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=C.(1)求tanC的值;(2)若a=,求△ABC的面积.17.(12分)在数列{a n}中,a1=1,a n+1=a n+c(c为常数,n∈N*),且a1,a2,a5成公比不为1的等比数列.(1)求c的值;(2)设,求数列{b n}的前n项和S n.18.(12分)设a∈R,函数满足.(Ⅰ)求f(x)的单调递减区间;(Ⅱ)设锐角△ABC的内角A、B、C所对的边分别为a、b、c,且,求f (A)的取值范围.19.(12分)如图,在矩形ABCD中,AB=2AD=4,E是DC的中点,以AE为折痕将△ADE向上折起,使D到P点位置,且PC=PB.(Ⅰ)若F是BP的中点,求证:CF∥面APE;(Ⅱ)求证:面APE⊥面ABCE;(Ⅲ)求三棱锥C﹣PBE的体积.20.(13分)已知函数,且f(1)=1,f(﹣2)=4.(1)求a、b的值;(2)已知定点A(1,0),设点P(x,y)是函数y=f(x)(x<﹣1)图象上的任意一点,求|AP|的最小值,并求此时点P的坐标;(3)当x∈[1,2]时,不等式恒成立,求实数m的取值范围.21.(14分)已知函数f(x)=ax++c(a>0)的图象在点(1,f(1))处的切线方程为y=x﹣1.(1)试用a表示出b,c;(2)若f(x)≥lnx在[1,+∞)上恒成立,求a的取值范围;(3)证明:1+++…+>ln(n+1)+(n≥1).四川省乐山外国语学校2015届高三上学期期中数学试卷(文科)参考答案与试题解析一.选择题:每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求.1.(5分)已知集合A={0,1,2,3},集合B={x∈N||x|≤2},则A∩B=()A.{3} B.{0,1,2} C.{1,2} D.{0,1,2,3}考点:交集及其运算.专题:集合.分析:求出B中不等式的解集,找出解集中的自然数解确定出B,求出A与B的交集即可.解答:解:由B中的不等式解得:﹣2≤x≤2,即B={x|﹣2≤x≤2,x∈N}={0,1,2},∵A={0,1,2,3},∴A∩B={0,1,2},故选:B.点评:此题考查了交集及其运算,熟练掌握交集的定义解本题的关键.2.(5分)若复数z满足z(2﹣i)=5i(i为虚数单位),则z为()A.﹣1+2i B.﹣1﹣2i C.1+2i D.1﹣2i考点:复数代数形式的混合运算.专题:数系的扩充和复数.分析:把给出的等式两边同时乘以,然后直接利用复数的除法运算化简求值.解答:解:∵复数z满足z(2﹣i)=5i,∴z====﹣1+2i.故选:A.点评:本题考查了复数代数形式的混合运算,是基础的计算题.3.(5分)下列说法正确的是()A.“f(0)=0”是“函数f(x)是奇函数”的充要条件B.若p:∃x0∈R,x02﹣x0﹣1>0,则¬p:∀x∈R,x2﹣x﹣1<0C.若p∧q为假命题,则p,q均为假命题D.“若α=,则sinα=”的否命题是“若α≠,则sinα≠”考点:命题的真假判断与应用.专题:简易逻辑.分析:利用充要条件判断A的正误;命题的否定判断B的正误;复合命题的真假判断C的正误;否命题的关系判断D的正误;解答:解:对于A,“f(0)=0”是“函数f(x)是奇函数”的充要条件,显然不正确,如果函数的定义域中没有0,函数可以是奇函数例如,y=,∴A不正确;对于B,若p:∃x0∈R,x02﹣x0﹣1>0,则¬p:∀x∈R,x2﹣x﹣1≤0,∴B不正确;对于C,若p∧q为假命题,则p,q一假即假命,∴C不正确;对于D,“若α=,则sinα=”的否命题是“若α≠,则sinα≠”,满足否命题的形式,∴D正确;故选:D.点评:本题考查命题的真假的判断,四种命题的关系,充要条件的判定,基本知识的考查.4.(5分)已知向量=(k,3),=(1,4),=(2,1),且(2﹣3)⊥,则实数k=()A.﹣B.0 C.3 D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:(2﹣3)⊥,可得(2﹣3)•=0,解出即可.解答:解:=(2k﹣3,﹣6),∵(2﹣3)⊥,∴(2﹣3)•=2(2k﹣3)﹣6=0,解得k=3.故选:C.点评:本题考查了向量垂直与数量积的关系,属于基础题.5.(5分)某算法程序框图如图所示,若a=,b=3,c=log23,则x=()A.B.a C.b D.c考点:程序框图.专题:算法和程序框图.分析:算法的功能是求a,b,c三个数中的最大数,比较a、b、c三数的大小,可得答案.解答:解:由程序框图知:算法的功能是求a,b,c三个数中的最大数,∵a3=>3=b3>0,∴a>b;又a==log2=log2<log2=log23=c.∴输出的结果为c.故选:D.点评:本题考查了选择结构的程序框图,根据框图的流程判断算法的功能是解答此类问题的关键,属于基础题.6.(5分)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥n B.若m⊥α,m∥n,n∥β,则α⊥βC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若α∥β,m⊂α,n⊂β,则m∥n考点:空间中直线与平面之间的位置关系.分析:由已知条件,利用直线与直线、直线与平面、平面与平面的位置关系,能求出结果.解答:解:若α⊥β,m⊂α,n⊂β,则m与n相交、平行或异面,故A错误;∵m⊥α,m∥n,∴n⊥α,又∵n∥β,∴α⊥β,故B正确;若m⊥n,m⊂α,n⊂β,则α⊥β或α与β相交,故C错误;若α∥β,m⊂α,n⊂β,则m∥n或m,n异面,故D错误.故选:B.点评:本题考查直线与直线、直线与平面、平面与平面的位置关系的判定,是基础题,解题时要注意空间思维能力的培养.7.(5分)我们处在一个有声世界里,不同场合,人们对声音的音量会有不同要求.音量大小的单位是分贝(dB),对于一个强度为I的声波,其音量的大小η可由如下公式计算:η=10lg(其中I0是人耳能听到的声音的最低声波强度),则70dB的声音强度I1是60dB的声音强度I2的()A.倍B.10倍C.10倍D.ln倍考点:对数函数图象与性质的综合应用;有理数指数幂的化简求值.专题:计算题;函数的性质及应用.分析:由题设中的定义,将音量值代入η=10lg,计算出声音强度I1与声音强度I2的值,再计算出即可求出倍数解答:解:由题意,令70=lg,解得,I1=I0×1070,令60=lg,解得,I2=I0×1060,所以=10故选:C.点评:本题考查对数的计算与对数性质在实际中的应用,熟练掌握对数运算性质是解答的关键8.(5分)将函数y=sin(4x﹣)图象上各点的横坐标伸长到原来的2倍,再向左平移个单位,纵坐标不变,所得函数图象的一条对称轴的方程是()A.B.x=C.x=D.x=﹣考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:利用函数y=Asin(ωx+φ)的图象变换,可求得变换后的函数的解析式为y=sin(8x ﹣),利用正弦函数的对称性即可求得答案.解答:解:将函数y=sin(4x﹣)图象上各点的横坐标伸长到原来的2倍,得到的函数解析式为:g(x)=sin(2x﹣),再将g(x)=sin(2x﹣)的图象向左平移个单位(纵坐标不变)得到y=g(x+)=sin[2(x+)﹣]=sin(2x+﹣)=sin(2x+),由2x+=kπ+(k∈Z),得:x=+,k∈Z.∴当k=0时,x=,即x=是变化后的函数图象的一条对称轴的方程,故选:A.点评:本题考查函数y=Asin(ωx+φ)的图象变换,求得变换后的函数的解析式是关键,考查正弦函数的对称性的应用,属于中档题.9.(5分)设x∈R,若函数f(x)为单调递增函数,且对任意实数x,都有f[f(x)﹣e x]=e+1(e是自然对数的底数),则f(ln2)的值等于()A.1 B.e+l C.3 D.e+3考点:函数单调性的性质.专题:函数的性质及应用.分析:利用换元法将函数转化为f(t)=e+1,根据函数的对应关系求出t的值,即可求出函数f(x)的表达式,即可得到结论.解答:解:设t=f(x)﹣e x,则f(x)=e x+t,则条件等价为f(t)=e+1,令x=t,则f(t)=e t+t=e+1,∵函数f(x)为单调递增函数,∴函数为一对一函数,解得t=1,∴f(x)=e x+1,即f(ln2)=e ln2+1=2+1=3,故选:C.点评:本题主要考查函数值的计算,利用换元法求出函数的解析式是解决本题的关键.10.(5分)已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<e x的解集为()A.(﹣2,+∞)B.(0,+∞)C.(1,+∞)D.(4,+∞)考点:利用导数研究函数的单调性;奇偶性与单调性的综合.专题:综合题;函数的性质及应用.分析:构造函数g(x)=(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解解答:解:∵y=f(x+2)为偶函数,∴y=f(x+2)的图象关于x=0对称∴y=f(x)的图象关于x=2对称∴f(4)=f(0)又∵f(4)=1,∴f(0)=1设g(x)=(x∈R),则g′(x)==又∵f′(x)<f(x),∴f′(x)﹣f(x)<0∴g′(x)<0,∴y=g(x)在定义域上单调递减∵f(x)<e x∴g(x)<1又∵g(0)==1∴g(x)<g(0)∴x>0故选B.点评:本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.二、填空题(每小题5分,共25分,把答案填在题中的横线上.)11.(5分)tan660°的值为﹣.考点:运用诱导公式化简求值.专题:三角函数的求值.分析:由条件利用诱导公式求得所给式子的值.解答:解:,故答案为:﹣.点评:本题主要考查应用诱导公式化简三角函数式,要特别注意符号的选取,这是解题的易错点,属于基础题.12.(5分)设S n为等比数列{a n}的前n项和,8a2﹣a5=0,则=5.考点:等比数列的性质.专题:计算题.分析:利用等比数列的通项公式将已知等式8a2﹣a5=0用首项和公比表示,求出公比;再利用等比数列的前n项和定义及通项公式表示,将公比的值代入其中求出值.解答:解:∵8a2﹣a5=0,∴,q=2,==1+q2=5故答案为:5.点评:解决等比数列、等差数列两个特殊数列的有关问题,一般利用通项及前n项和公式得到关于基本量的方程,利用基本量法来解决.在等比数列有关于和的问题,依据和的定义,能避免对公比是否为1进行讨论.13.(5分)已知一个几何体的三视图如图所示,则该几何体的体积为cm3考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:由三视图知几何体是一圆柱挖去一个半球,且圆柱的高为3,圆柱与球的半径都是1,代入体积公式求出圆柱的体积与半球的体积相减.解答:解:由三视图知几何体是一圆柱挖去一个半球,且圆柱的高为3,圆柱与球的半径都是1,∴几何体的体积V=π×12×3﹣π×13=.故答案是:.点评:本题考查了由三视图求几何体的体积,解题的关键是判断几何体的形状及数据所对应的几何量.14.(5分)如图,直角△POB中,∠PBO=90°,以O为圆心、OB为半径作圆弧交OP于A点.若圆弧等分△POB的面积,且∠AOB=α弧度,则=.考点:扇形面积公式.专题:计算题;三角函数的求值.分析:设出扇形的半径,求出扇形的面积,再在直角三角形中求出高PB,计算直角三角形的面积,由条件建立等式,解此等式求出tanα与α的关系,即可得出结论.解答:解:设扇形的半径为r,则扇形的面积为α r2,直角三角形POB中,PB=rtanα,△POB的面积为r×rtanα,由题意得r×rtanα=2×α r2,∴tanα=2α,∴=.故答案为:.点评:本题考查扇形的面积公式及三角形的面积公式的应用,考查学生的计算能力,属于基础题.15.(5分)已知f(x)=﹣2|2|x|﹣1|+1和g(x)=x2﹣2|x|+m(m∈R)是定义在R上的两个函数,则下列命题:①函数f(x)的图象关于直线x=0对称;②关于x的方程f(x)﹣k=0恰有四个不相等实数根的充要条件是k∈(0,1);③关于x的方程f(x)=g(x)恰有四个不相等实数根的充要条件是m∈[0,1];④若∃x1∈[﹣1,1],∃x2∈[﹣1,1],f(x1)<g(x2)成立,则m∈(﹣1,+∞);其中正确的例题有①④(写出所有正确例题的序号).考点:命题的真假判断与应用.专题:简易逻辑.分析:画出函数f(x)=﹣2|2|x|﹣1|+1的图象,利用图象法可判断①和②,分析指定区间上f(x)与g(x)的值域,进而将存在性问题转化为最值问题后,可判断③和④解答:解:因为f(x)=﹣2|2|x|﹣1|+1为偶函数,所以函数f(x)的图象关于直线x=0对称,故①正确;作出f(x)=﹣2|2|x|﹣1|+1如图所示,可知,关于x的方程f(x)﹣k=0恰有四个不相等实数根的充要条件为k∈(﹣1,1),故②错误;在同一坐标系中作出f(x)=﹣2|2|x|﹣1|+1和y=x2﹣2|x|的图象,由图象可知当时方程f(x)=g(x)恰有四个不相等实数根,故③错;由题可知,只需当x∈[﹣1,1]时f(x)min<g(x)max即可.易得f(x)min=﹣1,g(x)max=m,所以m∈(﹣1,+∞),所以④正确.故答案为:①④.点评:本题考查命题的真假的判断与应用,充要条件的判断,函数的最值以及函数的图象的应用,是中档题.三.解答题:本大题共6个小题,满分75分.解答应写出文字说明,证明过程或演算步骤. 16.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=C.(1)求tanC的值;(2)若a=,求△ABC的面积.考点:解三角形;三角函数中的恒等变换应用.专题:解三角形.分析:(1)由A为三角形的内角,及cosA的值,利用同角三角函数间的基本关系求出sinA 的值,再将已知等式的左边sinB中的角B利用三角形的内角和定理变形为π﹣(A+C),利用诱导公式得到sinB=sin(A+C),再利用两角和与差的正弦函数公式化简,整理后利用同角三角函数间的基本关系即可求出tanC的值;(2)由tanC的值,利用同角三角函数间的基本关系求出cosC的值,再利用同角三角函数间的基本关系求出sinC的值,将sinC的值代入sinB=cosC中,即可求出sinB的值,由a,sinA及sinC的值,利用正弦定理求出c的值,最后由a,c及sinB的值,利用三角形的面积公式即可求出三角形ABC的面积.解答:解:(1)∵A为三角形的内角,cosA=,∴sinA==,又cosC=sinB=sin(A+C)=sinAcosC+cosAsinC=cosC+sinC,整理得:cosC=sinC,则tanC=;(2)由tanC=得:cosC====,∴sinC==,∴sinB=cosC=,∵a=,∴由正弦定理=得:c===,则S△ABC=acsinB=×××=.点评:此题属于解三角形的题型,涉及的知识有:正弦定理,三角形的面积公式,两角和与差的正弦函数公式,诱导公式,以及同角三角函数间的基本关系,熟练掌握定理及公式是解本题的关键.17.(12分)在数列{a n}中,a1=1,a n+1=a n+c(c为常数,n∈N*),且a1,a2,a5成公比不为1的等比数列.(1)求c的值;(2)设,求数列{b n}的前n项和S n.考点:数列的求和;等比数列的性质.专题:计算题.分析:(1)利用递推关系判断出数列{a n}为等差数列,将a1,a2,a5用公差表示,据此三项成等比数列列出方程,求出c.(2)写出b n,据其特点,利用裂项的方法求出数列{b n}的前n项和S n.解答:解:(1)∵a n+1=a n+c∴a n+1﹣a n=c∴数列{a n}是以a1=1为首项,以c为公差的等差数列a2=1+c,a5=1+4c又a1,a2,a5成公比不为1的等比数列∴(1+c)2=1+4c解得c=2或c=0(舍)(2)由(1)知,a n=2n﹣1∴∴=点评:求数列的前n项和时,应该先求出通项,根据通项的特点,选择合适的求和方法.18.(12分)设a∈R,函数满足.(Ⅰ)求f(x)的单调递减区间;(Ⅱ)设锐角△ABC的内角A、B、C所对的边分别为a、b、c,且,求f (A)的取值范围.考点:余弦定理;三角函数中的恒等变换应用.专题:解三角形.分析:(Ⅰ)根据三角函数的公式将f(x)进行化简,然后求函数的单调递减区间;(Ⅱ)根据余弦定理将条件进行化简,即可得到f(A)的取值范围.解答:解:(I),由得:,∴.∴,由得:,k∈Z∴f(x)的单调递减区间为:.(II)∵,由余弦定理得:,即2acosB﹣ccosB=bcosC,由正弦定理得:2sinAcosB﹣sinCcosB=sinBcosC,2sinAcosB=sin(B+C)=sinA,即,∴∵△ABC锐角三角形,∴,,∴的取值范围为(1,2].点评:本题主要考查三角函数的图象和性质,以及正弦定理和余弦定理的应用,考查学生的计算能力.19.(12分)如图,在矩形ABCD中,AB=2AD=4,E是DC的中点,以AE为折痕将△ADE向上折起,使D到P点位置,且PC=PB.(Ⅰ)若F是BP的中点,求证:CF∥面APE;(Ⅱ)求证:面APE⊥面ABCE;(Ⅲ)求三棱锥C﹣PBE的体积.