角平分线遇见平行线6题

合集下载

角平分线与平行线结合的等腰三角形问题

角平分线与平行线结合的等腰三角形问题

角平分线与平行线构造等腰三角形问题基本图形1已知:AB∥CD, (1)CE平分∠ACD交AB于E.问⊿ACE是什么特殊三角形(2)反过来,若AC=AE,问CE是∠ACD的平分线吗基本图形2已知:△ABC,AB=AC,(1)AE是外角∠BAD的平分线.问AE与BC平行吗(2)若AE∥BC,问∠DAE=∠BAE吗(3)若AE是外角∠BAD的平分线,且AE∥BC,AB=AC吗!问题举例1.已知:如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F,求证:四边形AEDF 是菱形。

2.(2016•泰安)如图,在□ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F ,则AE+AF的值等于()A.2 B.3 C.4 D.63.如图,CD、BD平分∠BCA及∠ABC,EF过D点且EF∥BC,AB=8,AC=6 。

则△AEF的周长是______4.(2013泰安)如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2B.4C.4 D.85.(2013菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP 交CE于D,∠CBP的平分线交CE于Q,当CQ=3CE时,EP+BP= .(6.如图,正方形ABCD中,AB=6,点E在边C D上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC =3.其中正确结论的个数是( )A.1 B.2 C.3 D.47.已知:□ABCD,BE平分∠ABC, CF平分∠BCD,BE、CF分别交AD于E、F,BE与CF交于点G.(1)求证:BE⊥CF.(2)若AB=5,BC=8,求EF的长.&8.(2013•张家界)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F.求证:OE=OF;|9.(2013泰安)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;^10.已知:△ABC ,AB =AC ,AE 是外角∠BAD 的平分线,点D 为BC 的中点,DE ∥AC 交AE 于E,连接BE.求证:四边形AEBD 是矩形.~~11.(2017.岱岳区)如图,已知一次函数y=23x-3与反比例函数y=x k的图象相交于点A (4,n ),与X轴相交于点B.(1)求反比例函数的表达式;(2)将线段AB 沿X 轴向右平移5个单位到DC ,设DC 与双曲线交于点E ,求点E 到x 轴的距离.、。

数学七年级下册 第5章 《相交线与平行线》 常考题型训练(四)(含答案)

数学七年级下册 第5章 《相交线与平行线》 常考题型训练(四)(含答案)

