“圆柱的体积”教学案例及反思教学文案
2024年人教版数学六年级下册圆柱的体积教案与反思3篇

人教版数学六年级下册圆柱的体积教案与反思3篇〖人教版数学六年级下册圆柱的体积教案与反思第【1】篇〗一、教学内容:人教版教材六年级下册19——20页例5例6及相关的练习题。
二、教学目标:1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2、经历“类比猜想——验证说明”的探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积。
并会解决一些简单的实际问题。
3、注意渗透类比、转化思想。
三、教学重点:理解、掌握圆柱体积计算的公式,能运用公式正确地计算圆柱的体积。
四、教学难点:推导圆柱的体积计算公式。
五、教法要素:1、已有的知识和经验:体积、体积单位,学习长方体正方体的体积公式的经验。
2、原型:圆柱模型。
3、探究的问题:(1)圆柱的体积和什么有关?圆柱能否转化成已学过的立体图形来计算体积?(2)把圆柱拼成一个近似的长方体后,长方体的长、宽、高是圆柱的哪个部分?(3)怎样计算圆柱的体积?六、教学过程:(一)唤起与生成。
1、什么叫物体的体积?我们学过哪些立体图形的体积计算?2、长方体和正方体的体积怎样计算?它们可以用一个公式表示出来吗?切入教学:怎样计算圆柱的体积?圆柱的体积计算会和什么有关?(二)探究与解决。
探究:圆柱的体积1、提出问题,启发思考:如何计算圆柱的体积?2、类比猜测,提出假设:结合长方体和正方体体积计算的知识,即长方体和正方体的体积都等于底面积×高,据此分析并猜测圆柱的体积与谁有关,有什么关系;提出假设,圆柱的体积可能等于底面积×高。
3、转化物体,分析推理:怎样来验证我们的猜想?我们在学圆的面积时是把圆平均分成若干份,然后拼成一个近似的长方形,推导出圆的面积计算公式。
我们能不能也把圆柱转化为我们学过的立体图形呢?应该怎样转化?结合圆的面积计算小组讨论。
学生汇报交流。
(拿出平均分好的圆柱模型,圆柱的底面用一种颜色,圆柱的侧面用另一种颜色,以便学生观察。
人教版数学六年级下册第10课圆柱的体积教案与反思(推荐3篇)

人教版数学六年级下册第10课圆柱的体积教案与反思(推荐3篇)人教版数学六年级下册第10课圆柱的体积教案与反思【第1篇】《圆柱的体积》教案文档合集八篇人教版数学六年级下册第10课圆柱的体积教案与反思【第2篇】【教学过程】一、揭示课题,确定目标谈话:前面我们认识了圆柱,学习了圆柱的底面积、侧面积和表面积,今天学习“圆柱的体积”。
(教师板书,学生齐读)启发:看到这个课题,你们会想到什么?这堂课要解决什么问题呀?(可能学生会提出以下几个问题)引导:(1)什么是圆柱的体积?(2)圆柱的体积和什么有关?(3)圆柱的体积公式是怎样推导出来的?(4)圆柱的体积是怎样求出来的?(5)学习圆柱的体积公式有什么用?谈话:对!刚才这几位同学跟老师想的一样。
启发:圆柱的体积就是圆柱所占空间的大小谈话:这堂课我们主要解决三个问题:(出示探究问题)1、圆柱的体积和什么有关?2、这个公式是怎样推导出来的?3、学习了圆柱的体积能解决什么实际问题?【设计意图】直接揭示课题,启发学生自己提出教学的要求,这样既创设了问题情境,激发学生学习的兴趣,又使学生明确这堂课的教学目标。
二、温故知新,自学课本1、提出问题谈话:现在请大家回忆一下,我们以前学过哪些立体图形的体积计算。
是怎样计算的?引导:我们已经学过长方体、正方体的体积计算。
(教师随着学生的回答,逐一出示出上述图形)。
谈话:长方体的体积=长×宽×高正方体的体积=棱长×棱长×棱长统一为:长方体或正方体的体积=底面积×高谈话:长方体和正方体和今天学习的圆柱有什么显著的区别?引导:长方体的面都是平面图形,圆柱的侧面是一个曲面。
谈话:因为圆柱的侧面是一个曲面,计算圆柱的体积就比较困难了。
能不能直接用体积单位去量呢?引导:它的侧面是一个曲面,用体积单位直接量是有困难的。
2、引发猜想谈话:圆柱的体积和什么有关系呢?(准备三组比较圆柱体杯里饮料的多少:一组是底面积一样,高不同;另一组高一样,底面积不同;最后一组底面积、高都不同)引导:圆柱体的体积既和底面积有关,又和高有关。
【精选】《圆柱的体积》教学反思15篇

《圆柱的体积》教学反思15篇《圆柱的体积》教学反思1《圆柱的体积》是在学生已经学会计算长方体、正方体的体积,并且掌握圆柱基本特征的基础上,引导学生探索并掌握圆柱的体积公式。