考点:平面与平面垂直的判定;棱柱、棱锥、棱台的体积;直线与平面平行的判定.专题:空间位置关系与距离.分析:(I)取AB中点G,连接GF,GC,证明平面APE∥平面FGC,可得CF∥面APE;(Ⅱ)取AE中点O,连接PO,取BC的中点H,连OH,PH,证明PO⊥面ABCE,即可证明面APE⊥面ABCE;(Ⅲ)利用等体积转化,即可求三棱锥C﹣PBE的体积.解答:(Ⅰ)证明:取AB中点G,连接GF,GC,∵EC∥AG,EC=AG,∴四边形AECG为平行四边形,∴AE∥GC,在△ABP中,GF∥AP,又GF∩GC=G,AE∩AP=A,∴平面APE∥平面FGC∵FC⊂平面FGC,∴CF∥面APE.…(4分)(Ⅱ)证明:取AE中点O,连接PO,则PA=PE,OA=OE,∴PO⊥AE,取BC的中点H,连OH,PH,∴OH∥AB,∴OH⊥BC,∵PB=PC,∴BC⊥PH,∴BC⊥面POH,∴BC⊥PO,又BC与AE相交,可得PO⊥面ABCE,所以,面APE⊥面ABCE.…(9分)(Ⅲ)解:.…(13分)点评:本题考查线面平行,考查面面垂直,考查三棱锥体积的计算,考查学生分析解决问题的能力,属于中档题.20.(13分)已知函数,且f(1)=1,f(﹣2)=4.(1)求a、b的值;(2)已知定点A(1,0),设点P(x,y)是函数y=f(x)(x<﹣1)图象上的任意一点,求|AP|的最小值,并求此时点P的坐标;(3)当x∈[1,2]时,不等式恒成立,求实数m的取值范围.考点:函数恒成立问题;函数最值的应用.专题:计算题;函数的性质及应用.分析:(1)由f(1)=1,f(﹣2)=4,代入可方程,解方程即可求解a,b得关于a,b的(2)由(1)可知,利用两点间的距离个公式代入,结合x的范围可求x+1=t<0,然后结合基本不等式式即可求解(3)问题即为对x∈[1,2]恒成立,即对x∈[1,2]恒成立,则0<m<1或m>2.法一:问题化为对x∈[1,2]恒成立,mx﹣m≤x2≤mx+m对x∈[1,2]恒成立,从而可转化为求解函数的最值,利用函数的单调性即可求解法二:问题即为对x∈[1,2]恒成立,即对x∈[1,2]恒成立,0<m<1或m>2.问题转化为x|x﹣m|≤m对x∈[1,2]恒成立,令g(x)=x|x﹣m|,结合函数的性质可求解答:解:(1)由f(1)=1,f(﹣2)=4.得解得:(3分)(2)由(1),所以,令x+1=t,t<0,则=因为x<﹣1,所以t<0,所以,当,所以,(8分)即AP的最小值是,此时,点P的坐标是.(9分)(3)问题即为对x∈[1,2]恒成立,也就是对x∈[1,2]恒成立,(10分)要使问题有意义,0<m<1或m>2.法一:在0<m<1或m>2下,问题化为对x∈[1,2]恒成立,即对x∈[1,2]恒成立,mx﹣m≤x2≤mx+m对x∈[1,2]恒成立,①当x=1时,或m>2,②当x≠1时,且对x∈(1,2]恒成立,对于对x∈(1,2]恒成立,等价于,令t=x+1,x∈(1,2],则x=t﹣1,t∈(2,3],,t∈(2,3]递增,∴,,结合0<m<1或m>2,∴m>2对于对x∈(1,2]恒成立,等价于令t=x﹣1,x∈(1,2],则x=t+1,t∈(0,1],,t∈(0,1]递减,∴,∴m≤4,∴0<m<1或2<m≤4,综上:2<m≤4(16分)法二:问题即为对x∈[1,2]恒成立,也就是对x∈[1,2]恒成立,(10分)要使问题有意义,0<m<1或m>2.故问题转化为x|x﹣m|≤m对x∈[1,2]恒成立,令g(x)=x|x﹣m|①若0<m<1时,由于x∈[1,2],故g(x)=x(x﹣m)=x2﹣mx,g(x)在x∈[1,2]时单调递增,依题意g(2)≤m,,舍去;②若m>2,由于x∈[1,2],故,考虑到,再分两种情形:(ⅰ),即2<m≤4,g(x)的最大值是,依题意,即m≤4,∴2<m≤4;(ⅱ),即m>4,g(x)在x∈[1,2]时单调递增,故g(2)≤m,∴2(m﹣2)≤m,∴m≤4,舍去.综上可得,2<m≤4(16分)点评:本题主要考查了利用待定系数法求解函数的解析式,及基本不等式在求解函数的值域中的应用,函数的恒成立问题与函数最值求解中的综合应用.21.(14分)已知函数f(x)=ax++c(a>0)的图象在点(1,f(1))处的切线方程为y=x﹣1.(1)试用a表示出b,c;(2)若f(x)≥lnx在[1,+∞)上恒成立,求a的取值范围;(3)证明:1+++…+>ln(n+1)+(n≥1).考点:数学归纳法;函数恒成立问题;利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.专题:计算题;证明题;分类讨论.分析:(1)通过函数的导数,利用导数值就是切线的斜率,切点在切线上,求出b,c即可.(2)利用f(x)≥lnx,构造g(x)=f(x)﹣lnx,问题转化为g(x)=f(x)﹣lnx≥0在[1,+∞)上恒成立,利用导数求出函数在[1,+∞)上的最小值大于0,求a的取值范围;(3)由(1)可知时,f(x)≥lnx在[1,+∞)上恒成立,则当时,在[1,+∞)上恒成立,对不等式的左侧每一项裂项,然后求和,即可推出要证结论.解法二:利用数学归纳法的证明步骤,证明不等式成立即可.解答:解:(1)∵,∴∴f(1)=a+a﹣1+c=2a﹣1+c.又∵点(1,f(1))在切线y=x﹣1上,∴2a﹣1+c=0⇒c=1﹣2a,∴.(2)∵,f(x)≥lnx在[1,+∞)上恒成立,设g(x)=f(x)﹣lnx,则g(x)=f(x)﹣lnx≥0在[1,+∞)上恒成立,∴g(x)min≥0,又∵,而当时,.1°当即时,g'(x)≥0在[1,+∞)上恒成立,∴;2°当即时,g'(x)=0时;且时,g'(x)<0,当时,g'(x)>0;则①,又∵与①矛盾,不符题意,故舍.∴综上所述,a的取值范围为:[,+∞).(3)证明:由(2)可知时,f(x)≥lnx在[1,+∞)上恒成立,则当时,在[1,+∞)上恒成立,令x依次取…时,则有,,…,由同向不等式可加性可得,即,也即,也即1+++…+>ln(n+1)+(n≥1).解法二:①当n=1时左边=1,右边=ln2+<1,不等式成立;②假设n=k时,不等式成立,就是1+++…+>ln(k+1)+(k≥1).那么1+++…++>ln(k+1)++=ln(k+1)+.由(2)知:当时,有f(x)≥lnx (x≥1)令有f(x)=(x≥1)令x=得∴∴1+++…++>这就是说,当n=k+1时,不等式也成立.根据(1)和(2),可知不等式对任何n∈N*都成立.点评:本题是难题,考查函数与导数的关系,曲线切线的斜率,恒成立问题的应用,累加法与裂项法的应用,数学归纳法的应用等知识,知识综合能力强,方法多,思维量与运算量以及难度大,需要仔细审题解答,还考查分类讨论思想.。
2014-2015学年高二上学期期中考试数学试题 Word版含答案

高二上学期期中考试数学试题一、填空题:本大题共14小题,每小题5分,共70分1.把命题“012,0200<+-∈∃x x R x ”的否定写在横线上__________. 2的倾斜角是 .3.已知一个球的表面积为264cm π,则这个球的体积为4. “两条直线不相交”是“两条直线是异面直线”的 条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中的一个)5.若直线l 1:ax +2y +6=0与直线l 2:x +(a -1)y +(a 2-1)=0平行,则实数a =________. 6.若圆的方程为x 2+y 2+kx +2y +k 2=0,则当圆的面积最大时,圆心坐标为________. 7.已知圆锥的底面半径是3,高为4,这个圆锥的侧面积是________. 8.经过点(2,1)A 且到原点的距离等于2的直线方程是____________.9.设,αβ为使互不重合的平面,,m n 是互不重合的直线,给出下列四个命题: ①//,,//m n n m αα⊂若则 ②,,//////m n m n ααββαβ⊂⊂若,,则 ③//,,//m n m n αβαβ⊂⊂若,则 ④若,,,,m n n m n αβαβαβ⊥⋂=⊂⊥⊥则; 其中正确命题的序号为 .10. 圆心在直线02=-y x 上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为32,则圆C 的标准方程为 .11. 在正三棱柱111C B A ABC -中,各棱长均相等,C B BC 11与的交点为D ,则AD 与平面C C BB11所成角的大小是_______.12.若圆C:222430x y x y ++-+=关于直线260ax by ++=对称,则由点(,)a b 向圆所作的切线长的最小值是13.如图是一个正方体的表面展开图,A 、B 、C 均为棱的中点,D 是顶点,则在正方体中,异面直线AB 和CD 的夹角的余弦值为 。
(完整word版)乐山市2014年中考数学试题及答案,推荐文档

②有放回的连续摸 10次,则一定摸出 2 号球两次;
③有放回的连续摸 4 次,则摸出四球标号数字之和可能是 20 .
其中正确的序号是
.
( 2)若从袋中不放回地摸两次,求两球标号数字是一奇一偶的概率.
21.如图 9 ,在梯形 ABCD 中, AD ∥ BC , ADC 90 , B 30 , CE AB ,垂足 为点 E ,若 AD 1, AB 2 3 ,求 CE 的长.
AC
D
F
B
E
C
ቤተ መጻሕፍቲ ባይዱ图8
四、本大题共 3 小题,每小题 10 分,共 30 分,其中第 22 题为选做题.
20.在一个不透明的口袋里装有标号为 1, 2 , 3 , 4 , 5的五个小球,除数字不同外,小球没
有任何区别,摸球前先搅拌均匀,每次摸一个球.
( 1)下列说法:
①摸一次,摸出 1号球和摸出 5 号球的概率相同;
6.若不等式 ax 2 0 的解集为 x 2 ,则方程 ay 2 0 的解为( )
Ay 1
By 1
Cy 2
Dy 2
7.如图 3 , ABC 的顶点 A 、 B 、 C 在边长为 1的正方形网格的格点上, BD AC 于点 D ,
则 BD 的长为( )
A
A2 5
B3 5
3
4
D
C4 5
D3 5
B
C
5
5
图3
原点.
则( 1) d(O , P0 ) = ▲ ; ( 2)若 P(a, 3) 到直线 y x 1的直角距离为 6 ,则 a
▲
.
三、本大题共 3 小题,每小题 9 分,共 27 分 .
0
2
高二上学期期中考试数学试卷含答案

高二级上学期期中考试题数学本试卷共8页,22小题,满分150分,考试时间120分钟。
第一部分选择题(共60分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线l 1:2x +my =2,l 2:m 2x +2y =1,且l 1⊥l 2,则m 的值为( )A .0B .-1C .0或1D .0或-12.若一个圆锥的轴截面是面积为1的等腰直角三角形,则该圆锥的侧面积为( )A.2π B .22π C .2πD .4π3.把正方形ABCD 沿对角线AC 折起,当以A ,B ,C ,D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成角的大小为( )A .90°B .60°C .45°D .30°4.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A B C D 5.下列命题中,正确的是( )A .任意三点确定一个平面B .三条平行直线最多确定一个平面C .不同的两条直线均垂直于同一个平面,则这两条直线平行D .一个平面中的两条直线与另一个平面都平行,则这两个平面平行6.已知M (3,23),N (-1,23),F (1,0),则点M 到直线NF 的距离为( )A. 5 B .23 C . 22D .3 37.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是( )A .20πB .16πC .32πD .24π8.直线:20l x y ++=分别与x 轴、y 轴交于A 、B 两点,点P 在圆22(2)2x y -+=上, 则ABP △面积的取值范围是( ) A .[]26,B .[]48,C .D .⎡⎣二、多选题:本题共4小题,每小题5分,共20分.9.若220x x --<是2x a -<<的充分不必要条件,则实数a 的值可以是( ) A .1B .2C .3D .410.已知,αβ是两个不重合的平面,,m n 是两条不重合的直线,则下列命题正确的是( ) A .若//m n m α⊥,,则n α⊥ B .若//,m n ααβ⋂=,则//m n C .若m α⊥,m β⊥,则//αβ D .若,//,m m n n αβ⊥⊥,则//αβ 11.若直线过点(1,2)A ,且在两坐标轴上截距的绝对值相等,则直线l 方程可能为( ) A .10x y -+=B .30x y +-=C .20x y -=D .10x y --=12.已知四棱锥P ABCD -,底面ABCD 为矩形,侧面PCD ⊥平面ABCD ,BC =CD PC PD ===.若点M 为PC 的中点,则下列说法正确的为( )A .BM ⊥平面PCDB .//PA 面MBDC .四棱锥M ABCD -外接球的表面积为36π D .四棱锥M ABCD -的体积为6第二部分非选择题(90分)三、填空题:本题共4小题,每小题5分,共20分.13.命题“20210x x x ∃<-->,”的否定是______________.14.已知直线l 1的方程为23y x =-+,l 2的方程为42y x =-,直线l 与l 1平行且与l 2在y 轴上的截距相同,则直线l 的斜截式方程为________________.15.若直线:l y kx =与曲线:1M y =+有两个不同交点,则k 的取值范围是________________.16.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的体积为____________.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知直线l 1的方程为x +2y -4=0,若l 2在x 轴上的截距为32,且l 1⊥l 2.(1)求直线l 1与l 2的交点坐标;(2)已知直线l 3经过l 1与l 2的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求l 3的方程.18.(本小题满分12分)四棱锥P-ABCD 的底面ABCD 为直角梯形,AB ∥CD ,AB ⊥AD ,AB =12CD =1,P A ⊥平面ABCD ,P A =AD = 3.(1)求证:PD ⊥AB ;(2)求四棱锥P-ABCD 的体积.19.(本小题满分12分)已知圆C 的圆心坐标为(a ,0),且圆C 与y 轴相切. (1)已知a =1,M (4,4),点N 是圆C 上的任意一点,求|MN |的最小值;(2)已知a <0,直线l 的斜率为43,且与y 轴交于点20,3⎛⎫- ⎪⎝⎭.若直线l 与圆C 相离,求a 的取值范围.20.(本小题满分12分)在直三棱柱ABC-A 1B 1C 1中,AB =5,AC =3,BC =4,点D 是线段AB 上的动点.(1)当点D 是AB 的中点时,求证:AC 1∥平面B 1CD ;(2)线段AB 上是否存在点D ,使得平面ABB 1A 1⊥平面CDB 1?若存在,试求出AD 的长度;若不存在,请说明理由.21. (本小题满分12分) 如图,多面体ABCDEF 中,四边形ABCD 是菱形,060ABC ∠=,FA ⊥平面ABCD ,//,2 2.FA ED AB FA ED ===求二面角F BC A --的大小的正切值;求点E 到平面AFC 的距离;求直线FC 与平面ABF 所成的角的正弦值.22. (本小题满分12分)已知圆22+=9:O x y ,过点()0,2P -任作圆O 的两条相互垂直的弦AB 、CD ,设M 、N 分别是AB 、CD 的中点,(1)直线MN 是否过定点? 若过,求出该定点坐标,若不过,请说明理由; (2)求四边形ACBD 面积的最大值,并求出对应直线AB 、CD 的方程.高二级上学期期中考试题 数学答案及说明一、选择题:1.D ,2.A ,3.C ,4.B ,5.C ,6.B ,7.D ,8.A ,9.BCD ,10.ACD ,11.ABC ,12.BC.二、填空题:13.0x ∀<,2210x x --≤;14.y =-2x -2;15.13,24⎡⎫⎪⎢⎣⎭;16.36π.题目及详细解答过程:一、单选题(本题共8小题,每小题5分,共40分)1.已知直线l 1:2x +my =2,l 2:m 2x +2y =1,且l 1⊥l 2,则m 的值为( ) A .0 B .-1 C .0或1 D .0或-1 解析:因为l 1⊥l 2,所以2m 2+2m =0,解得m =0或m =-1. 答案:D2.若一个圆锥的轴截面是面积为1的等腰直角三角形,则该圆锥的侧面积为( ) A.2π B .22π C .2π D .4π 解析:设底面圆的半径为r ,高为h ,母线长为l ,由题可知,r =h =22l ,则12(2r )2=1,r =1,l =2.所以圆锥的侧面积为πrl =2π. 