七年级下册《相交线与平行线》常考题型训练(四)1.如图,∠ADE+∠BCF=180°,BE平分∠ABC,∠ABC=2∠E.(1)AD与BC平行吗?请说明理由;(2)AB与EF的位置关系如何?为什么?(3)若AF平分∠BAD,试说明:∠E+∠F=90°.2.如图1,已知点A,点D在BC上方,过点A,D分别作CD,AB的平行线,两条平行线交于点M(点M在BC下方),且与BC分别交于E,F两点,连结AD.(1)∠BAM与∠CDM相等吗?请说明理由.(2)根据题中条件,判断∠AEF,∠DFE,∠BAE三个角之间的数量关系,并说明理由;(3)如图2,Q是AD下方一点,连结AQ,DQ,且∠DAQ=∠BAD,∠ADQ=∠ADC,若∠AQD=112°,请直接写出∠BAE的度数.3.阅读下面材料:小明遇到这样一个问题:如图1,AC∥BD,点E为直线AC上方一点,连接CE、DE,猜想∠C、∠D、∠E的数量关系,并证明.小明发现,可以过点E作MN∥AC来解决问题,如图2,请你完成解答;用学过的知识或参考小明的方法,解决下面的问题:如图3,AB∥CD,P是平面内一点,连接AP、CP,使AP∥BD,∠APC=100°,BM、CM分别平分∠ABD、∠DCP交于点M,求∠M的度数.4.(1)已知:如图1,直线AB∥CD,点E是AB、CD之间的一点,连接BE、DE得到∠BED.求证:∠BED=∠B+∠D,(提示:过E作EF平行AB)(2)已知:直线AB∥CD,直线MN分别与AB、CD交于点E、F.①如图2,∠BEF和∠EFD的平分线交于点G.猜想∠G的度数,并证明你的猜想;②如图3,EG1和EG2为∠BEF内满足∠1=∠2的两条线,分别与∠EFD的平分线交于点G1和G2.求证:∠FG1E+∠G2=180°.5.如图,已知AD⊥BC,EF⊥BC,垂足分别为D、F,∠2+∠3=180°,试说明:∠GDC =∠B.请补充说明过程,并在括号内填上相应的理由.解:∵AD⊥BC,EF⊥BC(已知)∴∠ADB=∠EFB=90°(),∴EF∥AD(),∴+∠2=180°().又∵∠2+∠3=180°(已知),∴∠1=∠3(),∴AB∥(),∴∠GDC=∠B().6.如图,直线AB、CD相交于O,∠EOC=90°,OF是∠AOE的角平分线,∠COF=34°,求∠BOD的度数.其中一种解题过程如下:请在括号中注明根据,在横线上补全步骤.解:∵∠EOC=90°∠COF=34°()∴∠EOF=°∵OF是∠AOE的角平分线∴∠AOF==56°()∴∠AOC=°∵∠AOC+=90°∠BOD+∠EOB=90°∴∠BOD=∠AOC=°()7.如图,已知直线AB和CD相交于点O,∠COE=90°,OF平分∠AOE.(1)写出∠BOE的余角;(2)若∠COF的度数为29°,求∠BOE的度数.8.如图,已知,BC∥OA,∠C=∠OAB=100°,试回答下列问题:(1)如图1,求证:OC∥AB;(2)如图2,点E、F在线段BC上,且满足∠EOB=∠AOB,并且OF平分∠BOC:①若平行移动AB,当∠BOC=6∠EOF时,求∠ABO;②若平行移动AB,那么的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.9.如图,直线PQ∥MN,点C是PQ、MN之间(不在直线PQ,MN上)的一个动点,(1)若∠1与∠2都是锐角,如图甲,请直接写出∠C与∠1,∠2之间的数量关系;(2)若把一块三角尺(∠A=30°,∠C=90°)按如图乙方式放置,点D,E,F是三角尺的边与平行线的交点,若∠AEN=∠A,求∠BDF的度数;(3)将图乙中的三角尺进行适当转动,如图丙,直角顶点C始终在两条平行线之间,点G在线段CD上,连接EG,且有∠CEG=∠CEM,求的值.10.平面内两条直线EF、CD相交于点O,OA⊥OB,OC恰好平分∠AOF.(1)如图1,若∠AOE=40°,求∠BOD的度数;(2)在图1中,若∠AOE=x°,请求出∠BOD的度数(用含有x的式子表示),并写出∠AOE和∠BOD的数量关系;(3)如图2,当OA,OB在直线EF的同侧时,∠AOE和∠BOD的数量关系是否会发生改变?若不变,请直接写出它们之间的数量关系;若发生变化,请说明理由.参考答案1.解:(1)AD∥BC,理由是:∵∠ADE+∠BCF=180°,∠ADE+∠ADF=180°,∴∠ADF=∠BCF,∴AD∥BC;(2)AB∥EF,理由是:∵BE平分∠ABC,∴∠ABC=2∠ABE,∵∠ABC=2∠E,∴∠ABE=∠E,∴AB∥EF;(3)∵AD∥BC,∴∠DAB+∠ABC=180°,∵BE平分∠ABC,AF平分∠BAD,∴∠ABE=ABC,∠BAF=∠BAD,∴∠ABE+∠BAF=90°,∴∠AOB=180°﹣90°=90°=∠EOF,∴∠E+∠F=180°﹣∠EOF=90°.2.解:(1)∵AB∥DF,CD∥AM,∴∠BAM=∠M,∠CDM=∠M,∴∠BAM=∠CDM;(2)∵∠AEF+∠MEF=180°,∠DFE+∠MFE=180°,∴∠AEF+∠MEF+∠DFE+∠MFE=360°,又∴∠MEF+∠MFE=180°﹣∠M,∴∠AEF+∠DFE+180°﹣∠M=360°,即∴∠AEF+∠DFE﹣∠M=180°,∵∠M=∠BAE,∴∠AEF+∠DFE﹣∠BAE=180°,(3)∵∠DAQ+∠ADQ+∠AQD=180°,∠AQD=112°,∴∠DAQ+∠ADQ=180°﹣112°=68°,∵∠DAQ=∠BAD,∠ADQ=∠ADC,∴∠BAD+∠ADC=68°×3=204°,又∵∠BAD+∠ADC+∠B+∠C=360°,∵∠B+∠C=360°﹣204°=156°,∵∠B=∠DFC,∴∠CDF=180°﹣156°=24°,∴∠CDF=∠M=∠BAE=24°.3.证明:(1)∠D═∠C+∠E(图)∠D═∠C+∠DEC(图2)过点E作MN∥AC,∴∠C═∠CEN.又∵AC∥BD,∴MN∥BD,∴∠D═∠DEN又∵∠DEN═∠DEC+∠CEN,.