通过教材教学学习后,下面我从教学过程、教学策略、教学技能等方面谈谈自己的一些反思。
一、在教学过程的设计方面1、导入时,力求突破教材,有所创新圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。
猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。
于是我设计时不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的.引导才是行之有效的。
不过应该注意时间的控制,不能花费太多的时间。
2、新课时,要实现人人参与,主动学习学生进行数学探究时,应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。
在推导圆柱体积公式过程时,我让学生经历先想—观察—动手操作的过程。
把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着让学生小组交流长方体的长和宽与圆柱的各部分有什么关系?圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。
这样学生亲身参与操作,有了空间感觉的体验,,也有了充分的思考空间。
这样设计我觉得能突破难点,课堂效果很好。
3、练习时,形式多样,层层递进例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。
所以,为了让学生能熟练地掌握计算圆柱的体积,我在设计练习时动了一番脑,花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。
圆柱的体积教案及反思(通用11篇)

圆柱的体积教案及反思〔通用11篇〕圆柱的体积教案及反思〔通用11篇〕圆柱的体积教案及反思篇1教学目的:1、知识与技能:运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,会用圆柱的体积公式计算圆柱形物体的体积。
2、方法与过程:经历猜测、验证、合作、动手操作等过程,体验和理解圆柱体体积公式的推导过程。
3、情感、态度、价值观:创设情境,激发学生学习的积极性。
让学生在主动学习的根底上,逐步学会转化的数学思想和数学法,培养学生解决实际问题的才能和培养学生抽象、概括的思维才能。
教学重点和难点:圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教具:圆柱的体积公式演示教具,圆柱的体积公式演示课件教学过程:一、教学回忆1、交代任务:这节课我们来学习《圆柱的体积》。
2、回忆导入〔1〕、请大家想一想,我们在学习圆的面积时,是怎样把圆变成已学过的图形再计算面积的?〔2〕、我们都学过那些立体图形的体积公式。
二、积极参与探究感受1、猜测圆柱的体积和那些条件有关。
(电脑演示)2、.探究推导圆柱的体积计算公式。
小组合作讨论:(1)将圆柱体切割拼成我们学过的什么立体图形?(2)切拼前后的两个物体什么变了?什么没变?(3)切拼前后的两个物体有什么联络?课件演示拼、组的过程,同时演示一组动画〔将圆柱底面等分成32份、64份??〕,让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。
①把圆柱拼成长方体后,形状变了,体积不变。
〔板书:长方体的体积=圆柱的体积〕②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。
配合答复,演示课件,闪烁相应的部位,并板书相应的内容。
〕③圆柱的体积=底面积×高字母公式是V=Sh〔板书公式〕2、练一练:一根圆柱形木料,底面积为75平方厘米,长90厘米,它的体积是多少?3、要用这个公式计算圆柱的体积必须知道什么条件?三、练习1、填空(1)、圆柱体通过切拼转化成近似的〔〕体。
《圆柱的体积》教学设计方案及反思_教案教学设计

《圆柱的体积》教学设计方案及反思教学内容:圆柱的体积一、教学对象及学习内容特点分析:圆柱的体积是小学立体几何图形中的重要内容之一,是已学的长方体知识和将学的圆椎体知识的桥梁,其公式是长方体、正方体体积公式v=sh的延续。