答案:A3.把正方形ABCD 沿对角线AC 折起,当以A ,B ,C ,D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成角的大小为( )A .90°B .60°C .45°D .30°解析:当三棱锥D ABC 体积最大时,平面DAC ⊥平面ABC .取AC 的中点O ,则∠DBO 即为直线BD 和平面ABC 所成的角.易知△DOB 是等腰直角三角形,故∠DBO =45°.答案:C4.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A B C D 【答案】B【解析】由于圆上的点()2,1在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =,所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为121132555d ⨯--==; 圆心到直线的距离均为22553255d ⨯--== 圆心到直线230x y --=的距离均为22555d -==; 所以,圆心到直线230x y --=25. 故选:B .5.下列命题中,正确的是( ) A .任意三点确定一个平面 B .三条平行直线最多确定一个平面C .不同的两条直线均垂直于同一个平面,则这两条直线平行D .一个平面中的两条直线与另一个平面都平行,则这两个平面平行 解析:由线面垂直的性质,易知C 正确. 答案:C6.已知M (3,23),N (-1,23),F (1,0),则点M 到直线NF 的距离为( ) A. 5 B .23 C . 22D .3 3解析:易知NF 的斜率k =-3,故NF 的方程为y =-3(x -1),即3x +y -3=0. 所以M 到NF 的距离为|33+23-3|(3)2+12=2 3. 答案:B7.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是( )A .20πB .16πC .32πD .24π解析:由题意知正四棱柱的底面积为4,所以正四棱柱的底面边长为2,正四棱柱的底面对角线长为22,正四棱柱的对角线为2 6.而球的直径等于正四棱柱的对角线,即2R =2 6.所以R = 6.所以S 球=4πR 2=24π. 答案:D8.直线:20l x y ++=分别与x 轴、y 轴交于A 、B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是( ) A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,【答案】A 【解析】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,()()2,0,0,2A B ∴--,则22AB =.点P 在圆22(2)2x y -+=上,∴圆心为(2,0),则圆心到直线的距离1202222d ++==.故点P 到直线20x y ++=的距离2d 的范围为2,32⎡⎤⎣⎦,则[]22122,62ABP S AB d d ==∈△.故答案为A.二、多选题(每题5分,共20分)9.若220x x --<是2x a -<<的充分不必要条件,则实数a 的值可以是( ) A .1B .2C .3D .4【答案】BCD【解析】:由220x x --<,解得12x -<<.又220x x --<是2x a -<<的充分不必要条件,(1∴-,2)(2-,)a ,则2a .∴实数a 的值可以是2,3,4.故选:BCD .10.已知,αβ是两个不重合的平面,,m n 是两条不重合的直线,则下列命题正确的是( ) A .若//m n m α⊥,,则n α⊥ B .若//,m n ααβ⋂=,则//m n C .若m α⊥,m β⊥,则//αβ D .若,//,m m n n αβ⊥⊥,则//αβ 【答案】ACD 【解析】若m α⊥,则,a b α∃⊂且a b P =使得m a ⊥,m b ⊥,又//m n ,则n a ⊥,n b ⊥,由线面垂直的判定定理得n α⊥,故A 对; 若//m α,n αβ=,如图,设m AB =,平面1111D C B A 为平面α,//m α,设平面11ADD A 为平面β,11A D n αβ⋂==,则m n ⊥,故B 错;垂直于同一条直线的两个平面平行,故C 对;若,//m m n α⊥,则n α⊥,又n β⊥,则//αβ,故D 对; 故选:ACD .11.若直线过点(1,2)A ,且在两坐标轴上截距的绝对值相等,则直线l 方程可能为( ) A .10x y -+= B .30x y +-= C .20x y -= D .10x y --=【答案】ABC【解析】:当直线经过原点时,斜率为20210k -==-,所求的直线方程为2y x =,即20x y -=; 当直线不过原点时,设所求的直线方程为x y k ±=,把点(1,2)A 代入可得12k -=,或12k +=,求得1k =-,或3k =,故所求的直线方程为10x y -+=,或30x y +-=; 综上知,所求的直线方程为20x y -=、10x y -+=,或30x y +-=. 故选:ABC .12.已知四棱锥P ABCD -,底面ABCD 为矩形,侧面PCD ⊥平面ABCD ,23BC =,26CD PC PD ===.若点M 为PC 的中点,则下列说法正确的为( )A .BM ⊥平面PCDB .//PA 面MBDC .四棱锥M ABCD -外接球的表面积为36π D .四棱锥M ABCD -的体积为6 【答案】BC【解析】作图在四棱锥P ABCD -中:为矩形,由题:侧面PCD ⊥平面ABCD ,交线为CD ,底面ABCDBC CD ⊥,则BC ⊥平面PCD ,过点B 只能作一条直线与已知平面垂直,所以选项A错误;连接AC 交BD 于O ,连接MO ,PAC ∆中,OM ∥PA ,MO ⊆面MBD ,PA ⊄面MBD ,所以//PA 面MBD ,所以选项B 正确;四棱锥M ABCD -的体积是四棱锥P ABCD -的体积的一半,取CD 中点N ,连接PN ,PN CD ⊥,则PN平面ABCD ,32PN =,四棱锥M ABCD -的体积112326321223M ABCD V -=⨯⨯⨯⨯=所以选项D 错误.矩形ABCD 中,易得6,3,3AC OC ON ===,PCD 中求得:16,2NM PC ==在Rt MNO 中223MO ON MN =+=即: OM OA OB OC OD ====,所以O 为四棱锥M ABCD -外接球的球心,半径为3, 所以其体积为36π,所以选项C 正确, 故选:BC三、填空题(每题5分,共20分)13.命题“20210x x x ∃<-->,”的否定是______. 【答案】0x ∀<,2210x x --≤【解析】因为特称命题的否定是全称命题,所以,命题20210x x x ∃<-->,, 则该命题的否定是:0x ∀<,2210x x --≤ 故答案为:0x ∀<,2210x x --≤.14.已知直线l 1的方程为23y x =-+,l 2的方程为42y x =-,直线l 与l 1平行且与l 2在y 轴上的截距相同,则直线l 的斜截式方程为________________.解析:由斜截式方程知直线l 1的斜率k 1=-2,又l ∥l 1,所以l 的斜率k =k 1=-2.由题意知l 2在y 轴上的截距为-2,所以l 在y 轴上的截距b =-2.由斜截式方程可得直线l 的方程为y =-2x -2.答案:y =-2x -215.若直线:l y kx =与曲线()2:113M y x =+--有两个不同交点,则k 的取值范围是________________.解析:曲线M :y =1+1-(x -3)2是以(3,1)为圆心,1为半径的,且在直线y =1上方的半圆.要使直线l 与曲线M 有两个不同交点,则直线l 在如图所示的两条直线之间转动,即当直线l 与曲线M 相切时,k 取得最大值34;当直线l 过点(2,1)时,k 取最小值12.故k 的取值范围是13,24⎡⎫⎪⎢⎣⎭. 答案:13,24⎡⎫⎪⎢⎣⎭16.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的体积为____________.解析:如图,连接OA ,OB .由SA =AC ,SB =BC ,SC 为球O 的直径,知OA ⊥SC ,OB ⊥SC .又由平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,知OA ⊥平面SCB . 设球O 的半径为r ,则OA =OB =r ,SC =2r ,所以三棱锥S ABC 的体积为311323r V SC OB OA ⎛⎫=⨯⋅⋅= ⎪⎝⎭,即r 33=9.所以r =3.所以3344336.33=O V r πππ=⨯=球答案:36π四、解答题(每题5分,共70分)17.(本小题满分10分)已知直线l 1的方程为x +2y -4=0,若l 2在x 轴上的截距为32,且l 1⊥l 2.(1)求直线l 1与l 2的交点坐标;(2)已知直线l 3经过l 1与l 2的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求l 3的方程. 解:(1)设l 2的方程为2x -y +m =0,..........1分因为l 2在x 轴上的截距为32,所以3-0+m =0,m =-3,即l 2:2x -y -3=0.....3分联立⎩⎪⎨⎪⎧x +2y -4=0,2x -y -3=0,得⎩⎪⎨⎪⎧x =2,y =1.所以直线l 1与l 2的交点坐标为(2,1)...........5分 (2)当l 3过原点时,l 3的方程为y =12x ..........6分当l 3不过原点时,设l 3的方程为12x y a a +=...........7分 又直线l 3经过l 1与l 2的交点,所以2112a a+=, 得52a =,l 3的方程为2x +y -5=0...........8分 综上,l 3的方程为y =12x 或2x +y -5=0...........10分18.(本小题满分12分)四棱锥P-ABCD 的底面ABCD 为直角梯形,AB ∥CD ,AB ⊥AD ,AB =12CD =1,PA ⊥平面ABCD ,PA =AD = 3.(1)求证:PD ⊥AB ;(2)求四棱锥P-ABCD 的体积.18.解:(1)证明:因为PA ⊥平面ABCD ,AB ⊂平面ABCD ,所以PA ⊥AB ,..........1分又因为AB ⊥AD ,AD ∩PA =A ,..........3分 所以AB ⊥平面PAD ,..........4分又PD ⊂平面PAD ,..........5分所以AB ⊥PD ...........6分 (2)解:S 梯形ABCD =12(AB +CD )·AD =332,.......8分又PA ⊥平面ABCD ,..........9分所以V 四棱锥P-ABCD =13×S 梯形ABCD ·PA =13×332×3=32...........12分19.(本小题满分12分)已知圆C 的圆心坐标为(a ,0),且圆C 与y 轴相切. (1)已知a =1,M (4,4),点N 是圆C 上的任意一点,求|MN |的最小值; (2)已知a <0,直线l 的斜率为43,且与y 轴交于点20,3⎛⎫- ⎪⎝⎭.若直线l与圆C 相离,求a 的取值范围.19.解:(1)由题意可知,圆C 的方程为(x -1)2+y 2=1...........2分又|MC |=(4-1)2+(4-0)2=5,..........4分 所以|MN |的最小值为5-1=4...........5分(2)因为直线l 的斜率为43,且与y 轴相交于点20,3⎛⎫- ⎪⎝⎭,所以直线l 的方程为y =43x -23.即4x -3y -2=0..........7分因为直线l 与圆C 相离,所以圆心C (a ,0)到直线l 的距离d >r . 则224243a a ->+.........9分又0a <,所以245a a ->-,解得2a >-..........11分 所以a 的取值范围是(-2,0)..........12分20.(本小题满分12分)在直三棱柱ABC-A 1B 1C 1中,AB =5,AC =3,BC =4,点D 是线段AB 上的动点. (1)当点D 是AB 的中点时,求证:AC 1∥平面B 1CD ;(2)线段AB 上是否存在点D ,使得平面ABB 1A 1⊥平面CDB 1?若存在,试求出AD 的长度;若不存在,请说明理由.20.解:(1)证明:如图,连接BC 1,交B 1C 于点E ,连接DE ,则点E 是BC 1的中点,又点D 是AB 的中点,由中位线定理得DE ∥AC 1,.........1分 因为DE ⊂平面B 1CD ,.........2分AC 1⊄平面B 1CD ,.........3分所以AC 1∥平面B 1CD ..........4分(2)解:当CD ⊥AB 时,平面ABB 1A 1⊥平面CDB 1........5分 证明:因为AA 1⊥平面ABC ,CD ⊂平面ABC , 所以AA 1⊥CD ..........6分又CD ⊥AB ,AA 1∩AB =A ,.........7分所以CD ⊥平面ABB 1A 1,因为CD ⊂平面CDB 1,.........8分 所以平面ABB 1A 1⊥平面CDB 1,.........9分故点D 满足CD ⊥AB 时,平面ABB 1A 1⊥平面CDB 1......10分 因为AB =5,AC =3,BC =4,所以AC 2+BC 2=AB 2, 故△ABC 是以角C 为直角的三角形, 又CD ⊥AB ,所以AD =95..........12分22. (本小题满分12分) 如图,多面体ABCDEF 中,四边形ABCD 是菱形,060ABC ∠=,FA ⊥平面ABCD ,//,2 2.FA ED AB FA ED ===求二面角F BC A --的大小的正切值;求点E 到平面AFC 的距离;求直线FC 与平面ABF 所成的角的正弦值.21.解: 作于点G ,连接FG , 四边形ABCD 是菱形,,,为等边三角形,,-----1分平面ABCD ,平面ABCD ,,又,,平面AFG ,BC FG ∴⊥-----2分 G∴为二面角的平面角,------3分----------------------------4分连接AE ,设点E 到平面AFC 的距离为h , 则, ----------------------5分即,也就是,--------------------6分解得:; ------------------------------------------------7分(3)作CH AB ⊥于点H ,连接FH ,ABC ∆为等边三角形,H ∴为AB 的中点,221,3,5,AH CH FH FA AH ===+= FA ⊥平面ABCD ,CH ⊂平面ABCD ,FA CH ∴⊥,----8分 又,CH AB AB AF A ⊥⋂=,CH ∴⊥平面ABF ,-----9分CFH ∴∠为直线FC 与平面ABF 所成的角,-------10分36sin 422CH CFH CF ∴∠===.-----------------12分 22.(本小题满分12分)已知圆22+=9:O x y ,过点()0,2P -任作圆O 的两条相互垂直的弦AB 、CD ,设M 、N 分别是AB 、CD 的中点,(1)直线MN 是否过定点?若过,求出该定点坐标,若不过,请说明理由; (2)求四边形ACBD 面积的最大值,并求出对应直线AB 、CD 的方程.22.解:(1)当直线AB CD 、的斜率存在且不为0,设直线AB 的方程为:()()()112220,,,,y kx k A x y B x y =-≠------------1分由2229+=y kx x y =-⎧⎨⎩得:()221450k x kx +--=--------------------2分 点()0,2P -在圆内,故0∆>. 又 1212222422,21211M M Mx x k k x x x y kx k k k +∴+=∴===-=-+++ 即 2222,11kM k k ⎛⎫- ⎪++⎝⎭--------------------3分AB CD ⊥以1k -代换k 得22222,11k k N k k ⎛⎫-- ⎪++⎝⎭22222222111.22211MNk k k k k k k k k k -+-++∴==+++---------------4分∴直线MN 的方程为:222212121k k y x k k k -⎛⎫+=- ⎪++⎝⎭化简得2112k y x k-=-,故直线MN 恒过定点()01-,--------------------5分 当直线AB CD 、的斜率不存在或为0时,显然直线MN 恒过定点()01-, 综上,直线MN 恒过定点()01-,--------------------.6分 (2) 解法一:圆心O 到直线AB的距离1d =AB ==分 (或由第(1)问得:21AB x =-==以1k -代换k 得CD =)AB CD ⊥∴以1k -代换k 得:CD =分12ACBD S AB CD ∴=⋅==分14=≤= 当且仅当221,1k k k==±时,取等号,故四边形ACBD 面积的最大值为14,--------------------11分对应直线AB 、CD 分别为2,2y x y x =-=--或2,2y x y x =--=-----------12分 解法二:设圆心O 到直线AB 、CD 的距离分别为12,d d 、则22222211229,9AB r d d CD r d d =-=-=-=---------------------7分AB CD ⊥222124d d OP ∴+==--------------------8分()()()2222121221991821818414ACBD S AB CD d d d d OP ∴=⋅=≤-+-=-+=-=-=--------------------10分当且仅当12d d =,即1k =±时,取等号,故四边形ACBD 面积的最大值为14,--------------------11分对应直线AB 、CD 分别为2,2y x y x =-=--或2,2y x y x =--=---------12分。