∴∠D═∠C+∠DEC(2)如图所示,AP与CD,CD与BM分别相交于点E、F两点,∵BM、CM分别平分∠ABD、∠DCP,∴∠MBD=∠MBA=∠ABD,∠MCP=∠MCD═∠PCE.又∵AB∥CD,∴∠D+∠DBA=180°.又∵AP∥BD,∴∠AED+∠D=180°,∵∠DBA=∠AED,又∵∠AED=∠PEC∴∠CEP=∠DBA∴∠MBA═∠CEP.又∵∠ABF=∠BFD,∠BFD=∠CFM,∴∠ABF=∠CFM=∠ABD=∠CEP.又∵△CEP中,∠P=100°∴∠PCE+∠PEC=180°﹣100°=80°,∴∠CEP+∠PCE=(∠PCE+∠PEC)=×80°=40°,∴∠MCF+∠MFC=40°,∴∠M=180°﹣(∠MCF+∠MFC)=180°﹣40°=140°.4.(1)证明:如图1过点E作EF∥AB,则有∠BEF=∠B.∵AB∥CD,∴EF∥CD.∴∠FED=∠D.∴∠BEF+∠FED=∠B+∠D.即∠BED=∠B+∠D;(2)①解:如图2所示,猜想:∠EGF=90°;证明:由材料中的结论得∠EGF=∠BEG+∠GFD,∵EG、FG分别平分∠BEF和∠EFD,∴∠BEF=2∠BEG,∠EFD=2∠GFD,∵BE∥CF,∴∠BEF+∠EFD=180°,∴2∠BEG+2∠GFD=180°,∴∠BEG+∠GFD=90°,∵∠EGF=∠BEG+∠GFD,∴∠EGF=90°;②解法一:证明:如图3,过点G1作G1H∥AB,∵AB∥CD,∴G1H∥CD,由结论可得∠G2=∠1+∠3,∠EG1F=∠BEG1+∠G1FD,∴∠3=∠G2FD,∵FG2平分∠EFD,∴∠4=∠G2FD,∵∠1=∠2,∴∠G2=∠2+∠4,∵∠EG1F=∠BEG1+∠G1FD,∴∠EG1F+∠G2=∠2+∠4+∠BEG1+∠G1FD=∠BEF+∠EFD,∵AB∥CD,∴∠BEF+∠EFD=180°,∴∠EG1F+∠G2=180°.解法二:证明:由结论可得∠G2=∠1+∠G2FD∵FG2平分∠EFD,∴∠EFG2=∠G2FD,∵∠EG1F+∠EG1G2=∠EG1F+∠2+∠EFG2=180°,∴∠EG1G2=∠2+∠EFG2,∵∠1=∠2,∴∠G2=∠EG1G2,∴∠EG1F+∠G2=180°5.解:∵AD⊥BC,EF⊥BC(已知)∴∠ADB=∠EFB=90°(垂直的定义),∴EF∥AD(同位角相等两直线平行),∴∠1+∠2=180°(两直线平行同旁内角互补),又∵∠2+∠3=180°(已知),∴∠1=∠3 (同角的补角相等),∴AB∥DG(内错角相等两直线平行),∴∠GDC=∠B(两直线平行同位角相等).故答案为:垂直的定义,同位角相等两直线平行,∠1,两直线平行同旁内角互补,同角的补角相等,DG,内错角相等两直线平行,两直线平行同位角相等.6.解:∵∠EOC=90°,∠COF=34°(已知),∴∠EOF=56°,∵OF是∠AOE的角平分线,∴∠AOF=∠EOF=56°(角平分线的定义),∴∠AOC=22°,∵∠AOC+∠EOB=90°,∠BOD+∠EOB=90°,∴∠BOD=∠AOC=22°(同角的余角相等),故答案为:已知;56;∠EOF;角平分线的定义;22;∠EOB;同角的余角相等.7.解:(1)∵直线AB和CD相交于点O,∠COE=90°,∴∠BOD=∠AOC,∠DOE=90°,∴∠BOE+∠BOD=90°,∴∠BOE+∠AOC=90°,∴∠BOE的余角是∠BOD和∠AOC;(2)∵∠COF=29°,∠COE=90°,∴∠EOF=90°﹣29°=61°,又OF平分∠AOE,∴∠AOE=122°,∵∠BOE+∠AOE=180°,∴∠BOE=180°﹣∠AOE=58°.8.(1)证明:∵BC∥OA,∴∠C+∠COA=180°,∠BAO+∠ABC=180°,∵∠C=∠BAO=100°,∴∠COA=∠ABC=80°,∴∠COA+∠OAB=180°,∴OC∥AB;(2)①如图②中,设∠EOF=x,则∠BOC=6x,∠BOF=3x,∠BOE=∠AOB=4x,∵∠AOB+∠BOC+∠OCB=180°,∴4x+6x+100°=180°,∴x=8°,∴∠ABO=∠BOC=6x=48°.如图③中,设∠EOF=x,则∠BOC=6x,∠BOF=3x,∠BOE=∠AOB=2x,∵∠AOB+∠BOC+∠OCB=180°,∴2x+6x+100°=180°,∴x=10°,∴∠ABO=∠BOC=6x=60°.综上所述,满足条件的∠ABO为48°或60°;②∵BC∥OA,∠C=100°,∴∠AOC=80°,∵∠EOB=∠AOB,∴∠COE=80°﹣2∠AOB,∵OC∥AB,∴∠BOC=∠ABO,∴∠AOB=80°﹣∠ABO,∴∠COE=80°﹣2∠AOB=80°﹣2(80°﹣∠ABO)=2∠ABO﹣80°,∴==2,∴平行移动AB,的值不发生变化.9.解:(1)∠C=∠1+∠2.理由:如图,过C作CD∥PQ,∵PQ∥MN,∴PQ∥CD∥MN,∴∠1=∠ACD,∠2=∠BCD,∴∠ACB=∠ACD+∠BCD=∠1+∠2.(2)∵∠AEN=∠A=30°,∴∠MEC=30°,由(1)可得,∠C=∠MEC+∠PDC=90°,∴∠PDC=90°﹣∠MEC=60°,∴∠BDF=∠PDC=60°;(3)设∠CEG=∠CEM=x,则∠GEN=180°﹣2x,由(1)可得,∠C=∠CEM+∠CDP,∴∠CDP=90°﹣∠CEM=90°﹣x,∴∠BDF=90°﹣x,∴==2.10.解:(1)∵∠AOE=40°,∴∠AOF=180°﹣∠AOE=140°,∵OC平分∠AOF,∴,∵OA⊥OB,∴∠AOB=90°,∴∠BOD=180°﹣∠AOB﹣∠AOC=20°;(2)∵∠AOE=x°,∴∠AOF=180°﹣∠AOE=(180﹣x)°,∵OC平分∠AOF,∴,∵OA⊥OB,∴∠AOB=90°,∴;∴∠AOE=2∠BOD;(3)不变,∠AOE=2∠BOD.。