二、教学目的:学生能借助媒体提供的资源理解和掌握圆柱体积的计算公式。
学生能应用圆柱体积公式进行圆柱体积的计算。
学生能利用知识之间相互"转化"的思想探索解决新的问题。
四、教学基本指导思想、教学策略和方法:整个过程,充分利用计算机的优点,以小组学习的形式,发挥学生的主体作用,教师是学生学习过程的组织者和辅导者。
长方体的体积公式和平面图形的面积公式已学过,因此引导学生用转化的思想去学习,并创设情景,让学生自己发现问题,利用电脑、课本、实物提供的资源协商解决问题,使全体学生都成为学习的主人。
五、教学运用的主要手段、技术、材料:电脑网络、实物投影、圆柱体。
六、教学过程的设想和点评教师的教学行为学生的学习行为点评第一阶段:创设情景,设疑引趣。
教师故事引入:圆柱形状的"转笔刀"和"浆糊笔"迎着朝阳高高兴兴上学了,走着走着,它们就为哪个体积大而争论起来,"转笔刀"很自信地说:"看我这么胖,肯定是我的体积大!""浆糊笔"很不服气地说:"我比你高多了,一定是我的体积大!"就这样你一言我一语,争论了很久还没个结果。
提问:小组讨论寻找解决这两个圆柱体积大小的方法。
1、学生小组讨论解决的方法。
2、小结归纳:解决圆柱的体积的方法:寻找一种方法,导出圆柱的体积公式,然后应用公式求圆柱的体积。
通过情景的创设,激发学生的学习热情,让他们发现问题,并通过讨论找出解决的方法,使学生从被动学习变为主动学习,学生对这节课的学习也从宏观上得到了解。
学生解决问题的方法有出人意料的回答,老师根据情况,给予恰当的鼓励性的评价,以激发学生的思维。
圆柱的体积教学反思(15篇)

圆柱的体积教学反思(15篇)圆柱的体积教学反思1在教学圆柱的体积时,我采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。
通过这节课的教学,我觉得有以下几个方面值得探讨:一、联系旧知,导入新知。
圆柱的体积的导入,在回忆了长方体、正方体体积计算方法,并强调长方体、正方体的体积都可以用底面积乘高,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想:“圆柱体是否可以转化成我们学过的图形呢?”激发学生好奇心,独立思考问题,探索问题的愿望。
这样联系旧知,导入新知,思维过度自然,易接受新知。
二、动手操作,探索新知。
学生在探究新知时,教师要给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。
教学“圆柱的体积”时,学生亲身参与操作,先用小刀把一块月饼切成一个圆柱体把圆柱的底面分成若干份(例如,分成12等份),然后把圆柱切开,再拼起来,圆柱体就转化成一个近似的长方体。
找一找:这个长方体的长相当于圆柱的什么,宽是圆柱的什么,高是圆柱的什么。
圆柱的体积就是长方体的体积,从而推导出圆柱体积的计算公式。
三、课件展示,加深理解。
为了直观、形象,让学生观看课件:圆转化成近似长方形的过程,使学生很容易猜想出圆柱体也可以转化成近似的长方体来得出体积公式。
在推导圆柱体积公式的过程中,要求学生想象:“如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?”学生虽然能说出“拼成的物体越来越接近长方体。
” 但是,到底拼成的图形怎样更接近长方体?演示动画后,学生不仅对这个切拼过程一目了然,同时又加深理解了圆柱体转化成近似长方体的转化方法。
四、分层练习,发散思维。
为了培养学生解题的灵活性,进行分层练习,拓展知识,发散思维。
如:已知圆柱底面积和高,怎样求圆柱体积;已知圆柱底面半径和高,怎样求圆柱体积;已知圆柱底面直径和高,怎样求圆柱体积;已知圆柱底面周长和高,怎样求圆柱体积;已知圆柱侧面积和高,怎样求圆柱体积;已知圆柱底面积和体积,怎样求高;已知圆柱体积和高,怎样求底面积等。
圆柱体积教案【优秀3篇】
圆柱体积教案【优秀3篇】教育要使人愉快,要让一切的教育带有乐趣。
下面是为大伙儿带来的3篇《圆柱体积教案》,如果能帮助到您,将不胜荣幸。
《圆柱的体积》的教学设计篇一教材分析1、《圆柱的体积》是在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。
圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念。