四川省乐山市2014年中考数学真题试题(解析版)

四川省乐山市2014年中考数学真题试题(解析版)一、选择题(每小题3分,共30分)1.-2的绝对值是()A. 2 B.-2 C.12D.122.如图,OA是北偏东30°方向的一条射线,若射线OB与射线OA垂直,则OB的方位角是()A.北偏西30°B.北偏西60°C.东偏北30°D.东偏北60°若射线OB与射线OA垂直,∴∠AOB=90°,∠1=60°,OB是北偏西60°,故选B.【考点】方向角.3.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需()A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D. 5(a+b)元【考点】列代数式.4.如图所示的立体图形,它的正视图是()【考点】简单组合体的三视图.5.如表是10支不同型号签字笔的相关信息,则这10支签字笔的平均价格是()A. 1.4元 B.1.5元 C. 1.6元 D. 1.7元【考点】加权平均数.6.若不等式ax-2>0的解集为x<-2,则关于y的方程ay+2=0的解为()A. y=-1 B. y=1 C. y=-2 D. y=2【考点】1.解一元一次不等式;2.一元一次方程的解.7.如图,△ABC 的顶点A 、B 、C 在边长为1的正方形网格的格点上,BD ⊥AC 于点D .则CD 的长为( )A .3 B .4 C .5 D . 58.反比例函数y=kx与一次函数y=kx-k+2在同一直角坐标系中的图象可能是( )【考点】1.反比例函数的图象;2.一次函数的图象.9.在△ABC 中,AB=AC=5,sinB=45,⊙O 过点B 、C 两点,且⊙O 半径OA 的值( ) A . 3或5 B . 5 C . 4或5 D . 4 【答案】A. 【解析】 试题分析:如图,作AD ⊥BC 于D , ∵AB=AC=5, ∴AD 垂直平分BC , ∴点O 在直线AD 上,故选A.【考点】1.垂径定理;2.等腰三角形的性质;3.勾股定理;4.解直角三角形.10.如图,点P(-1,1)在双曲线上,过点P的直线l1与坐标轴分别交于A、B两点,且tan∠BAO=1.点M是该双曲线在第四象限上的一点,过点M的直线l2与双曲线只有一个公共点,并与坐标轴分别交于点C、点D.则四边形ABCD的面积最小值为()A. 10 B. 8 C.6 D.不确定【答案】B.【解析】试题分析:设反比例函数的解析式为y=kx,∵点P(-1,1)在反比例函数y=kx的图象上,∴k=xy=-1.∴反比例函数的解析式为y=-1x.设直线l1的解析式为y=mx+n,当x=0时,y=n,则点B的坐标为(0,n),OB=n.当y=0时,x=-n m ,则点A 的坐标为(-n m ,0),OA=n m.设直线l2的解析式为y=bx+c , 则ab+c=-1a. ∴c=-1a -ab . ∴y=bx-1a-ab .∵直线y=bx-1a -ab 与双曲线y=-1x 只有一个交点,∴方程bx-1a -ab=-1x 即bx2-(1a +ab )x+1=0有两个相等的实根.∴[-(1a +ab )]2-4b=(1a +ab )2-4b=(1a -ab )2=0.∴1a =ab . ∴b=21a,c=-2a .∴直线l2的解析式为y=21ax-2a .∴当x=0时,y=-2a ,则点D 的坐标为(0,-2a);当y=0时,x=2a ,则点C 的坐标为(2a ,0). ∴AC=2a-(-2)=2a+2,BD=2-(-2a )=2+2a.故选B.【考点】反比例函数综合题.二、填空题(每小题3分,共18分)11.当分式12x有意义时,x的取值范围为【考点】分式有意义的条件.12.期末考试后,小红将本班50名学生的数学成绩进行分类统计,得到如图的扇形统计图,则优生人数为.13.若a=2,a-2b=3,则2a2-4ab的值为14.如图,在△ABC中,BC边的中垂线交BC于D,交AB于E.若CE平分∠ACB,∠B=40°,则∠A= 度.∴∠ACB=2∠BCE=80°,∴∠A=180°-∠B-∠ACB=60°.【考点】线段垂直平分线的性质.15.如图.在正方形ABCD的边长为3,以A为圆心,2为半径作圆弧.以D为圆心,3为半径作圆弧.若图中阴影部分的面积分为S1、S2.则S1-S2= .【答案】154-9.【解析】【考点】整式的加减.16.对于平面直角坐标系中任意两点P1(x1,y1)、P2(x2,y2),称|x1-x2|+|y1-y2|为P1、P2两点的直角距离,记作:d(P1,P2).若P0(x0,y0)是一定点,Q(x,y)是直线y=kx+b上的一动点,称d (P0,Q)的最小值为P0到直线y=kx+b的直角距离.令P0(2,-3).O为坐标原点.则:(1)d(O,P0)= ;(2)若P(a,-3)到直线y=x+1的直角距离为6,则a= .【答案】(1)5;(2)2或-10.【解析】试题分析:(1)根据题中所给出的两点的直角距离公式即可得出结论;(2)先根据题意得出关于x的式子,再由绝对值的几何意义即可得出结论.【考点】1.一次函数图象上点的坐标特征;2.点的坐标.三、每小题9分,共27分17.(2π-2014)0-2cos30°-(12)-1.【考点】实数的混合运算.18.解方程:311xx x-=-.【考点】解分式方程.19.如图,在△ABC中,AB=AC,四边形ADEF是菱形,求证:BE=CE.【答案】证明见解析.【解析】∴BE=CE.【考点】1.菱形的性质;2.全等三角形的判定与性质.四、每小题10分,共30分20.在一个不透明的口袋里有标号为1,2,3,4,5的五个小球,除数字不同外,小球没有任何区别,摸球前先搅拌均匀,每次摸一个球.(1)下列说法:①摸一次,摸出一号球和摸出5号球的概率相同;②有放回的连续摸10次,则一定摸出2号球两次;③有放回的连续摸4次,则摸出四个球标号数字之和可能是20.其中正确的序号是.(2)若从袋中不放回地摸两次,求两球标号数字是一奇一偶的概率.【答案】(1)①③;(2)35.【解析】试题分析:(1)①1号与5号球摸出概率相同,正确;②不一定摸出2号球,错误;③5+5+5+5=20,可能,所有等可能的情况有20种,其中数字是一奇一偶的情况有12种,则P(一奇一偶)=123 205.【考点】列表法与树状图法.21.如图,在梯形ABCD中,AD∥BC,∠ADC=90°,∠B=30°,CE⊥AB,垂足为点E.若AD=1,AB=2求CE的长.【答案】2.【解析】在△ABH中,∠B=30°,,∴cos30°=BH AB,即=3,∴BC=BH+BC=4,∵CE⊥AB,∴CE=12BC=2.【考点】1.直角梯形;2.矩形的判定与性质;3.解直角三角形.22.已知a为大于2的整数,若关于x的不等式202x ax-≤⎧⎨≥⎩无解.(1)求a的值;(2)化简并求222(1)a aa a---+的值.∵原式=945 33 -=.【考点】1.解一元一次不等式组;2.分式的化简求值.23.如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求四边形ABCM的面积.【答案】(1)6;(2)10.【解析】试题分析:(1)由四边形ABCD为平行四边形,得到对边平行且相等,且对角线互相平分,根据两直线平行内错角相等得到两对角相等,进而确定出三角形MND与三角形BCN相似,由相似得比例,得到DN:∴12DNBN,即BN=2DN,设OB=OD=x,则有BD=2x,BN=OB+ON=x+1,DN=x-1,∴x+1=2(x-1),解得:x=3,∴BD=2x=6;(2)∵△MND∽△CNB,且相似比为1:2,∴MN:CN=1:2,∴S△MND:S△CND=1:4,∵△DCN的面积为2,∴△MND面积为0.5,∴△MCD面积为2.5,∵S平行四边形ABCD=AD•h,S△MCD=MD•h=AD•h,∴S平行四边形ABCD=4S△MCD=10.【考点】1.相似三角形的判定与性质;2.平行四边形的性质.五、每小题10分,共20分24.某校一课外小组准备进行“绿色环保”的宣传活动,需要制作宣传单,校园附近有甲、乙两家印刷社,制作此种宣传单的收费标准如下:甲印刷社收费y(元)与印制数x(张)的函数关系如下表:乙印刷社的收费方式为:500张以内(含500张),按每张0.20元收费;超过500张部分,按每张0.10元收费.(1)根据表中规律,写出甲印刷社收费y(元)与印数x(张)的函数关系式;(2)若该小组在甲、乙两家印刷社共印制400张宣传单,用去65元,问甲、乙两家印刷社个印多少张?(3)活动结束后,市民反应良好,兴趣小组决定再加印800张宣传单,若在甲、乙印刷社中选一家,兴趣小组应选择哪家印刷社比较划算?∴y=0.15x.∴甲印刷社收费y(元)与印数x(张)的函数关系式为y=0.15x;(2)设在甲印刷社印刷a张,则在乙印刷社印刷(400-a)张,由题意,得【考点】一次函数的应用.25.如图,一次函数y=kx+b的图象l与坐标轴分别交于点E、F与双曲线,y=-4x(x<0)交于点P(-1,n),且F是PE的中点.(1)求直线l的解析式;(2)若直线x=a与l交于点A,与双曲线交于点B(不同于A),问a为何值时,PA=PB?试题解析:由P(-1,n)在y=-4x,得n=4,∴P(-1,4),∵F为PE中点,∴OF=12n=2,∴F(0,2),又∵P,F在y=kx+b上,∴42k bb-+=⎧⎨=⎩,∵PA=PB,∴点D为AB的中点,又由题意知A点的纵坐标为-2a+2,B点的纵坐标为-4a,D点的纵坐标为4,∴得方程-2a+2-4a=4×2,解得a1=-2,a2=-1(舍去).∴当a=-2时,PA=PB.【考点】反比例函数与一次函数的交点问题.六、26题12分,27题13分,共25分26.如图,⊙O1与⊙O2外切与点D,直线l与两圆分别相切于点A、B,与直线O1、O2相交于点M,且tan∠AM01(1)求⊙O2的半径;(2)求△ADB内切圆的面积;(3)在直线l上是否存在点P,使△MO2P相似于△MDB?若存在,求出PO2的长;若不存在,请说明理由.【答案】(2) (π;(3) 8或【解析】试题分析:(1)连结O1A、O2B,设⊙O1的半径为r,⊙O2的半径为R,根据两圆相切的性质得到直线O1O2过点D,则MO2=MD+O2+R,再根据切线的性质由直线l与两圆分别相切于点A、B得到O1A ⊥AB,O2B⊥AB,似比可计算出O2P=8.试题解析:(1)连结O1A、O2B,如图,设⊙O1的半径为r,⊙O2的半径为R,∵⊙O1与⊙O2外切与点D,∴直线O1O2过点D,∴MO2=MD+O2+R,∵直线l与两圆分别相切于点A、B,∴O1A⊥AB,O2B⊥AB,∵tan∠AM01=3,∴∠AM01=30°,∴∠O1AD=∠O1DA,∴∠O1AD=12∠MO1A=30°,∴∠DAB=60°,∴∠ADB=180°-30°-60°=90°,综上所述,满足条件的O2P的长为8或.【考点】圆的综合题.27.如图,抛物线y=x2-2mx(m>0)与x轴的另一个交点为A,过P(1,-m)作PM⊥x轴与点M,交抛物线于点B.点B关于抛物线对称轴的对称点为C.(1)若m=2,求点A和点C的坐标;(2)令m>1,连接CA,若△ACP为直角三角形,求m的值;(3)在坐标轴上是否存在点E,使得△PEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.【答案】(1)A(4,0),C(3,-3).(2)m=32.(3)不存在点E,理由见解析.【解析】试题分析:(1)令y=0即可求得A点坐标,令x=1求得B点,根据对称轴的性质即可求得C点的坐标.(2)分别求出PA、PC、AC的平方,根据勾股定理的逆定理即可求得m的值,(3)先求出PC的斜率,根据互为垂直的两直线的斜率互为负倒数求出直线PE的斜率,然后求出解析式,分别求出与x 轴的交点和与y 轴的交点,从而求出PE 的长,然后判断PE 2是否等于PC 2即可.试题解析:(1)若m=2,抛物线y=x 2-2mx=x 2-4x ,∴对称轴x=2,∵△ACP 为直角三角形,∴PA 2=PC 2+AC 2,即5m 2-4m+1=5m 2-10m+5+2-4m+4m 2,整理得:2m 2-5m+6=0,解得:m=32,m=1(舍去), 故m=32. (3)∵P (1,-m ),C (2m-1,1-2m ),设直线PC 的解析式为y=kx+b ,∴(21)12k b m m k b m+=-⎧⎨-+=-⎩,解得:k=-12, ∵PE ⊥PC ,∴直线PE 的斜率=2,设直线PE 为y=2x+b ′,∴-m=2+b ′,解得b ′=-2-m ,【考点】二次函数综合题.。
四川省乐山市高二上学期期中数学试卷

四川省乐山市高二上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)对于x∈R,不等式(a﹣2)x2﹣2(a﹣2)x﹣4<0恒成立,则a的取值范围是()A . (﹣2,2)B . (﹣2,2]C . (﹣∞,﹣2)∪[2,+∞)D . (﹣∞,2]2. (2分) (2018高二上·嘉兴期中) 已知三棱锥,记二面角的平面角是,直线与平面所成的角是,直线与所成的角是,则()A .B .C .D .3. (2分)下列命题正确的是()A . 若a>b,则B . 若a>b,c>d,则ac>bdC . 若>,则a>bD . 若a>b,ab>0,则4. (2分)直三棱柱ABC-A1B1C1的直观图及三视图如下图所示,D为AC的中点,则下列命题是假命题的是()A . AB1∥平面BDC1B . A1C⊥平面BDC1C . 直三棱柱的体积V=4D . 直三棱柱的外接球的表面积为5. (2分)点 E,F,G,H分别为空间四边形ABCD的边AB,BC,CD,AD的中点,则四边形EFGH是()A . 菱形B . 梯形C . 正方形D . 平行四边形6. (2分)在长方体ABCD—A1B1C1D1中,有()条棱所在的直线与直线AA1是异面直线且互相垂直。