平行线的判定练习题(有答案)

平行线的判定练习题(有答案)

平行线的判定练习题(有答案)平行线的判定专项练习60题(有答案)1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.平行线的判定--- 第 1 页共 1 页7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.平行线的判定---第 2 页共 2 页13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?平行线的判定---第 3 页共 3 页19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.平行线的判定---第 4 页共 4 页26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.平行线的判定---第 5 页共 5 页平行线测姓名:一、选择题1.下列命题中,不正确的是____ [ ]A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行B.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行C.两条直线被第三条直线所截,那么这两条直线平行D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行2.如图,可以得到DE∥BC的条件是______ [ ](2题)(5题)(3题)(7题) (8题)A.∠ACB=∠BAC B.∠ABC+∠BAE=180° C.∠ACB+∠BAD=180°D.∠ACB=∠BAD3.如图,直线a、b被直线c所截,现给出下列四个条件: (1)∠1=∠2(2)∠3=∠6(3)∠4+∠7=180° (4)∠5+∠8=180°,其中能判定a∥b的条件是_________[ ]A.(1)(3) B.(2)(4)C.(1)(3)(4) D.(1)(2)(3)(4)4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是________[ ]A.第一次向右拐40°,第二次向左拐40° B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130° D.第一次向左拐50°,第二次向左拐130°5.如图,如果∠1=∠2,那么下面结论正确的是_________.[ ]A.AD∥BC B.AB∥CD C.∠3=∠4 D.∠A=∠C6.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()A.互相垂直 B.互相平行 C.相交 D.无法确定7.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180° B.∠2+∠3=180° C.∠3+∠4=180° D.∠2+∠4=180°8.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()A.30° B.60° C.90° D.120°二、填空题 9.如图,由下列条件可判定哪两条直线平行,并说明根据.(1)∠1=∠2,.(2)∠A=∠3,.(3)∠ABC+∠C=180°.10.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________.11.同垂直于一条直线的两条直线_______.同一平面内,不重合的两直线的位置关系是。

平行四边形——常用模型(二) 平行线、角平分线和等腰三角形.doc

平行四边形——常用模型(二) 平行线、角平分线和等腰三角形.doc

平行四边形——常用模型(二)平行线、角平分线和等腰三角形
“三兄弟”——平行线、角平分线和等腰三角形经常会在平行四边形这一章进行运用,是必须要熟练掌握的模型,作为组合类辅助线,看见其二,还要想到构造另外一个,考察最多的是平行线+角平分线,延长法构造等腰三角形.
下面让我们一起来研究下:
一、平行线+角平分线
如图,AD∥BC,AE平分∠BAD,则AB=BE.
∵AD∥BC
∴∠EAD=∠BEA
∵AE平分∠BAD
∴∠BAE=∠EAD
∴∠BAE=∠BEA
∴AB=BE
二、角平分线+等腰三角形
如图,AE平分∠BAD,AB=BE,则AD∥BC.
∵AE平分∠BAD
∴∠BAE=∠EAD
∵AB=BE
∴∠BEA=∠BAE
∴∠BEA=∠EAD
∴AD∥BC
三、平行线+等腰三角形
如图,AD∥BC,AB=BE,则AE平分∠BAD.
∵AD∥BC
∴∠BEA=∠EAD
∵AB=BE
∴∠BAE=∠BEA
∴∠BAE=∠EAD
∴AE平分∠BAD
四、平行线+角平分线(辅助线)
延长法(延长角平分线)构造等腰三角形
如图,AB∥CD,CE平分∠ACD,则
延长CE交AB于点F,
易得:△ACF是等腰三角形.
结语:
平行线,角平分线,等腰三角形就像三兄弟,他们形影不离,题目中出现其中二个,要想到另外一个,如果没有,可以通过添加辅助线得到另外一个。