根据本节课的性质特点和六年级学生以形象思维为主、空间观念还比较薄弱的特点,2、本节核心内容的功能和价值,为下一步学习“圆锥的体积”打下基础。
学情分析六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。
由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。
其中,圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来推导,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。
教学目标1、知识与能力:通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念,培养学生判断、推理的能力和迁移能力。
2、过程与方法:结合具体情境和实践活动,理解圆柱体积的含义。
探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、情感、态度、价值观:感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。
教学重点和难点由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。
其中,圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来推导,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。
教学过程教学过程:一、情景引入1、出示圆柱形水杯。
圆柱的体积教学设计及反思
圆柱的体积教学设计及反思圆柱的体积教学设计及反思在现在的社会生活中,我们的任务之一就是教学,反思过去,是为了以后。
如何把反思做到重点突出呢?以下是店铺整理的圆柱的体积教学设计及反思,欢迎大家分享。
圆柱的体积教学设计及反思篇1学情分析:根据六年级的教学情况来看,班中绝大部分同学都能跟上现有的进度,通过本节课教学要使灵活运用圆柱体积的计算方法解决生活中一些简单的问题,通过想象、操作等活动,理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。
教学目标:1.通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。
2.通过圆柱体体积公式的推导,培养学生的分析推理能力。
3.理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。
教学重点:圆柱体体积的计算教学难点:圆柱体体积公式的推导教学用具:圆柱体学具、教学过程:一、复习引新1.求下面各圆的面积(回答)。
(1)r=1厘米;(2)d=4分米;(3)C=6.28米。
要求说出解题思路。
2.提问:什么叫体积?常用的体积单位有哪些?3.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)二、探索新知1、根据学过的体积概念,说说什么是圆柱的体积。
(板书课题)2、公式推导。
(有条件的可分小组进行)(1)请同学指出圆柱体的底面积和高。
(2)回顾圆面积公式的推导。
(切拼转化)3、回顾了圆的面积公式推导,你有什么启发?生答:把圆柱转化成长方体计算体积。
4、动手操作。
请2位同学上台用教具来演示,边演示边讲解。
把圆柱的底面平均分成16份,切开后把它拼成一个近似地长方体。
多请几组同学上台讲解,完善语言。
提问:为什么用“近似”这个词?5、教师演示。
把圆柱拼成了一个近似的长方体。
6、如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?生答:拼成的物体越来越接近长方体。
《圆柱的体积》教学设计方案及反思
《圆柱的体积》教学设计方案及反思教学内容:圆柱的体积一、教学对象及学习内容特点分析:圆柱的体积是小学立体几何图形中的重要内容之一,是已学的长方体知识和将学的圆椎体知识的桥梁,其公式是长方体、正方体体积公式v=sh的延续。
二、教学目的:学生能借助媒体提供的资源理解和掌握圆柱体积的计算公式。
学生能应用圆柱体积公式进行圆柱体积的计算。