A . 2B . 4C . 6D . 87. (2分) (2016高一下·宁波期中) 如图,三棱锥P﹣ABC,已知PA⊥面ABC,AD⊥BC于D,BC=CD=AD=1,设PD=x,∠BPC=θ,记函数f(x)=tanθ,则下列表述正确的是()A . f(x)是关于x的增函数B . f(x)是关于x的减函数C . f(x)关于x先递增后递减D . 关于x先递减后递增8. (2分) (2018高三上·德州期末) 设函数,则使得成立的的取值范围是()A .B .C .D .9. (2分) (2017高三下·武邑期中) 对任意的x,y∈(0,+∞),不等式ex+y﹣4+ex﹣y+4+6≥4xlna恒成立,则正实数a的最大值是()A .B .C . eD . 2e10. (2分)下列命题正确的是()A . 若两条直线和同一个平面所成的角相等,则这两条直线平行B . 若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C . 若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D . 若两个平面都垂直于第三个平面,则这两个平面平行11. (2分) (2019高二上·开封期中) 已知,,则的最小值为()A .B .C .D .12. (2分)已知直线与平面平行,P是直线上的一点,平面内的动点B满足:PB与直线成,那么B 点轨迹是().A . 双曲线B . 椭圆C . 抛物线D . 两直线二、填空题: (共6题;共7分)13. (1分) (2017高一下·承德期末) 已知三棱锥P﹣ABC的四个顶点都在球O的球面上,△ABC是边长为2的正三角形,PA⊥平面ABC,若三棱锥P﹣ABC的体积为2 ,则球O的表面积为________.14. (1分) (2017高一上·延安期末) 已知用斜二测画法画得的正方形的直观图的面积为,那么原正方形的面积为________.15. (1分)(2017·天津) 若a,b∈R,ab>0,则的最小值为________.16. (1分)(2016·天津模拟) 一个几何体的三视图如图所示,其侧(左)视图是一个等边三角形,则这个几何体的体积是________.17. (1分) (2018高一上·长春月考) 不等式的的解集为,则实数的取值范围为________;18. (2分) (2016高二上·金华期中) 某几何体的三视图如图所示,则该几何体的体积为________;表面积为________.三、解答题: (共6题;共45分)19. (10分)(2017·河北模拟) 已知,.(1)当n=1,2,3时,分别比较f(n)与g(n)的大小(直接给出结论);(2)由(1)猜想f(n)与g(n)的大小关系,并证明你的结论.20. (5分) (2016高二上·包头期中) 如图,在三棱锥P﹣ABC中,平面PAC⊥平面ABC,PA⊥AC,AB⊥BC.设D,E分别为PA,AC中点.(Ⅰ)求证:DE∥平面PBC;(Ⅱ)求证:BC⊥平面PAB;(Ⅲ)试问在线段AB上是否存在点F,使得过三点 D,E,F的平面内的任一条直线都与平面PBC平行?若存在,指出点F的位置并证明;若不存在,请说明理由.21. (10分)(2017·闵行模拟) 如图所示,沿河有A、B两城镇,它们相距20千米,以前,两城镇的污水直接排入河里,现为保护环境,污水需经处理才能排放,两城镇可以单独建污水处理厂,或者联合建污水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送),依据经验公式,建厂的费用为f(m)=25•m0.7(万元),m表示污水流量,铺设管道的费用(包括管道费)(万元),x 表示输送污水管道的长度(千米);已知城镇A和城镇B的污水流量分别为m1=3、m2=5,A、B两城镇连接污水处理厂的管道总长为20千米;假定:经管道运输的污水流量不发生改变,污水经处理后直接排入河中;请解答下列问题(结果精确到0.1)(1)若在城镇A和城镇B单独建厂,共需多少总费用?(2)考虑联合建厂可能节约总投资,设城镇A到拟建厂的距离为x千米,求联合建厂的总费用y与x的函数关系式,并求y的取值范围.22. (5分) (2017高一上·漳州期末) 已知函数fk(x)=ax+ka﹣x ,(k∈Z,a>0且a≠1).(Ⅰ)若f1(1)=3,求f1()的值;(Ⅱ)若fk(x)为定义在R上的奇函数,且a>1,是否存在实数λ,使得fk(cos2x)+fk(2λsinx﹣5)<0对任意x∈[0, ]恒成立,若存在,请求出实数k的取值范围;若不存在,请说明理由.23. (5分)如图所示,已知AB⊥平面BCD,M,N分别是AC,AD的中点,BC⊥CD.(1)求证:MN∥平面BCD;(2)求证:平面ABC⊥平面ACD.24. (10分) (2018高二下·海安月考) 如图,在多面体ABC—DEF中,若AB//DE , BC//EF .(1)求证:平面ABC//平面DEF;(2)已知是二面角C-AD-E的平面角.求证:平面ABC 平面DABE.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题: (共6题;共45分) 19-1、19-2、20-1、21-1、21-2、22-1、23-1、24-1、24-2、。
2014-2015年四川省乐山外国语学校高一上学期数学期中试卷带答案

2014-2015学年四川省乐山外国语学校高一(上)期中数学试卷一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求.)1.(5.00分)已知全集U=R,集合A={x|﹣2≤x≤3},B={x|x<﹣1或x>4},那么集合A∩(∁U B)等于()A.{x|﹣2≤x≤4}B.{x|x≤3或x≥4}C.{x|﹣2≤x<﹣1}D.{x|﹣1≤x≤3}2.(5.00分)满足条件M∪{1}={1,2,3}的集合M的个数是()A.1 B.2 C.3 D.43.(5.00分)下列各式中成立的一项()A.B.C.=D.4.(5.00分)设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2﹣x,则f(2)=()A.6 B.﹣6 C.10 D.﹣105.(5.00分)下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数是()A.B.y=x3 C.y=2|x|D.y=cosx6.(5.00分)若数集A={x|2a+1≤x≤3a﹣5},B={x|3≤x≤22},则能使A⊆B成立的所有a的集合是()A.{a|1≤a≤9}B.{a|6≤a≤9}C.{a|a≤9}D.∅7.(5.00分)若函数f(x)的定义域为[0,1],值域为[1,2],则f(x+2)的定义域和值域分别是()A.[0,1],[1,2] B.[2,3],[3,4] C.[﹣2,﹣1],[1,2]D.[﹣1,2],[3,4]8.(5.00分)设2a=5b=m,且,则m=()A. B.10 C.20 D.1009.(5.00分)对于每个实数x,设f(x)取y=4x+1,y=x+2,y=﹣2x+4三个函数中的最小值,则f(x)的最大值为()A.B.C.D.10.(5.00分)已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是()A.B.C.(3,+∞)D.[3,+∞)二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卷横线上)11.(5.00分)幂函数f(x)的图象过点,则f(x)的解析式是.12.(5.00分)已知x2+bx+c<0的解集是{x|1<x<3},则b+c等于.13.(5.00分)函数f(x)=的定义域为.14.(5.00分)已知函数f(x)=的定义域为R,则k的取值范围是.15.(5.00分)已知函数f(x)的定义域为R,对任意实数x,y满足f(x+y)=f (x)+f(y)+,且f()=0,当x时,f(x)>0.给出以下结论:①f(0)=﹣;②f(﹣1)=﹣;③f(x)为R上减函数;④f(x)+为奇函数;⑤f(x)+1为偶函数.其中正确结论的序号是.三.解答题(16-19每小题12分,20题13分,21题14分,共75分.解答应写出文字说明,证明过程或演算步骤.)16.(12.00分)已知函数f(x)=lg的定义域为集合A,函数g(x)=的定义域为集合B.(1)求集合A,B;(2)求A∩B,(∁R A)∩(∁R B).17.(12.00分)(1)已知a=,b=,求[b]2的值;(2)计算lg8+lg25+lg2•lg50+lg25的值.18.(12.00分)已知函数f(x)=a•4x﹣a•2x+1+2在区间[﹣2,2]上的最大值为3,求实数a的值.19.(12.00分)某军工企业生产一种精密电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)=其中x是仪器的月产量.(1)将利润表示为月产量的函数;(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润.)20.(13.00分)已知奇函数f(x)=ax++c的图象经过点A(1,1),B(2,﹣1).(1)求函数f(x)的解析式;(2)求证:函数f(x)在(0,+∞)上为减函数;(3)若|t﹣1|≤f(x)+2对x∈[﹣2,﹣1]∪[1,2]恒成立,求实数t的范围.21.(14.00分)函数f(x)对任意的x,y∈R都有f(2x+y)=2f(x)+f(y),且当x>0,f(x)<0.(1)求证:f(3x)=3f(x),f(2x)=2f(x);(2)判断f(x)在(﹣∞,+∞)上的单调性并证明;(3)若f(6)=﹣1,解不等式.2014-2015学年四川省乐山外国语学校高一(上)期中数学试卷参考答案与试题解析一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求.)1.(5.00分)已知全集U=R,集合A={x|﹣2≤x≤3},B={x|x<﹣1或x>4},那么集合A∩(∁U B)等于()A.{x|﹣2≤x≤4}B.{x|x≤3或x≥4}C.{x|﹣2≤x<﹣1}D.{x|﹣1≤x≤3}【解答】解:∵全集U=R,集合A={x|﹣2≤x≤3},B={x|x<﹣1或x>4},∴C U B={x|﹣1≤x≤4},∴A∩(C U B)={x|﹣2≤x≤3}∩{x|﹣1≤x≤4}={x|﹣1≤x≤3},故选:D.2.(5.00分)满足条件M∪{1}={1,2,3}的集合M的个数是()A.1 B.2 C.3 D.4【解答】解:满足条件M∪﹛1﹜=﹛1,2,3﹜的集合M,M必须包含元素2,3,所以不同的M集合,其中的区别就是否包含元素1.那么M可能的集合有{2,3}和{1,2,3},故选:B.3.(5.00分)下列各式中成立的一项()A.B.C.=D.【解答】解:A中应为;B中等式左侧为正数,右侧为负数;C正确.D中x=y=1时不成立;故选:C.4.(5.00分)设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2﹣x,则f(2)=()A.6 B.﹣6 C.10 D.﹣10【解答】解:∵f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x),∵当x≤0时,f(x)=2x2﹣x,∴f(2)=﹣f(﹣2)=﹣[2×(﹣2)2﹣(﹣2)]=﹣10,故选:D.5.(5.00分)下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数是()A.B.y=x3 C.y=2|x|D.y=cosx【解答】解:对于函数的定义域为x∈R且x≠0将x用﹣x代替函数的解析式不变,所以是偶函数当x∈(0,+∞)时,∵∴在区间(0,+∞)上单调递减的函数故选:A.6.(5.00分)若数集A={x|2a+1≤x≤3a﹣5},B={x|3≤x≤22},则能使A⊆B成立的所有a的集合是()A.{a|1≤a≤9}B.{a|6≤a≤9}C.{a|a≤9}D.∅【解答】解:若A=∅,即2a+1>3a﹣5,解得a<6时,满足A⊆B.若A≠∅,即a≥6时,要使A⊆B成立,则,即,解得1≤a≤9,此时6≤a≤9.综上a≤9.故选:C.7.(5.00分)若函数f(x)的定义域为[0,1],值域为[1,2],则f(x+2)的定义域和值域分别是()A.[0,1],[1,2] B.[2,3],[3,4] C.[﹣2,﹣1],[1,2]D.[﹣1,2],[3,4]【解答】解:函数f(x+2)是由函数f(x)向左平移2个单位得到∵函数f(x)的定义域为[0,1],∴f(x+2)的定义域为[﹣2,﹣1],函数图象进行左右平移值域不变故f(x+2)的值域为[1,2],故选:C.8.(5.00分)设2a=5b=m,且,则m=()A. B.10 C.20 D.100【解答】解:,∴m2=10,又∵m>0,∴.故选:A.9.(5.00分)对于每个实数x,设f(x)取y=4x+1,y=x+2,y=﹣2x+4三个函数中的最小值,则f(x)的最大值为()A.B.C.D.【解答】解:由题意,可得函数f(x)的图象如图:由得A(,)∴f(x)的最大值为故选:D.10.(5.00分)已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是()A.B.C.(3,+∞)D.[3,+∞)【解答】解:因为f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或,所以a+2b=又0<a<b,所以0<a<1<b,令,由“对勾”函数的性质知函数f(a)在a∈(0,1)上为减函数,所以f(a)>f(1)=1+=3,即a+2b的取值范围是(3,+∞).故选:C.二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卷横线上)11.(5.00分)幂函数f(x)的图象过点,则f(x)的解析式是.【解答】解:由题意令f(x)=x n,将点代入,得,解得n=所以故答案为12.(5.00分)已知x2+bx+c<0的解集是{x|1<x<3},则b+c等于﹣1.【解答】解:∵不等式x2+bx+c<0的解集是{x|1<x<3},∴1,3是方程不等式x2+bx+c=0的两个根由根与系数的关系得到b=﹣(1+3)=﹣4;c=1×3=3∴b+c=﹣1故答案为:﹣113.(5.00分)函数f(x)=的定义域为(0,0.5] .【解答】解:要使函数有意义,则需x>0,且log0.5x﹣1≥0,即有x>0,且log0.5x≥log0.50.5,解得,0<x≤0.5.则定义域为(0,0.5].故答案为:(0,0.5].14.(5.00分)已知函数f(x)=的定义域为R,则k的取值范围是[0,1).【解答】解:函数f(x)的定义域为R,则kx2﹣4kx+k+3>0恒成立,当k=0时,3>0成立;当k>0,△<0时,即k>0,16k2﹣4k(k+3)<0,解得,0<k<1.则0≤k<1.即k的取值范围是[0,1).故答案为:[0,1).15.(5.00分)已知函数f(x)的定义域为R,对任意实数x,y满足f(x+y)=f (x)+f(y)+,且f()=0,当x时,f(x)>0.给出以下结论:①f(0)=﹣;②f(﹣1)=﹣;③f(x)为R上减函数;④f(x)+为奇函数;⑤f(x)+1为偶函数.其中正确结论的序号是①②④.【解答】解:由题意和xy的任意性,取x=y=0代入可得f(0)=f(0)+f(0)+,即f(0)=,故①正确;取x=,y=代入可得f(0)=f()+f()+,即=0+f()+,解得f()=﹣1,再令x=y=代入可得f(﹣1)=f(﹣)+f()+=﹣2+=,故②正确;令y=﹣x代入可得=f(0)=f(x)+f(﹣x)+,即f(x)++f(﹣x)+=0,故f(x)+为奇函数,④正确;取y=﹣1代入可得f(x﹣1)=f(x)+f(﹣1)+,即f(x﹣1)﹣f(x)=f(﹣1)+=﹣1<0,即f(x﹣1)<f(x),故③f(x)为R上增函数,错误;⑤错误,因为f(x)+1=f(x)++,由③可知g(x)=f(x)+为奇函数,故g(﹣x)+﹣g(x)﹣=﹣2g(x)不恒为0,故函数f(x)+1不是偶函数故答案为:①②④三.解答题(16-19每小题12分,20题13分,21题14分,共75分.解答应写出文字说明,证明过程或演算步骤.)16.(12.00分)已知函数f(x)=lg的定义域为集合A,函数g(x)=的定义域为集合B.(1)求集合A,B;(2)求A∩B,(∁R A)∩(∁R B).【解答】解:(1)函数f(x)=lg,得到>0,整理得:(x+1)(x﹣1)<0,解得:﹣1<x<1,即A=(﹣1,1),函数g(x)=,得到3﹣x≥0,即x≤3,∴B=(﹣∞,3];(2)∵A=(﹣1,1),B=(﹣∞,3]∴A∩B=(﹣1,1),∁R A=(﹣∞,﹣1]∪[1,+∞),∁R B=(3,+∞),则(∁R A)∩(∁R B)=(3,+∞).17.(12.00分)(1)已知a=,b=,求[b]2的值;(2)计算lg8+lg25+lg2•lg50+lg25的值.【解答】解:(1)====.∵,∴原式===20=1;(2)=2lg2+lg25+lg2(1+lg5)+2lg5=2(lg2+lg5)+lg25+lg2+lg2•lg5=2+lg5(lg5+lg2)+lg2=2+lg5+lg2=3.18.(12.00分)已知函数f(x)=a•4x﹣a•2x+1+2在区间[﹣2,2]上的最大值为3,求实数a的值.【解答】解:令t=2x,∵x∈[﹣2,2],∴t∈[,4],则g(t)=f(x)=at2﹣2at+2.当a=0时,g(t)=2≠3,故舍去a=0;当a≠0时,g(t)=a(t﹣1)2+2﹣a;当a>0时,g(t)max=g(4)=8a+2=3,∴.当a<0时,g(t)max=2﹣a=3,∴a=﹣1.综上,或a=﹣1.19.(12.00分)某军工企业生产一种精密电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)=其中x是仪器的月产量.(1)将利润表示为月产量的函数;(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润.)【解答】解:(1)设月产量为x台,则总成本为20000+100x,从而利润(2)当0≤x≤400时,f(x)=,所以当x=300时,有最大值25000;当x>400时,f(x)=60000﹣100x是减函数,所以f(x)=60000﹣100×400<25000.所以当x=300时,有最大值25000,即当月产量为300台时,公司所获利润最大,最大利润是25000元.20.(13.00分)已知奇函数f(x)=ax++c的图象经过点A(1,1),B(2,﹣1).(1)求函数f(x)的解析式;(2)求证:函数f(x)在(0,+∞)上为减函数;(3)若|t﹣1|≤f(x)+2对x∈[﹣2,﹣1]∪[1,2]恒成立,求实数t的范围.【解答】解:(1)∵奇函数f(x)=ax++c的图象经过点A(1,1),B(2,﹣1).∴函数f(x)=ax++c的图象经过点(﹣1,﹣1),即,解得:故f(x)=﹣x+证明:(2)∵f′(x)=﹣1﹣,当x∈(0,+∞)时,f′(x)<0故函数f(x)在(0,+∞)上为减函数;解:(3)当x∈[﹣2,﹣1]∪[1,2]时,f(x)∈[﹣1,1],则f(x)+2∈[1,3],若|t﹣1|≤f(x)+2对x∈[﹣2,﹣1]∪[1,2]恒成立,则|t﹣1|≤1,则t∈[0,2]21.(14.00分)函数f(x)对任意的x,y∈R都有f(2x+y)=2f(x)+f(y),且当x>0,f(x)<0.(1)求证:f(3x)=3f(x),f(2x)=2f(x);(2)判断f(x)在(﹣∞,+∞)上的单调性并证明;(3)若f(6)=﹣1,解不等式.【解答】解:(1)令y=x,则f(2x+x)=2f(x)+f(x)=3f(x),令x=y=0,得f(0)=0,令y=0,则f(2x)=2f(x),故f(3x)=3f(x),f(2x)=2f(x);(2)由f(0)=0,函数f(x)为减函数,令t=2x,则f(2x+y)=f(t+y),2f(x)+f(y)=f(2x)+f(y)=f(t)+f(y),∴f(t+y)=f(t)+f(y)设x1,x2∈R且x1<x2,则x2﹣x1>0,∵当x>0时,f(x)<0,∴f(x2﹣x1)<0,∵f(x2)=f(x2﹣x1+x1)=f(x2﹣x1)+f(x1)<f(x1),∴f(x1)>f(x2),∴函数f(x)为R上的单调减函数,(3)∵,.===,∴f(log2[x(x﹣2)]<f(1)因为f(x)在(﹣∞,+∞)上是减函数,所以解不等式组得.所以不等式的解集为.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