只有熟练掌握了,我们才能提高做题效率。

练习:。

初二数学角的平分线试题

初二数学角的平分线试题

初二数学角的平分线试题1.如图,已知AB∥CD,OA平分∠BAC,OC平分∠AOD,OE⊥AC于点E,且OE=2,则两平行线间的距离为【答案】4【解析】要求二者的距离,首先要作出二者的距离,作OF⊥AB,OG⊥CD,根据角平分线的性质可得,OE=OF=OG,即可求得AB与CD之间的距离.作OF⊥AB,延长FO与CD交于G点,∵AB∥CD,∴FG垂直CD,∴FG就是AB与CD之间的距离.∵∠ACD平分线的交点,OE⊥AC交AC于E,∴OE=OF=OG,∴AB与CD之间的距离等于2OE=4.【考点】本题主要考查了角平分线的性质点评:作出AB与CD之间的距离是正确解决本题的关键.2.如图,在△ABC中,∠C=,AD平分∠BAC交BC于D,若BC=20,BD:CD=5:3,则D到AB的距离DE是【答案】【解析】根据角平分线的性质,可得DC=DE,又因为BC=20,BD:CD=5:3,即可求得DE的长. ∵AD平分∠BAC∴DC=DE∵BC=20,BD:CD=5:3,∴DC=,∴DE=DC=.【考点】本题主要考查了角平分线的性质点评:解答本题的关键是掌握好角平分线的性质:角平分线上的点到角的两边的距离相等.3.如图,△ABC是等腰直角三角形,∠A=,BD是角平分线,DE⊥BC,若BC=10,则△DEC的周长为【答案】10【解析】由∠A=,BD是角平分线,DE⊥BC,可得AD=DE,AB=BE,则DE+DC=AD+DC=AC,再由△ABC是等腰直角三角形,∠A=,可得AB=AC,即可求得结果。

∵∠A=,BD是角平分线,DE⊥BC,∴AD=DE,AB=BE,∵△ABC是等腰直角三角形,∠A=,∴AB=AC,∴DE+DC+EC=AD+DC+EC=AC+EC=BE+EC=BC=10.【考点】本题考查的是等腰直角三角形的性质,角平分线的性质点评:解答本题的关键是掌握好角平分线的性质:角平分线上的点到角的两边的距离相等.4.如图,已知在△ABC中,∠ABC与∠ACB的平分线交于点O,若∠A=,则∠BOC=【答案】【解析】利用角平分线的性质求出∠BCO+∠CBO的度数,再由三角形的内角和定理便可求出∠BOC.∵∠ABC与∠ACB的平分线交于点O,∠A=,∴∠BCO+∠CBO=,∴∠BOC=【考点】本题考查了三角形内角和定理,三角形的角平分线点评:关键是由三角形内角和定理,角平分线性质对所求角进行转化.5.如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则下列结论中错误的是()A.PC=PD B.OC=OD C.∠CPO=∠DPO D.OC=PC【答案】D【解析】由已知条件认真思考,首先可得△POC≌△POD,进而可得PC=PD、OC=OD、∠CPO=∠DPO;而OC、PC是无法证明是相等的,于是答案可得.∵OP平分∠AOB,PC⊥OA,PD⊥OB,OP=OP∴△POC≌△POD∴PC=PD,OC=OD,∠CPO=∠DPO,而OC、PC是无法证明是相等的故选D.【考点】本题主要考查角平分线的性质点评:由已知能够得到△POC≌△POD是解决的关键.6.下列说法中,错误的是()A.三角形任意两个角的平分线的交点在三角形的内部B.任意两个角的平分线的交点到三角形三个顶点的距离相等C.三角形两个角的平分线的交点到三边的距离相等D.三角形两个角的平分线的交点在第三个角的平分线上【答案】B【解析】根据三角形角平分线的性质依次分析各项即可。