学生能利用知识之间相互"转化"的思想探索解决新的问题。
四、教学基本指导思想、教学策略和方法:整个过程,充分利用计算机的优点,以小组学习的形式,发挥学生的主体作用,教师是学生学习过程的组织者和辅导者。
长方体的体积公式和平面图形的面积公式已学过,因此引导学生用转化的思想去学习,并创设情景,让学生自己发现问题,利用电脑、课本、实物提供的资源协商解决问题,使全体学生都成为学习的主人。
五、教学运用的主要手段、技术、材料:电脑网络、实物投影、圆柱体。
六、教学过程的设想和点评教师的教学行为学生的学习行为点评第一阶段:创设情景,设疑引趣。
教师故事引入:圆柱形状的"转笔刀"和"浆糊笔"迎着朝阳高高兴兴上学了,走着走着,它们就为哪个体积大而争论起来,"转笔刀"很自信地说:"看我这么胖,肯定是我的体积大!""浆糊笔"很不服气地说:"我比你高多了,一定是我的体积大!"就这样你一言我一语,争论了很久还没个结果。
提问:小组讨论寻找解决这两个圆柱体积大小的方法。
1、学生小组讨论解决的方法。
2、小结归纳:解决圆柱的体积的方法:寻找一种方法,导出圆柱的体积公式,然后应用公式求圆柱的体积。
2023年人教版数学六年级下册圆柱的体积教案与反思(优选3篇)
人教版数学六年级下册圆柱的体积教案与反思(优选3篇)〖人教版数学六年级下册圆柱的体积教案与反思第【1】篇〗教学目标:1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、进一步提高学生解决问题的能力。
教学重、难点:1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、理解圆柱体积公式的推导过程。
教学准备:圆柱切割组合模具、小黑板。
教学过程:一、创设情境,生成问题1、什么是体积?(物体所占空间的大小叫做物体的体积。
)2、长方体的体积该怎样计算?归纳到底面积乘高上来。
3、圆的面积怎样计算?二、探索交流,解决问题1、计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体图形来计算它的体积?(启发学生思考。
)2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。
3、思考:(1)圆柱切开后可以拼成一个什么形体?(长方体)(2)通过实验你发现了什么?小组讨论:实验前后,什么变了?什么没变?讨论后,整理出来,再进行汇报。
(拼成的近似长方体体积大小没变,形状变了,拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。
近似长方形的高就是圆柱的高,没有变化。
)4、推导圆柱体积公式小组讨论:怎样计算圆柱的体积?学生汇报讨论结果。
长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。
师:圆柱的体积怎样计算?用字母公式,怎样表示?板书: V=Sh5、算一算:已知一根柱子的底面半径为0.4米,高为5米。
你能算出它的体积吗?三、巩固应用练习。
1、一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个水桶的容积是多少升?说明:求水桶的容积,就是求水桶的体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱的体积”教学案例及反思
新课程观强调:教材是一种重要的课程资源,对于学校和教师来
说,课程实施更多地应该是如何更好地“用教材”,而不是简单地“教教材”。
在实际教学中,如何落实这一理念?本人结合“圆柱的体积” 一课谈谈自己的实践与思考。
[ 片段一]
师生共同探究出圆柱的体积计算公式后对公式加以应用。
师出示教材例4 (苏教版第12册P8): —根圆柱形钢材,底面积是20平方厘米,高是1.5 米,它的体积是多少?
由于课前学生已进行了预习,多数学生是按照教材介绍的解法来解答:
1.5 米=150厘米20 X 1150=3000 (立方厘米)
师:这道题还有其他结果吗?(学生又沉入了深思)不一会儿,另外两种结果纷纷展现:
①20平方厘米=0.002平方米0.002 X 11.5=0.003 (立方米)
②20 平方厘米=0.2 平方分米1.5 米=15 分米0.2 X 115=3(立方分米)
师:为什么会出现三种结果?