四川省乐山外国语学校高二数学上学期期中试卷 理(含解析)

四川省乐山外国语学校2014-2015学年高二上学期期中数学试卷(理科)一、选择题(每题5分,共计50分)1.(5分)下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④2.(5分)在空间,下列命题正确的是()A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行3.(5分)如图,ABCD﹣A1B1C1D1为正方体,下面结论错误的是()A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1D1D.异面直线AD与CB1所成的角为60°4.(5分)已知直线l的倾斜角为π,直线l1经过点A(3,2)、B(a,﹣1),且l1与l垂直,直线l2:2x+by+1=0与直线l1平行,则a+b等于()A.﹣4 B.﹣2 C.0 D.25.(5分)若方程x2+(a+2)y2+2ax+a=0表示圆,则a的值为()A.﹣1 B.2 C.﹣1或2 D.不存在6.(5分)如图,正三棱锥SABC的侧棱与底面边长相等,如果E、F分别为SC、AB的中点,那么异面直线EF与SA所成的角等于()A.90°B.60°C.45°D.30°7.(5分)如图,AB是圆O的直径,PA垂直圆O所在的平面ABC,点C是圆上的任意一点,图中有()对平面与平面垂直.A.1 B.2 C.3 D.48.(5分)P在直线2x+y+10=0上,PA、PB与圆x2+y2=4相切于A、B两点,则四边形PAOB 面积的最小值为()A.24 B.16 C.8 D.49.(5分)如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上两点,且EF的长为定值,则下面四个值中不是定值的是()A.点P到平面QEF的距离B.直线PQ与平面PEF所成的角C.三棱锥P﹣QEF的体积D.△QEF的面积10.(5分)三棱锥P﹣ABC中,△ABC是底面,PA⊥PB,PA⊥PC,PB⊥PC,且这四个顶点都在半径为2的球面上,PA=2PB,则这个三棱锥的三个侧棱长的和的最大值为()A.16 B.C.D.32二、填空题(每题5分,共25分)请将答案填在答题卡上11.(5分)与直线7x+24y=5平行,并且距离等于3的直线方程是.12.(5分)圆心在直线x﹣2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C的标准方程为.13.(5分)某几何体的三视图如图所示,它的体积为.14.(5分)相交成90°的两条直线与一个平面所成的角分别是30°与45°,则这两条直线在该平面内的射影所成角的正弦值为.15.(5分)正三棱锥P﹣ABC中,CM=2PM,CN=2NB,对于以下结论:①二面角B﹣PA﹣C大小的取值范围是(,π);②若MN⊥AM,则PC与平面PAB所成角的大小为;③过点M与异面直线PA和BC都成的直线有3条;④若二面角B﹣PA﹣C大小为,则过点N与平面PAC和平面PAB都成的直线有3条.正确的序号是.二、解答题(每题5分,共25分)16.(12分)如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,且AB=AD,BC=DC.(1)求证:BD∥平面EFGH;(2)求证:四边形EFGH是矩形.17.(13分)已知直线l:kx﹣y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线l不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,求S的最小值及此时直线l的方程.18.(12分)如图,AB是圆O的直径,点C是弧AB的中点,点V是圆O所在平面外一点,D 是AC的中点,已知AB=2,VA=VB=VC=2.(1)求证:AC⊥平面VOD;(2)VD与平面ABC所成角的正弦值;(3)求三棱锥C﹣ABV的体积.19.(12分)如图,已知二面角α﹣AB﹣β的大小为120°,PC⊥α于C,PD⊥β于D,且PC=2,PD=3.(1)求异面直线AB与CD所成角的大小;(2)求点P到直线AB的距离.20.(12分)如图,在Rt△ABC中,∠C=90°,BC=6,AC=3,D,E分别是AC,AB上的点,且DE∥BC,DE=4,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.(1)求证:A1C⊥平面BCDE;(2)过点E作截面EFH∥平面A1CD,分别交CB于F,A1B于H,求截面EFH的面积;(3)线段BC上是否存在点P,使平面A1DP与平面A1BE成600的角?说明理由.21.(14分)在三棱柱ABC﹣A1B1C1中,已知AB=AC=AA1=,BC=4,在A1在底面ABC的投影是线段BC的中点O.(1)求点C到平面A1ABB1的距离;(2)求二面角A﹣BC1﹣B1的余弦值;(3)若M,N分别为直线AA1,B1C上动点,求MN的最小值.四川省乐山外国语学校2014-2015学年高二上学期期中数学试卷(理科)参考答案与试题解析一、选择题(每题5分,共计50分)1.(5分)下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④考点:简单空间图形的三视图.专题:阅读型.分析:利用三视图的作图法则,对选项判断,A的三视图相同,圆锥,四棱锥的两个三视图相同,棱台都不相同,推出选项即可.解答:解:正方体的三视图都相同,而三棱台的三视图各不相同,圆锥和正四棱锥的,正视图和侧视图相同,所以,正确答案为D.故选D点评:本题是基础题,考查几何体的三视图的识别能力,作图能力,三视图的投影规则是主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等.2.(5分)在空间,下列命题正确的是()A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理,可以很容易得出答案.解答:解:平行直线的平行投影重合,还可能平行,A错误.平行于同一直线的两个平面平行,两个平面可能相交,B错误.垂直于同一平面的两个平面平行,可能相交,C错误.故选D.点评:本题考查空间直线与平面的位置关系及线面垂直与平行的判定与性质,属基础题.3.(5分)如图,ABCD﹣A1B1C1D1为正方体,下面结论错误的是()A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1D1D.异面直线AD与CB1所成的角为60°考点:空间中直线与直线之间的位置关系;棱柱的结构特征;空间中直线与平面之间的位置关系.分析:A中因为BD∥B1D1可判,B和C中可由三垂线定理进行证明;而D中因为CB1∥D1A,所以∠D1AD即为异面直线所成的角,∠D1AD=45°.解答:解:A中因为BD∥B1D1,正确;B中因为AC⊥BD,由三垂线定理知正确;C中有三垂线定理可知AC1⊥B1D1,AC1⊥B1C,故正确;D中显然异面直线AD与CB1所成的角为45°故选D点评:本题考查正方体中的线面位置关系和异面直线所成的角,考查逻辑推理能力.4.(5分)已知直线l的倾斜角为π,直线l1经过点A(3,2)、B(a,﹣1),且l1与l垂直,直线l2:2x+by+1=0与直线l1平行,则a+b等于()A.﹣4 B.﹣2 C.0 D.2考点:两条直线垂直的判定;直线的倾斜角;两条直线平行的判定.专题:计算题.分析:先求出l的斜率,利用垂直关系可得l1的斜率,由斜率公式求出a 的值,由l1∥l2 得,﹣=1,解得b值,可得结果.解答:解:∵l的斜率为﹣1,则l1的斜率为1,∴k AB==1,∴a=0.由l1∥l2 得,﹣=1,得b=﹣2,所以,a+b=﹣2.故选 B.点评:本题考查两直线平行、垂直的性质,斜率公式的应用.5.(5分)若方程x2+(a+2)y2+2ax+a=0表示圆,则a的值为()A.﹣1 B.2 C.﹣1或2 D.不存在考点:二元二次方程表示圆的条件.专题:计算题;直线与圆.分析:由二元二次方程表示出圆的条件,列出关系式,即可求出a的值.解答:解:∵方程x2+(a+2)y2+2ax+a=0表示一个圆,∴A=C≠0,即1=a+2,解得:a=﹣1.此时方程x2+(a+2)y2+2ax+a=0为方程x2+y2﹣2x﹣1=0表示圆.故选:A.点评:此题考查了圆的一般方程,熟练掌握二元二次方程表示圆的条件是解本题的关键.6.(5分)如图,正三棱锥SABC的侧棱与底面边长相等,如果E、F分别为SC、AB的中点,那么异面直线EF与SA所成的角等于()A.90°B.60°C.45°D.30°考点:异面直线及其所成的角.专题:计算题;压轴题.分析:先通过平移将两条异面直线平移到同一个起点AC的中点D,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可.解答:解:如图,取AC的中点D,连接DE、DF,∠DEF为异面直线EF与SA所成的角设棱长为2,则DE=1,DF=1,根据SA⊥BC,则ED⊥DF∴∠DEF=45°,故选C.点评:本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.7.(5分)如图,AB是圆O的直径,PA垂直圆O所在的平面ABC,点C是圆上的任意一点,图中有()对平面与平面垂直.A.1 B.2 C.3 D.4考点:平面与平面垂直的判定.专题:空间位置关系与距离.分析:由已知中PA⊥平面ABC,结合面面垂直的判定定理可得平面PAB⊥平面ABC,及平面PAC⊥平面ABC,由圆周角定理的推论,结合线面垂直的性质和判定定理可证得:BC⊥平面PAC,进而可得平面PBC⊥平面PAC,综合上述讨论结果,可得结论.解答:解:∵PA⊥圆O所在平面ABC,PA⊂平面PAB∴平面PAB⊥平面ABC,同理可得:平面PAC⊥平面ABC,∵AB是圆O的直径∴BC⊥AC,又∵PA⊥圆O所在平面ABC,BC⊂平面ABC,∴PA⊥BC又∵PA∩AC=A,PA,AC⊂平面PAC∴BC⊥平面PAC,又∵BC⊂平面PBC∴平面PBC⊥平面PAC综上相互垂直的平面共有3组.故选:C点评:本题考查的知识点是平面与平面垂直的判定,熟练掌握空间线面垂直,线线垂直与面面垂直之间的相互转化是解答的关键.8.(5分)P在直线2x+y+10=0上,PA、PB与圆x2+y2=4相切于A、B两点,则四边形PAOB 面积的最小值为()A.24 B.16 C.8 D.4考点:直线与圆的位置关系.专题:计算题.分析:由题意可得,PA=PB,PA⊥OA,PB⊥OB则要求S PAOB=2S△PAO=的最小值,转化为求PA最小值,由于PA2=PO2﹣4,当PO最小时,PA最小,结合点到直线的距离公式可知当PO⊥l时,PO有最小值,由点到直线的距离公式可求.解答:解:由圆x2+y2=4,得到圆心(0,0),半径r=2,由题意可得:PA=PB,PA⊥OA,PB⊥OB,∴S PAOB=2S△PAO=,在Rt△PAO中,由勾股定理可得:PA2=PO2﹣r2=PO2﹣4,当PO最小时,PA最小,此时所求的面积也最小,点P是直线l:2x+y+10=0上的动点,当PO⊥l时,PO有最小值d=,PA=4,所求四边形PAOB的面积的最小值为8.故选C点评:本题考查了直线与圆的位置关系中的重要类型:相切问题的处理方法,解题中要注意对性质的灵活应用,体现了转化思想在解题中的应用.根据题意得出PO⊥l时所求圆的面积最小是解本题的关键.9.(5分)如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上两点,且EF的长为定值,则下面四个值中不是定值的是()A.点P到平面QEF的距离B.直线PQ与平面PEF所成的角C.三棱锥P﹣QEF的体积D.△QE F的面积考点:异面直线及其所成的角.专题:空间位置关系与距离;空间角.分析:A.由于平面QEF即为对角面A1B1CD,点P为A1D1的中点,可得:点P到平面QEF 即到对角面A1B1CD的距离=为定值;D.由于点Q到直线CD的距离是定值a,|EF|为定值,因此△QEF的面积=为定值;C.由A.D可知:三棱锥P﹣QEF的体积为定值;B.用排除法即可得出.解答:解:A.∵平面QEF即为对角面A1B1CD,点P为A1D1的中点,∴点P到平面QEF即到对角面A1B1CD的距离=为定值;D.∵点Q到直线CD的距离是定值a,|EF|为定值,∴△QEF的面积=为定值;C.由A.D可知:三棱锥P﹣QEF的体积为定值;B.直线PQ与平面PEF所成的角与点Q的位置有关系,因此不是定值,或用排除法即可得出.综上可得:只有B中的值不是定值.故选:B.点评:本题综合考查了正方体的性质、三棱锥的体积、点到平面的距离、异面直线所成的角等基础知识与基本技能方法,考查了推理能力和空间想象能力,属于难题.10.(5分)三棱锥P﹣ABC中,△ABC是底面,PA⊥PB,PA⊥PC,PB⊥PC,且这四个顶点都在半径为2的球面上,PA=2PB,则这个三棱锥的三个侧棱长的和的最大值为()A.16 B.C.D.32考点:棱台的结构特征;球内接多面体.专题:空间位置关系与距离.分析:由已知,三棱锥P﹣ABC的四个顶点均在半径为2的球面上,且PA,PB,PC两两垂直,球直径等于以PA,PB,PC为棱的长方体的对角线,得到5PB2+PC2=16,再结合三角换元法,由三角函数的性质得到这个三棱锥的三个侧棱长的和的最大值.解答:解:∵PA,PB,PC两两垂直,又∵三棱锥P﹣ABC的四个顶点均在半径为2的球面上,∴以PA,PB,PC为棱的长方体的对角线即为球的一条直径.∴16=PA2+PB2+PC2,又PA=2PB,∴5PB2+PC2=16,设PB=,PC=4sinα,则这个三棱锥的三个侧棱长的和PA+PB+PC=3PB+PC=cosα+4sinα=sin(α+∅)≤.则这个三棱锥的三个侧棱长的和的最大值为,故选B.点评:本题考查的知识点是棱锥的侧面积,棱柱的外接球,其中根据已知条件,得到棱锥的外接球直径等于以PA,PB,PC为棱的长方体的对角线,是解答本题的关键.二、填空题(每题5分,共25分)请将答案填在答题卡上11.(5分)与直线7x+24y=5平行,并且距离等于3的直线方程是7x+24y+70=0,或7x+24y ﹣80=0.考点:直线的一般式方程与直线的平行关系.专题:待定系数法.分析:设出平行直线系方程,根据两平行线间的距离等于3解出待定系数,从而得到所求的直线的方程.解答:解:设所求的直线方程为 7x+24y+c=0,d==3,c=70,或﹣80,故所求的直线的方程为7x+24y+70=0,或7x+24y﹣80=0,故答案为 7x+24y+70=0,或7x+24y﹣80=0.点评:本题考查求直线方程的方法,利用平行直线系方程的形式,待定系数法求出待定系数,进而得到所求的直线方程.12.(5分)圆心在直线x﹣2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C的标准方程为(x﹣2)2+(y﹣1)2=4.考点:圆的标准方程.专题:直线与圆.分析:由圆心在直线x﹣2y=0上,设出圆心坐标,再根据圆与y轴相切,得到圆心到y 轴的距离即圆心横坐标的绝对值等于圆的半径,表示出半径r,由弦长的一半,圆的半径r 及表示出的d利用勾股定理列出关于t的方程,求出方程的解得到t的值,从而得到圆心坐标和半径,根据圆心和半径写出圆的方程即可.解答:解:设圆心为(2t,t),半径为r=|2t|,∵圆C截x轴所得弦的长为2,∴t2+3=4t2,∴t=±1,∵圆C与y轴的正半轴相切,∴t=﹣1不符合题意,舍去,故t=1,2t=2,∴(x﹣2)2+(y﹣1)2=4.故答案为:(x﹣2)2+(y﹣1)2=4.点评:此题综合考查了垂径定理,勾股定理及点到直线的距离公式.根据题意设出圆心坐标,找出圆的半径是解本题的关键.13.(5分)某几何体的三视图如图所示,它的体积为57π.