平行线的判定专项练习题有答案

平行线的判定专项练习题有答案

平行线的判定专项练习题有答案Last revised by LE LE in 20211.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗为什么14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行为什么19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗为什么22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF 平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.32.如图,已知∠1=∠2求证:a∥b.33.如图,D E⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2,找出图中互相平行的线,并加以说明.34.如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP.35.如图,已知DE平分∠BDF,AF平分∠BAC,且∠1=∠2.求证(1)DF∥AC;(2)DE∥AF.36.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,试说明DE与AB的位置关系.37.如图,在△ABC中,点D在AB上,∠ACD=∠A,∠BDC的平分线交BC于点E.求证:DE∥AC.38.如图,AB与CD相交于点O,并且∠A=∠1,试问∠2与∠B满足什么关系时,AC∥BD说明理由.39.如图,已知∠1=∠A,∠2=∠B,那么MN与EF平行吗如果平行,请说明理由.40.如图,直线AB、CD被直线EF所截,∠1+∠4=180°,求证:AB∥CD.41.如图所示,已知:∠1=∠2,∠E=∠F.试说明AB∥CD.42.如图,已知EF⊥CD于F,∠GEF=25°,∠1=65°,则AB与CD平行吗请说明理由.43.如图,已知∠1=∠2=90°,∠3=30°,∠4=60°,图中有几对平行线说说你的理由.44.直线AB,CD被直线EF所截,∠1=∠2,直线AB 和CD平行吗为什么45.已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥GF.46.如图,已知B、C、D三点在同一条直线上,∠B=∠1,∠2=∠E,试说明AD∥CE.47.直线AB、CD与GH交于E、F,EM平分∠BEF,FN 平分∠DFH,∠BEF=∠DFH,求证:EM∥FN.48.如图所示,∠ABC=∠BCD,BE、CF分别平分∠ABC 和∠BCD,请你说出BE与CF的位置关系,并说出你的理由.49.如图,若∠1=∠2,请判断DB与EC的位置关系,并说明理由.50.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC 上,EF⊥AB,垂足为F.(1)CD与EF平行吗为什么(2)如果∠1=∠2,DG∥BC吗为什么51.如图,已知:HG平分∠AHM,MN平分∠DMH,且∠AHM=∠DMH.问:GH与MN有怎样的位置关系,请说明理由.(请注明每一步的理由)52.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD 于点G.求证:AB∥CD.53.如图,直线AB,CD被EF所截,∠3=∠4,∠1=∠2,EG⊥FG.求证:AB∥CD.54.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.55.如图,已知∠1=∠2,∠DAB=∠DCA,且DE⊥AC,BF⊥AC,问:(1)AD∥BC吗(2)AB∥CD吗为什么56.如图,四边形ABCD,∠1=30°,∠B=60°,AB⊥AC,则AD与BC一定平行吗AB与CD呢若平行请说明理由,反之则不用说明理由.57.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.58.如图,AD⊥BC于点D,∠1=2,∠CDG=∠B,请你判断EF与BC的位置关系,并加以证明,要求写出每步证明的理由.59.已知:如图,CE平分∠ACD,∠1=∠B,求证:AB∥CE.60.如图,已知∠1=∠2,∠3=∠4,可以判定哪两条直线平行。

平行线典型例题

平行线典型例题
参考答案与试题解析
一.解答题(共21小题)
1.如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.
理由如下:∵AD⊥BC于D,EG⊥BC于G,(已知)
∴∠ADC=∠EGC=90°,(垂直的定义),
∴AD∥EG,(同位角相等,两直线平行)
∴∠1=∠2,(两直线平行,内错角相等)
∠E=∠3,(两直线平行,同位角相等)
解答:
解:AD与BC平行;理由如下:
∵BE∥DF,
∴∠B+∠BCD=180°(两直线平行,同旁内角互补)
∵∠B=∠D,
∴∠D+∠BCD=180°,
点评:
本题考查了平行线的性质及判定,熟记定理是正确解题的关键.
4.如图,已知BE∥DF,∠B=∠D,则AD与BC平行吗?试说明理由.
考点:
平行线的判定与性质.
专题:
探究型.
分析:
利用两直线平行,同旁内角互补可得∠B+∠C=180°,即∠C+∠D=180°;根据同旁内角互补,两直线平行可证得AD∥BC.
这是一道结论开放的探究性问题,由于E点位置的不确定性,可引起对E点不同位置的分类讨论。本题可分为AB,CD之间或之外。
结论:①∠AEC=∠A+∠C②∠AEC+∠A+∠C=360°③∠AEC=∠C-∠A④∠AEC=∠A-∠C⑤∠AEC=∠A-∠C⑥∠AEC=∠C-∠A.
例、如图,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为( )
(3)如图3,点 、 是直线CM、DN内部的一个点,连结 、 、 .
试求 的度数;
(4)若按以上规律,猜想并直接写出 … 的度数(不必写出过程).
例、如图,已知直线l1∥l2,且l3和l1、l2分别交于A、B两点,点P在AB上.