经讨论,学生才明白:从不同的角度去考虑问题,将得到不同
的结果。
[ 片断二]
巩固与应用阶段,我将教材练习二中的一个填表题(表1)进行了加工组合呈现给学生这样一个表格(表2)。
学生填表后,师:观察前两组数据,你想说什么?
学生独立思考后再小组交流,最后汇报。
生1:两个圆柱的高相等,底面积是几倍的关系,体积也是几倍的关系。
生2:两个圆柱的高相等,底面积越大,体积就越大。
师:观察后两组数据,你想说什么?
有了前面的基础,学生很容易说出了后两组的关系。
学生的表述尽管不是很准确完美,但已说出了其中的规律,而这个规律正是解答练习二第17、18 题的基础,又为下一单元“比例” 的教学作了提前孕伏。
[ 片段三]
教材的练习中有这样一题:量一个圆柱形茶杯的高和底面直径,算出它可装水多少克?
学生动手测量自备的圆柱形茶杯的有关数据并计算它的体积。
师:水的生命之源。
人每天都要饮用一定量的水,请大家课后查阅相关资料,计算自己每天需要饮用几杯水(自己的杯子)才能保证健康,并把自己对水的想法写下来,下节课我们再交流。
[ 教学反思]
精心研究教材是用好教材的基础
教材作为教学的凭借与依据,只不过是编者对学科知识、国家要求与学生进行整和思考的结晶。
但由于受时间与地域的影响,我们在执行教
材时不能把它作为一种“枷锁” ,而应作为“跳板”——编者意图与学生实际的“跳板” 。
因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,创造性地利用教材。
1、挖掘训练空白,及时补白教材。
编者在编写教材时,也考虑了地域、学科、时间等因素,留下了诸多空白,我们使用教材时,要深入挖掘其中的训练空白,及时补白教材。
[ 片段一] 中的例题教学,就挖掘出了教材中的训练空白,并没有把教学简单地停留在一种解答方法上,而是在学生预习的基础上引导学生深入思考,在解决问题的过程中体会“从不同的角度去考虑问题,将得到不同的结果” 的道理,从而学会多角度考虑问题,提高解决问题的能力。
2、找出知识联系,大胆重组教材。
数学知识具有一定的结构,知识间存在着密切的联系,我们在教学时不能只着眼于本节课的教学,而应找出知识间的内在联系,帮助学生建立一个较为完整知识系统。
[ 片断二] 的表
1 仅帮助学生熟练掌握体积公式,此外无更多的教学价值,而重组后的表
2 不仅实现了编者的意图,而且为“比例”的教学作了提前孕伏。
走出了数学教学的“只见树木,不见森林”的“点教学”的误区。
落实课标理念是用好教材的关键
能否用好教材,关键在于我们的课堂教学是否落实了新课标的理念。
关注人是新课程的核心理念。
我们的数学教学不能再以学科为中心,而应以学生为出发点和归宿。
教材在编写时不可能面面俱到,教师要心里装着学生,使用教材前反复琢磨,怎样的教学才能符合新理念。
前两个片段就突破了“学科中心”和“知识中心” ,走向了“学生中心”。
[片断三]在教材关注学生的基础上向深层发展——不仅让学生动手测量,动脑计算,而且让学生在课外展开调查研究;不仅关注知识技能,而且关注了态度、情感和价值观(对生命之源——水的自我看法)这一片断的教学,其价值就在于渗透了人文关爱。
学生获得发展是用好教材的标准
有的教师在教学中常常脱离教材,片面追求新课程的形式,而忽
略了实质——“一切为了每一位学生的发展” 。
每个学生在一节课的40 分钟里获得最大发展应作为我们用好教材组织教学的追求。
本节课紧扣教材,“以本为本”,着眼学生的发展,无论是知识技能、过程与方法、数学思考还是情感态度价值观,学生都获得了最大发展。