考点:由三视图求面积、体积.专题:计算题.分析:由三视图可知:原几何体是由上下两部分组成,其中下面是一个底面半径为3,高为5的圆柱;上面是一个与圆柱的上底面重合、母线长为5的圆锥.据此可计算出答案.解答:解:由三视图可知:原几何体是由上下两部分组成:下面是一个底面半径为3,高为5的圆柱;上面是一个与圆柱的上底面重合、母线长为5的圆锥.圆锥的高h==4.∴V==57π.故答案为57π.点评:由三视图正确恢复原几何体是解决问题的关键.14.(5分)相交成90°的两条直线与一个平面所成的角分别是30°与45°,则这两条直线在该平面内的射影所成角的正弦值为.考点:空间中直线与平面之间的位置关系.专题:空间角.分析:已知PA⊥PB,PO⊥平面AOB,∠PAO=30°,∠PBO=45°,直线PA,PB这两条直线在该平面内的射影所成角为∠AOB,由此能求出这两条直线在该平面内的射影所成角的正弦值.解答:解:如图,已知PA⊥PB,PO⊥平面AOB,∠PAO=30°,∠PBO=45°,直线PA,PB这两条直线在该平面内的射影所成角为∠AOB,设PO=x,则AO=,BO=x,PA==2x,PB==,AB==,∴cos=﹣,∴sin∠AOB==.∴这两条直线在该平面内的射影所成角的正弦值为.故答案为:.点评:本题考查两条直线在平面内的射影所成角的正弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.15.(5分)正三棱锥P﹣ABC中,CM=2PM,CN=2NB,对于以下结论:①二面角B﹣PA﹣C大小的取值范围是(,π);②若MN⊥AM,则PC与平面PAB所成角的大小为;③过点M与异面直线PA和BC都成的直线有3条;④若二面角B﹣PA﹣C大小为,则过点N与平面PAC和平面PAB都成的直线有3条.正确的序号是①②④.考点:与二面角有关的立体几何综合题.专题:空间角.分析:①利用二面角的大小区判断.②利用线面角的定义去判断.③利用异面直线的概念去判断.④利用二面角的大小进行判断.解答:解:①设底面正三角形的边长为1,过B作BD⊥PA,连结CD,则∠BD C是二面角B ﹣PA﹣C大小,因为底面三角形ABC是正三角形,所以∠CAB=,所以当点P无限靠近点O 时,即高无限小时,∠BDC接近,所以二面角B﹣PA﹣C大小的取值范围是(,π),所以①正确.②因为CM=2PM,CN=2NB,所以MN∥PB.若MN⊥AM,则PB⊥AM,因为P﹣ABC是正三棱锥,所以P在底面的射影是底面的中心,所以PB⊥AC,因为AM∩AC=A,所以PB⊥面PAC,因为P﹣ABC是正三棱锥,所以必有PC⊥面PAB,所以PC与平面PAB所成角的大小为,所以②正确.③因为因为P﹣ABC是正三棱锥,所以P在底面的射影是底面的中心,所以PA⊥BC.所以过点M与异面直线PA和BC都成的直线有两条,所以③错误.④若二面角B﹣PA﹣C大小为,则∠BDC=,此时∠EDC=,(其中E是BC的中点),,所以此时直线BC与平面PAC和平面PAB都成,又因为平面PAC和平面PAB 的法向量的夹角为,此时适当调整过N的直线,可以得到两条直线使得过点N与平面PAC 和平面PAB都成,所以满足过点N与平面PAC和平面PAB都成的直线有3条.所以④正确.故答案为:①②④.点评:本题综合考查了正三棱锥的性质以及利用正三棱锥研究线面角和二面角的大小,综合性强,难度大.二、解答题(每题5分,共25分)16.(12分)如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,且AB=AD,BC=DC.(1)求证:BD∥平面EFGH;(2)求证:四边形EFGH是矩形.考点:直线与平面平行的判定.专题:空间位置关系与距离.分析:(1)E,H分别为AB,DA的中点,可得EH∥BD,又BD⊄平面EFGH,EH⊂平面EFGH,根据直线和平面平行的判定定理证得BD∥平面EFGH.…(2)取BD中点O,由条件利用等腰三角形的性质证得AO⊥BD,CO⊥BD.从而证得BD⊥平面AOC,BD⊥AC.利用三角形的中位线的性质证得四边形EFGH是平行四边形,再利用平行线的性质证得EF⊥EH,可得四边形EFGH为矩形.解答:证明:(1)∵E,H分别为AB,DA的中点,∴EH∥BD,又BD⊄平面EFGH,EH⊂平面EFGH,∴BD∥平面EFGH.…(4分)(2)取BD中点O,连续OA,OC,∵AB=AD,BC=DC.∴AO⊥BD,CO⊥BD.又AO∩CO=0.∴BD⊥平面AOC,∴BD⊥AC.…(7分)∵E,F,G,H为AB,BC,CD,DA的中点.∴EH∥BD,且EH=BD;FG∥BD,且FG=BD,EF∥AC.∴EH∥FG,且EH=FG,∴四边形EFGH是平行四边形.…(10分)由AC⊥BD、EF∥AC、EH∥BD,∴EF⊥EH,∴四边形EFGH为矩形.…(12分)点评:本题主要考查直线和平面平行的判定定理的应用,直线和平面垂直的判定和性质的应用,属于中档题.17.(13分)已知直线l:kx﹣y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线l不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,求S的最小值及此时直线l的方程.考点:恒过定点的直线;基本不等式在最值问题中的应用.专题:计算题.分析:(1)直线l的方程可化为y=k(x+2)+1,直线l过定点(﹣2,1).(2)要使直线l不经过第四象限,则直线的斜率和直线在y轴上的截距都是非负数,解出k的取值范围.(3)先求出直线在两个坐标轴上的截距,代入三角形的面积公式,再使用基本不等式可求得面积的最小值.解答:解:(1)直线l的方程可化为y=k(x+2)+1,故无论k取何值,直线l总过定点(﹣2,1).(2)直线l的方程可化为y=kx+2k+1,则直线l在y轴上的截距为2k+1,要使直线l不经过第四象限,则,解得k的取值范围是k≥0.(3)依题意,直线l在x轴上的截距为﹣,在y轴上的截距为1+2k,∴A(﹣,0),B(0,1+2k),又﹣<0且1+2k>0,∴k>0,故S=|OA||OB|=×(1+2k)=(4k++4)≥(4+4)=4,当且仅当4k=,即k=时,取等号,故S的最小值为4,此时直线l的方程为x﹣2y+4=0.点评:本题考查直线过定点问题,直线在坐标系中的位置,以及基本不等式的应用(注意检验等号成立的条件).18.(12分)如图,AB是圆O的直径,点C是弧AB的中点,点V是圆O所在平面外一点,D 是AC的中点,已知AB=2,VA=VB=VC=2.(1)求证:AC⊥平面VOD;(2)VD与平面ABC所成角的正弦值;(3)求三棱锥C﹣ABV的体积.考点:棱柱、棱锥、棱台的体积;直线与平面所成的角.专题:空间位置关系与距离.分析:(1)得出AC⊥VO,AC⊥VD即可证明.(2)根据棱锥V﹣ABC的体积为V V﹣ABC=S△ABC•VO=可求得.解答:解:(1)∵VA=VB,O为AB中点,∴VO⊥AB,连接OC,在△VOA和△VOC中,OA=OC,VO=VO,VA=VC,∴△VOA≌△VOC,∠VOA=∠VOC=90°,∴VO⊥0C∵AB∩OC=0,AB⊂平面ABC,OC⊂平面ABC,∴VO⊥平面ABC,∵AC⊂平面ABC,∴AC⊥VO,又∵VA=VC,D是AC的中点,∴AC⊥VD,∵VO⊂平面VOD,VD⊂平面VOD,VD∩VO=V,∴AC⊥平面VOD,(2)由(1)知VO是棱锥V﹣ABC的高,且VO==.又∵点C是弧的中点,∴CO⊥AB,且CO=1,AB=2,∴三角形ABC的面积S△ABC=AB•CD==1,∴棱锥V﹣ABC的体积为V V﹣ABC=S△ABC•VO=故棱锥C﹣ABV的体积为,点评:本题考查了直线与平面的垂直问题,体积计算问题,属于中档题,思路要清晰,认真.19.(12分)如图,已知二面角α﹣AB﹣β的大小为120°,PC⊥α于C,PD⊥β于D,且PC=2,PD=3.(1)求异面直线AB与CD所成角的大小;(2)求点P到直线AB的距离.考点:异面直线及其所成的角;点、线、面间的距离计算.专题:计算题;证明题;空间角.分析:(1)根据题意,证出AB⊥平面PCD,从而得到AB⊥CD,即得异面直线AB与CD所成角的大小为90°.(2)设平面PCD与直线AB交于点E,连结CE,DE,PE.证出∠CED为二面角α﹣AB﹣β的平面角,从而∠CED=120°.然后在四边形PCDE中利用余弦定理解三角形,算出CD=,进而得到PE==,得到P到直线AB的距离.解答:解:(1)∵PC⊥α于C,PD⊥β于D.∴PC⊥AB,PD⊥AB.又PC∩PD=P.∴AB⊥平面PCD.∵CD⊂平面PCD,∴AB⊥CD,即异面直线AB与CD所成角的大小为90°.…(6分)(2)设平面PCD与直线AB交于点E,连结CE,DE,PE由(1)可知,AB⊥平面PCD.∴AB⊥CE,AB⊥DE,AB⊥PE.∴∠CED为二面角α﹣AB﹣β的平面角,…(8分)从而∠CED=120°.∵PC⊥α,P D⊥β.∴PC⊥CE,PD⊥DE.∴∠CPD=60°.又PC=2,PD=3.∴由余弦定理,得CD2=4+9﹣12cos60°=7,从而CD=.…(10分)∵PE为四边形P CED的外接圆直径.∴由正弦定理,得PE==.即点P到直线AB的距离等于.…(12分)点评:本题在120度的二面角中,求异面直线所成角和点P到直线AB的距离,着重考查了线面垂直的判定与性质、二面角的平面角定义和正余弦定理等知识,属于中档题.20.(12分)如图,在Rt△ABC中,∠C=90°,BC=6,AC=3,D,E分别是AC,AB上的点,且DE∥BC,DE=4,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.(1)求证:A1C⊥平面BCDE;(2)过点E作截面EFH∥平面A1CD,分别交CB于F,A1B于H,求截面EFH的面积;(3)线段BC上是否存在点P,使平面A1DP与平面A1BE成600的角?说明理由.考点:二面角的平面角及求法;直线与平面平行的判定.专题:空间位置关系与距离.分析:(1)证明DE⊥平面A1CD,可得A1C⊥DE,利用A1C⊥CD,CD∩DE=D,即可证明A1C⊥平面BCDE;(2)过点E作EF∥CD交BC于F,过点F作FH∥A1C交A1B于H,连结EH,则截面EFH∥平面A1CD,从而可求截面EFH的面积;(3)假设线段BC上存在点P,使平面A1DP与平面A1BE成60°的角,建立坐标系,利用向量知识,结合向量的夹角公式,即可求出结论.解答:(1)证明:∵CD⊥DE,A1D⊥DE,CD∩A1D=D,∴DE⊥平面A1CD.又∵A1C⊂平面A1CD,∴A1C⊥DE.又A1C⊥CD,CD∩DE=D,∴A1C⊥平面BCDE…(4分)(2)解:过点E作EF∥CD交BC于F,过点F作FH∥A1C交A1B于H,连结EH,则截面EFH∥平面A1CD.因为四边形EFCD为矩形,所以EF=CD=1,CF=DE=4,从而FB=2,HF=.∵A1C⊥平面BCDE,FH∥A1C,∴HF⊥平面BCDE,∴HF⊥FE,∴.…(8分)(3)解:假设线段BC上存在点P,使平面A1DP与平面A1BE成60°的角.设P点坐标为(a,0,0),则a∈.如图建系C﹣xyz,则D(0,1,0),A1(0,0,),B(6,0,0),E(4,1,0).∴,.设平面A1BE法向量为,则,∴,∴,设平面A1DP法向量为,因为,.则,∴,∴.则cos<,>===,∴5656a2﹣96a﹣141=0,解得∵0<a<6,∴所以存在线段BC上存在点P,使平面A1DP与平面A1BE成60°的角.…(12分)点评:本题考查线面平行,考查线面角,考查学生分析解决问题的能力,属于中档题.21.(14分)在三棱柱ABC﹣A1B1C1中,已知AB=AC=AA1=,BC=4,在A1在底面ABC的投影是线段BC的中点O.(1)求点C到平面A1ABB1的距离;(2)求二面角A﹣BC1﹣B1的余弦值;(3)若M,N分别为直线AA1,B1C上动点,求MN的最小值.考点:用空间向量求平面间的夹角;点、线、面间的距离计算.专题:空间位置关系与距离;空间角.分析:(1)利用点到平面的距离公式求距离.(2)建立空间直角坐标系,利用向量法求二面角的大小.(3)利用向量法求线段的长度.解答:解:(1)连接AO,因为A1O⊥平面ABC,所以A1O⊥BC,因为AB=AC,OB=OC,得AO⊥BC,,在△AOA1中,A1O=2,在△BOA 1中,,则.又S△CAB=2.设点C到平面A1ABB1的距离为h,则由得,=.从而.…(4分)(2)如图所示,分别以OA,OB,OA1所在的直线为x,y,z轴,建立空间直角坐标系,则A(1,0,0),C(0,﹣2,0),A1(0.0,2),B(0,2,0),B1(﹣1,2,2),C1(﹣1,﹣2,2).设平面BCC1B1的法向量,又,.由,得,令z=1,得x=2,y=0,即.设平面ABC1的法向量,又,.由,得,令b=1,得a=2,c=3,即.所以,…(7分)由图形观察可知,二面角A﹣BC1﹣B1为钝角,所以二面角A﹣BC1﹣B1的余弦值是.…(9分)(3)方法1.在△AOA1中,作OE⊥AA1于点E,因为AA1∥BB1,得OE⊥BB1.因为A1O⊥平面ABC,所以A1O⊥BC,因为AB=AC,OB=OC,得AO⊥BC,所以BC⊥平面AA1O,所以BC⊥OE,所以OE⊥平面BB1C1C.从而OE⊥B1C在△AOA1中,为异面直线AA1,B1C的距离,即为MN的最小值.…(14分)方法2.设向量,且∵,.∴.令z1=1,得x1=2,y1=0,即.∵.所以异面直线AA1,B1C 的距离,即为MN的最小值.…(14分)点评:本题主要考查利用向量法求二面角的大小和线段长度问题,要求熟练掌握相关的定理和公式.21。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年四川省乐山外国语学校高二(上)期中数学试卷(理科)一、选择题(每题5分,共计50分)1.(5分)下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④2.(5分)在空间,下列命题正确的是()A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行3.(5分)如图,ABCD﹣A1B1C1D1为正方体,下面结论错误的是()A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1D1D.异面直线AD与CB1所成的角为60°4.(5分)已知直线l的倾斜角为π,直线l1经过点A(3,2)、B(a,﹣1),且l1与l垂直,直线l2:2x+by+1=0与直线l1平行,则a+b等于()A.﹣4 B.﹣2 C.0 D.25.(5分)若方程x2+(a+2)y2+2ax+a=0表示圆,则a的值为()A.﹣1 B.2 C.﹣1或2 D.不存在6.(5分)如图,正三棱锥SABC的侧棱与底面边长相等,如果E、F分别为SC、AB的中点,那么异面直线EF与SA所成的角等于()A.90°B.60°C.45°D.30°7.(5分)如图,AB是圆O的直径,PA垂直圆O所在的平面ABC,点C是圆上的任意一点,图中有()对平面与平面垂直.A.1 B.2 C.3 D.48.(5分)P在直线2x+y+10=0上,PA、PB与圆x2+y2=4相切于A、B两点,则四边形PAOB面积的最小值为()A.24 B.16 C.8 D.49.(5分)如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q 为A1B1上任意一点,E、F为CD上两点,且EF的长为定值,则下面四个值中不是定值的是()A.点P到平面QEF的距离B.直线PQ与平面PEF所成的角C.三棱锥P﹣QEF的体积D.△QEF的面积10.(5分)三棱锥P﹣ABC中,△ABC是底面,PA⊥PB,PA⊥PC,PB⊥PC,且这四个顶点都在半径为2的球面上,PA=2PB,则这个三棱锥的三个侧棱长的和的最大值为()A.16 B.C.D.32二、填空题(每题5分,共25分)请将答案填在答题卡上11.(5分)与直线7x+24y=5平行,并且距离等于3的直线方程是.12.(5分)圆心在直线x﹣2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C的标准方程为.13.(5分)某几何体的三视图如图所示,它的体积为.14.(5分)相交成90°的两条直线与一个平面所成的角分别是30°与45°,则这两条直线在该平面内的射影所成角的正弦值为.15.(5分)正三棱锥P﹣ABC中,CM=2PM,CN=2NB,对于以下结论:①二面角B﹣PA﹣C大小的取值范围是(,π);②若MN⊥AM,则PC与平面PAB所成角的大小为;③过点M与异面直线PA和BC都成的直线有3条;④若二面角B﹣PA﹣C大小为,则过点N与平面PAC和平面PAB都成的直线有3条.正确的序号是.二、解答题(每题5分,共25分)16.(12分)如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA 的中点,且AB=AD,BC=DC.(1)求证:BD∥平面EFGH;(2)求证:四边形EFGH是矩形.17.