初一数学下学期培优训练小专题10 平行线中的角平分线综合问题

初一数学下学期培优训练小专题10 平行线中的角平分线综合问题

初一数学下学期培优训练小专题10 平行线中的角平分线综合问题【例题讲解】如图1,AB∥CD,点E,F分别在直线CD,AB上,∠BEC=2∠BEF,过点A作AG⊥BE的延长线交于点G,交CD于点N,AK平分∠BAG,交EF于点H,交BE于点M.(1)直接写出∠AHE,∠FAH,∠KEH之间的关系:________;(2)若∠BEF=12∠BAK,求∠AHE;(3)如图2,在(2)的条件下,将△KHE绕着点E以每秒5°的速度逆时针旋转,旋转时间为t,当KE 边与射线ED重合时停止,则在旋转过程中,当△KHE的其中一边与△ENG的某一边平行时,直接写出此时t的值.解:(1)∵AB∥CD∴∠KEH=∠AFH∵∠AHE=∠AFH+∠FAH∴∠AHE=∠KEH+∠FAH故答案为:∠AHE=∠KEH+∠FAH(2)设∠BEF=x∵∠BEF= 12∠BAK,∠BEC=2∠BEF∴∠BAK=∠BEC=2x∵AK平分∠BAG∴∠BAK=∠KAG=2x由(1)的结论可得:∠AME=2x+2x=4x,∠AHE=2x+3x=5x∵AG⊥BE∴∠G=90°∴∠AME+∠KAG=2x+4x=90°∴x=15°∴∠AHE=5x=75°;(3)由(2)可得,∠KHE=105°,∠BEF=15°,∠HEK=45°,∠NEG=30°,∠ENG=60°①当KH∥NG时5°×t=60°-30°=30°∴t=6②当KE∥GN时5°×t=60°∴t=12③当HE∥GN时5°×t=45°+60°=105°∴t=21④当HK∥EG时,5°×t=180°-30°-30°=120°∴t=24⑤当HK∥EN时,5t=150°∴t=30综上所述,t的值为:6或12或21或24或30.【综合演练】1.如图,直线PQ∥MN,一副直角三角板ABC、DEF中∠ACB=∠EDF=90°,∠ABC=∠BAC=45°,∠DFE =30°,∠DEF =60°.(1)若△ABC ,△DEF 如图1摆放时,则∠PDE = .(2)若图1中△ABC 固定,将△DEF 沿着AC 方向平移,边DF 与直线PQ 相交于点G ,作∠FGQ 和∠GF A 的角平分线GH 、FH 相交于点H (如图2),求∠GHF 的度数.(3)若图1中△DEF 固定,(如图3)将ABC 绕点A 顺时针旋转,30秒转半圈,旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF 的一条边平行时,求旋转的时间.2.已知,直线AB ∥CD ,AD 与BC 交于点E .(1)如图1,100AEC ∠=︒,则ABC ADC ∠+∠=_________°;(2)如图2,ABC ADC ∠∠,的平分线交于点F ,则F ∠与AEC ∠有怎样的数量关系,请说明理由;(3)如图3,(),3AEC ABC αβαβ∠=∠=>,在ADC ∠的平分线上任取一点P ,连接PB ,当12ABP PBC ∠=∠时,请直接写出BPD ∠的度数(用含有αβ、的式子表示).3.已知AB ∥CD ,∠ABE 的角分线与∠CDE 的角分线相交于点F .(1)如图1,若BM 、DM 分别是∠ABF 和∠CDF 的角平分线,且∠BED =100°,求∠M 的度数;(2)如图2,若∠ABM =13∠ABF ,∠CDM =13∠CDF ,∠BED =α°,求∠M 的度数; (3)若∠ABM =1n ∠ABF ,∠CDM =1n∠CDF ,请直接写出∠M 与∠BED 之间的数量关系.4.阅读下面材料:小亮遇到这样问题:如图1,已知AB CD ∥,EOF 是直线AB 、CD 间的一条折线.判断CFO ∠、BEO ∠、DFO ∠三个角之间的数量关系.小亮通过思考发现:过点O 作OP AB ∥,通过构造内错角,可使问题得到解决.(1)请回答:EOF ∠、BEO ∠、DFO ∠三个角之间的数量关系是__________.(2)如图2,将ABC 沿BA 方向平移到DEF (B 、D 、E 共线),50B ∠=︒,AC 与DF 相交于点G ,GP 、EP 分别平分CGF ∠、FEA ∠相交于点P ,求P ∠的度数;(3)如图3,直线m n ∥,点B 、F 在直线m 上,点E 、C 在直线n 上,连接FE 并延长至点A ,连接BA 、BC 和CA ,做CBF ∠和CED ∠的平分线交于点M ,若ADC α∠=,则M ∠=__________(直接用含α的式子表示).5.如图1,已知两条直线AB ,CD 被直线EF 所截,分别交于点E ,点F ,EM 平分∠AEF 交CD 于点M ,且∠FEM =∠FME .