(13分)已知直线l:kx﹣y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线l不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,求S的最小值及此时直线l的方程.18.(12分)如图,AB是圆O的直径,点C是弧AB的中点,点V是圆O所在平面外一点,D是AC的中点,已知AB=2,VA=VB=VC=2.(1)求证:AC⊥平面VOD;(2)VD与平面ABC所成角的正弦值;(3)求三棱锥C﹣ABV的体积.19.(12分)如图,已知二面角α﹣AB﹣β的大小为120°,PC⊥α于C,PD⊥β于D,且PC=2,PD=3.(1)求异面直线AB与CD所成角的大小;(2)求点P到直线AB的距离.20.(12分)如图,在Rt△ABC中,∠C=90°,BC=6,AC=3,D,E分别是AC,AB上的点,且DE∥BC,DE=4,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.(1)求证:A1C⊥平面BCDE;(2)过点E作截面EFH∥平面A1CD,分别交CB于F,A1B于H,求截面EFH的面积;(3)线段BC上是否存在点P,使平面A1DP与平面A1BE成60°的角?说明理由.21.(14分)在三棱柱ABC﹣A1B1C1中,已知AB=AC=AA1=,BC=4,在A1在底面ABC的投影是线段BC的中点O.(1)求点C到平面A1ABB1的距离;(2)求二面角A﹣BC1﹣B1的余弦值;(3)若M,N分别为直线AA1,B1C上动点,求MN的最小值.2014-2015学年四川省乐山外国语学校高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题(每题5分,共计50分)1.(5分)下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④【解答】解:正方体的三视图都相同,而三棱台的三视图各不相同,圆锥和正四棱锥的,正视图和侧视图相同,所以,正确答案为D.故选:D.2.(5分)在空间,下列命题正确的是()A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行【解答】解:平行直线的平行投影重合,还可能平行,A错误.平行于同一直线的两个平面平行,两个平面可能相交,B错误.垂直于同一平面的两个平面平行,可能相交,C错误.故选:D.3.(5分)如图,ABCD﹣A1B1C1D1为正方体,下面结论错误的是()A.BD∥平面CB 1D1B.AC1⊥BDC.AC1⊥平面CB1D1D.异面直线AD与CB1所成的角为60°【解答】解:A中因为BD∥B1D1,正确;B中因为AC⊥BD,由三垂线定理知正确;C中由三垂线定理可知AC1⊥B1D1,AC1⊥B1C,故正确;D中显然异面直线AD与CB1所成的角为45°故选:D.4.(5分)已知直线l的倾斜角为π,直线l1经过点A(3,2)、B(a,﹣1),且l1与l垂直,直线l2:2x+by+1=0与直线l1平行,则a+b等于()A.﹣4 B.﹣2 C.0 D.2【解答】解:∵l的斜率为﹣1,则l1的斜率为1,∴k AB==1,∴a=0.由l1∥l2 得,﹣=1,得b=﹣2,所以,a+b=﹣2.故选:B.5.(5分)若方程x2+(a+2)y2+2ax+a=0表示圆,则a的值为()A.﹣1 B.2 C.﹣1或2 D.不存在【解答】解:∵方程x2+(a+2)y2+2ax+a=0表示一个圆,∴A=C≠0,即1=a+2,解得:a=﹣1.此时方程x2+(a+2)y2+2ax+a=0为方程x2+y2﹣2x﹣1=0表示圆.故选:A.6.(5分)如图,正三棱锥SABC的侧棱与底面边长相等,如果E、F分别为SC、AB的中点,那么异面直线EF与SA所成的角等于()A.90°B.60°C.45°D.30°【解答】解:如图,取AC的中点D,连接DE、DF,∠DEF为异面直线EF与SA 所成的角设棱长为2,则DE=1,DF=1,根据SA⊥BC,则ED⊥DF∴∠DEF=45°,故选:C.7.(5分)如图,AB是圆O的直径,PA垂直圆O所在的平面ABC,点C是圆上的任意一点,图中有()对平面与平面垂直.A.1 B.2 C.3 D.4【解答】解:∵PA⊥圆O所在平面ABC,PA⊂平面PAB∴平面PAB⊥平面ABC,同理可得:平面PAC⊥平面ABC,∵AB是圆O的直径∴BC⊥AC,又∵PA⊥圆O所在平面ABC,BC⊂平面ABC,∴PA⊥BC又∵PA∩AC=A,PA,AC⊂平面PAC∴BC⊥平面PAC,又∵BC⊂平面PBC∴平面PBC⊥平面PAC综上相互垂直的平面共有3组.故选:C.8.(5分)P在直线2x+y+10=0上,PA、PB与圆x2+y2=4相切于A、B两点,则四边形PAOB面积的最小值为()A.24 B.16 C.8 D.4【解答】解:由圆x2+y2=4,得到圆心(0,0),半径r=2,由题意可得:PA=PB,PA⊥OA,PB⊥OB,∴S PAOB=2S△PAO=,在Rt△PAO中,由勾股定理可得:PA2=PO2﹣r2=PO2﹣4,当PO最小时,PA最小,此时所求的面积也最小,点P是直线l:2x+y+10=0上的动点,当PO⊥l时,PO有最小值d=,PA=4,所求四边形PAOB的面积的最小值为8.故选:C.9.(5分)如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q 为A1B1上任意一点,E、F为CD上两点,且EF的长为定值,则下面四个值中不是定值的是()A.点P到平面QEF的距离B.直线PQ与平面PEF所成的角C.三棱锥P﹣QEF的体积D.△QEF的面积【解答】解:A.∵平面QEF即为对角面A1B1CD,点P为A1D1的中点,∴点P 到平面QEF即到对角面A1B1CD的距离=为定值;D.∵点Q到直线CD的距离是定值a,|EF|为定值,∴△QEF的面积=为定值;C.由A.D可知:三棱锥P﹣QEF的体积为定值;B.直线PQ与平面PEF所成的角与点Q的位置有关系,因此不是定值,或用排除法即可得出.综上可得:只有B中的值不是定值.故选:B.10.(5分)三棱锥P﹣ABC中,△ABC是底面,PA⊥PB,PA⊥PC,PB⊥PC,且这四个顶点都在半径为2的球面上,PA=2PB,则这个三棱锥的三个侧棱长的和的最大值为()A.16 B.C.D.32【解答】解:∵PA,PB,PC两两垂直,又∵三棱锥P﹣ABC的四个顶点均在半径为2的球面上,∴以PA,PB,PC为棱的长方体的对角线即为球的一条直径.∴16=PA2+PB2+PC2,又PA=2PB,∴5PB2+PC2=16,设PB=,PC=4sinα,则这个三棱锥的三个侧棱长的和PA+PB+PC=3PB+PC=cosα+4sinα=sin(α+∅)≤.则这个三棱锥的三个侧棱长的和的最大值为,故选:B.二、填空题(每题5分,共25分)请将答案填在答题卡上11.(5分)与直线7x+24y=5平行,并且距离等于3的直线方程是7x+24y+70=0,或7x+24y﹣80=0.【解答】解:设所求的直线方程为7x+24y+c=0,d==3,c=70,或﹣80,故所求的直线的方程为7x+24y+70=0,或7x+24y﹣80=0,故答案为7x+24y+70=0,或7x+24y﹣80=0.12.(5分)圆心在直线x﹣2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C的标准方程为(x﹣2)2+(y﹣1)2=4.【解答】解:设圆心为(2t,t),半径为r=|2t|,∵圆C截x轴所得弦的长为2,∴t2+3=4t2,∴t=±1,∵圆C与y轴的正半轴相切,∴t=﹣1不符合题意,舍去,故t=1,2t=2,∴(x﹣2)2+(y﹣1)2=4.故答案为:(x﹣2)2+(y﹣1)2=4.13.(5分)某几何体的三视图如图所示,它的体积为57π.【解答】解:由三视图可知:原几何体是由上下两部分组成:下面是一个底面半径为3,高为5的圆柱;上面是一个与圆柱的上底面重合、母线长为5的圆锥.圆锥的高h==4.∴V==57π.故答案为57π.14.(5分)相交成90°的两条直线与一个平面所成的角分别是30°与45°,则这两条直线在该平面内的射影所成角的正弦值为.【解答】解:如图,已知PA⊥PB,PO⊥平面AOB,∠PAO=30°,∠PBO=45°,直线PA,PB这两条直线在该平面内的射影所成角为∠AOB,设PO=x,则AO=,BO=x,PA==2x,PB==,AB==,∴cos=﹣,∴sin∠AOB==.∴这两条直线在该平面内的射影所成角的正弦值为.故答案为:.15.(5分)正三棱锥P﹣ABC中,CM=2PM,CN=2NB,对于以下结论:①二面角B﹣PA﹣C大小的取值范围是(,π);②若MN⊥AM,则PC与平面PAB所成角的大小为;③过点M与异面直线PA和BC都成的直线有3条;④若二面角B﹣PA﹣C大小为,则过点N与平面PAC和平面PAB都成的直线有3条.正确的序号是①②④.【解答】解:①设底面正三角形的边长为1,过B作BD⊥PA,连结CD,则∠BDC 是二面角B﹣PA﹣C大小,因为底面三角形ABC是正三角形,所以∠CAB=,所以当点P无限靠近点O时,即高无限小时,∠BDC接近,所以二面角B﹣PA﹣C大小的取值范围是(,π),所以①正确.②因为CM=2PM,CN=2NB,所以MN∥PB.若MN⊥AM,则PB⊥AM,因为P ﹣ABC是正三棱锥,所以P在底面的射影是底面的中心,所以PB⊥AC,因为AM ∩AC=A,所以PB⊥面PAC,因为P﹣ABC是正三棱锥,所以必有PC⊥面PAB,所以PC与平面PAB所成角的大小为,所以②正确.③因为因为P﹣ABC是正三棱锥,所以P在底面的射影是底面的中心,所以PA ⊥BC.所以过点M与异面直线PA和BC都成的直线有两条,所以③错误.④若二面角B﹣PA﹣C大小为,则∠BDC=,此时∠EDC=,(其中E是BC的中点),,所以此时直线BC与平面PAC和平面PAB都成,又因为平面PAC和平面PAB的法向量的夹角为,此时适当调整过N的直线,可以得到两条直线使得过点N与平面PAC和平面PAB都成,所以满足过点N与平面PAC和平面PAB都成的直线有3条.所以④正确.故答案为:①②④.二、解答题(每题5分,共25分)16.(12分)如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA 的中点,且AB=AD,BC=DC.(1)求证:BD∥平面EFGH;(2)求证:四边形EFGH是矩形.【解答】证明:(1)∵E,H分别为AB,DA的中点,∴EH∥BD,又BD⊄平面EFGH,EH⊂平面EFGH,∴BD∥平面EFGH.…(4分)(2)取BD中点O,连续OA,OC,∵AB=AD,BC=DC.∴AO⊥BD,CO⊥BD.又AO∩CO=0.∴BD⊥平面AOC,∴BD⊥AC.…(7分)∵E,F,G,H为AB,BC,CD,DA的中点.∴EH∥BD,且EH=BD;FG∥BD,且FG=BD,EF∥AC.∴EH∥FG,且EH=FG,∴四边形EFGH是平行四边形.…(10分)由AC⊥BD、EF∥AC、EH∥BD,∴EF⊥EH,∴四边形EFGH为矩形.…(12分)17.(13分)已知直线l:kx﹣y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线l不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,求S的最小值及此时直线l的方程.【解答】解:(1)直线l的方程可化为y=k(x+2)+1,故无论k取何值,直线l总过定点(﹣2,1).(2)直线l的方程可化为y=kx+2k+1,则直线l在y轴上的截距为2k+1,要使直线l不经过第四象限,则,解得k的取值范围是k≥0.(3)依题意,直线l在x轴上的截距为﹣,在y轴上的截距为1+2k,∴A(﹣,0),B(0,1+2k),又﹣<0且1+2k>0,∴k>0,故S=|OA||OB|=×(1+2k)=(4k++4)≥(4+4)=4,当且仅当4k=,即k=时,取等号,故S的最小值为4,此时直线l的方程为x﹣2y+4=0.18.(12分)如图,AB是圆O的直径,点C是弧AB的中点,点V是圆O所在平面外一点,D是AC的中点,已知AB=2,VA=VB=VC=2.(1)求证:AC⊥平面VOD;(2)VD与平面ABC所成角的正弦值;(3)求三棱锥C﹣ABV的体积.【解答】解:(1)∵VA=VB,O为AB中点,∴VO⊥AB,连接OC,在△VOA和△VOC中,OA=OC,VO=VO,VA=VC,∴△VOA≌△VOC,∠VOA=∠VOC=90°,∴VO⊥0C∵AB∩OC=0,AB⊂平面ABC,OC⊂平面ABC,∴VO⊥平面ABC,∵AC⊂平面ABC,∴AC⊥VO,又∵VA=VC,D是AC的中点,∴AC⊥VD,∵VO⊂平面VOD,VD⊂平面VOD,VD∩VO=V,∴AC⊥平面VOD,(2)由(1)知VO是棱锥V﹣ABC的高,且VO==.又∵点C是弧的中点,∴CO⊥AB,且CO=1,AB=2,=AB•CD==1,∴三角形ABC的面积S△ABC∴棱锥V﹣ABC的体积为V V=S△ABC•VO=﹣ABC故棱锥C﹣ABV的体积为,19.(12分)如图,已知二面角α﹣AB﹣β的大小为120°,PC⊥α于C,PD⊥β于D,且PC=2,PD=3.(1)求异面直线AB与CD所成角的大小;(2)求点P到直线AB的距离.【解答】解:(1)∵PC⊥α于C,PD⊥β于D.∴PC⊥AB,PD⊥AB.又PC∩PD=P.∴AB⊥平面PCD.∵CD⊂平面PCD,∴AB⊥CD,即异面直线AB与CD所成角的大小为90°.…(6分)(2)设平面PCD与直线AB交于点E,连结CE,DE,PE由(1)可知,AB⊥平面PCD.∴AB⊥CE,AB⊥DE,AB⊥PE.∴∠CED为二面角α﹣AB﹣β的平面角,…(8分)从而∠CED=120°.∵PC⊥α,PD⊥β.∴PC⊥CE,PD⊥DE.∴∠CPD=60°.又PC=2,PD=3.∴由余弦定理,得CD2=4+9﹣12cos60°=7,从而CD=.…(10分)∵PE为四边形PCED的外接圆直径.∴由正弦定理,得PE==.即点P到直线AB的距离等于.…(12分)20.(12分)如图,在Rt△ABC中,∠C=90°,BC=6,AC=3,D,E分别是AC,AB上的点,且DE∥BC,DE=4,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.(1)求证:A1C⊥平面BCDE;(2)过点E作截面EFH∥平面A1CD,分别交CB于F,A1B于H,求截面EFH的面积;(3)线段BC上是否存在点P,使平面A1DP与平面A1BE成60°的角?说明理由.【解答】(1)证明:∵CD⊥DE,A1D⊥DE,CD∩A1D=D,∴DE⊥平面A1CD.又∵A1C⊂平面A1CD,∴A1C⊥DE.又A1C⊥CD,CD∩DE=D,∴A1C⊥平面BCDE…(4分)(2)解:过点E作EF∥CD交BC于F,过点F作FH∥A1C交A1B于H,连结EH,则截面EFH∥平面A1CD.因为四边形EFCD为矩形,所以EF=CD=1,CF=DE=4,从而FB=2,HF=.∵A1C⊥平面BCDE,FH∥A1C,∴HF⊥平面BCDE,∴HF⊥FE,∴.…(8分)(3)解:假设线段BC上存在点P,使平面A1DP与平面A1BE成60°的角.设P点坐标为(a,0,0),则a∈[0,6].如图建系C﹣xyz,则D(0,1,0),A1(0,0,),B(6,0,0),E(4,1,0).∴,.设平面A 1BE法向量为,则,∴,∴,设平面A1DP法向量为,因为,.则,∴,∴.则cos<,>===,∴5656a2﹣96a﹣141=0,解得∵0<a<6,∴所以存在线段BC上存在点P,使平面A1DP与平面A1BE成60°的角.…(12分)21.(14分)在三棱柱ABC﹣A1B1C1中,已知AB=AC=AA1=,BC=4,在A1在底面ABC的投影是线段BC的中点O.(1)求点C到平面A1ABB1的距离;(2)求二面角A﹣BC1﹣B1的余弦值;(3)若M,N分别为直线AA 1,B1C上动点,求MN的最小值.【解答】解:(1)连接AO,因为A1O⊥平面ABC,所以A1O⊥BC,因为AB=AC,OB=OC,得AO⊥BC,,在△AOA1中,A1O=2,=2.在△BOA 1中,,则.又S△CAB设点C到平面A1ABB1的距离为h,则由得,=.从而.…(4分)(2)如图所示,分别以OA,OB,OA1所在的直线为x,y,z轴,建立空间直角坐标系,则A(1,0,0),C(0,﹣2,0),A1(0.0,2),B(0,2,0),B1(﹣1,2,2),C1(﹣1,﹣2,2).设平面BCC 1B1的法向量,又,.由,得,令z=1,得x=2,y=0,即.设平面ABC 1的法向量,又,.由,得,令b=1,得a=2,c=3,即.所以,…(7分)由图形观察可知,二面角A﹣BC1﹣B1为钝角,所以二面角A﹣BC1﹣B1的余弦值是.…(9分)(3)方法1.在△AOA1中,作OE⊥AA1于点E,因为AA1∥BB1,得OE⊥BB1.因为A1O⊥平面ABC,所以A1O⊥BC,因为AB=AC,OB=OC,得AO⊥BC,所以BC⊥平面AA1O,所以BC⊥OE,所以OE⊥平面BB1C1C.从而OE⊥B1C在△AOA1中,为异面直线AA1,B1C的距离,即为MN的最小值.…(14分)方法2.设向量,且∵,.∴.令z1=1,得x1=2,y1=0,即.∵.所以异面直线AA1,B1C的距离,即为MN的最小值.…(14分)。