(1)判断直线AB 与直线CD 是否平行,并说明理由;(2)如图2,点G 是射线MD 上一动点(不与点M ,F 重合),EH 平分∠FEG 交CD 于点H ,过点H 作HN ⊥EM 于点N ,设∠EHN =α,∠EGF =β.①当点G 在点F 的右侧时,若β=56°,求α的度数;②当点G 在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.6.已知AB CD ∥,连接A ,C 两点.(1)如图1,CAB ∠与ACD ∠的平分线交于点E ,则AEC ∠等于__________度;(2)如图2,点M 在射线AB 反向延长线上,点N 在射线CD 上.AMN ∠与ACN ∠的平分线交于点E .若45AMN ∠=︒,70ACN ∠=︒,求MEC ∠的度数;(3)如图3,图4,M ,N 分别为射线AB ,射线CD 上的点,AMN ∠与ACN ∠的平分线交于点E .设AMN α∠=,()ACN βαβ∠=≠,请直接写出图中MEC ∠的度数(用含α,β的式子表示).7.(1)【问题情境】小明翻阅自己数学学习笔记时发现,数学老师在讲评七下《伴你学》第6页“迁移应用”第1题时,曾做过如下追问:如图1,已知AB CD ,点E 、F 分别在AB 、CD 上,点G 为平面内一点,当点G 在AB 、CD 之间,且在线段EF 左侧时,连接EG 、FG ,则一定有AEG CFG G ∠+∠=∠,为什么?请帮助小明再次说明理由;(2)【变式思考】如图2,当点G 在AB 上方时,且90EGF ∠=︒,请直接写出BEG ∠与DFG ∠之间的数量关系______;(3)【迁移拓展】①如图3,在(2)的条件下,过点E 作直线HK 交直线CD 于K ,使HEG ∠与GEB ∠互补,作EKD ∠的平分线与直线GE 交于点L ,请你判断FG 与KL 的位置关系,并说明理由;②在①的条件下,第一次操作;分别作∠BEL 和∠DKL 的平分线,交点为L 1;第二次操作,分别作∠BEL 1和∠DKL 1的平分线,交点为L 2;……第n 次操作,分别作∠BEL n-1和∠DKL n-1的平分线,交点为L 、则∠L n =______.8.已知:直线AB ∥CD ,一块三角板EFH ,其中∠EFH =90°,∠EHF =60°.(1)如图1,三角板EFH 的顶点H 落在直线CD 上,并使EH 与直线AB 相交于点G ,若∠2=2∠1,求∠1的度数;(2)如图2,当三角板EFH 的顶点F 落在直线AB 上,且顶点H 仍在直线CD 上时,EF 与直线CD 相交于点M ,试确定∠E 、∠AFE 、∠MHE 的数量关系;(3)如图3,当三角板EFH 的顶点F 落在直线AB 上,顶点H 在AB 、CD 之间,而顶点E 恰好落在直线CD 上时得△EFH ,在线段EH 上取点P ,连接FP 并延长交直线CD 于点T ,在线段EF 上取点K ,连接PK 并延长交∠CEH 的角平分线于点Q ,若∠Q -∠HFT =15°,且∠EFT =∠ETF ,求证:PQ ∥FH . 9.对于平面内的M ∠和N ∠,若存在一个常数0k >,使得360M k N ∠+∠=︒,则称N ∠为M ∠的k 系补周角,若90,45M N ∠=∠=︒︒,则N ∠为M ∠的6系补周角.(1)若80H ∠=︒,则H ∠的4系补周角的度数为__________︒.(2)在平面内AB CD ,点E 是平面内一点,连接BE DE 、.①如图1,60D ∠=︒,若B ∠是E ∠的3系补周角,求B ∠的度数.②如图2,ABE ∠和CDE ∠均为钝角,点F 在点E 的右侧,且满足ABF n ABE ∠=∠,CDF n CDE ∠=∠(其中n 为常数且1n >),点P 是ABE ∠角平分线BG 上的一个动点,在P 点运动过程中,请你确定一个点P 的位置,使得BPD ∠是F ∠的k 系补周角,写出你的解题思路并求出此时的k 值(用含n 的式子表示). 10.如图,直线,AB CD EF CD ⊥∥分别交AB 、CD 于点E 、F ,射线EP 、EQ 分别从EC 、EF 同时开始绕点E 顺时针旋转,分别与直线AB 交于点M 、N ,射线EP 每秒转10︒,射线EQ 每秒转5︒,点O 是PMN ∠、MNQ ∠角平分线的交点.设旋转时间为t 秒(08t <<).(1)①用含t 的代数式表示:AMP ∠=___________︒,QNB ∠=__________︒;②当4t =时,OMN ∠=____________︒;(2)试探索MON ∠与ONM ∠的数量关系,并说明理由;(3)MEF ∠的角平分线与直线MO 交于点K ,直接写出MKE ∠的度数为___________.11.已知点C 在线段AE 上,AB CD ∥,EAB ∠的角平分线交CD 于点F ,M 为线段CF 上一动点,连接EM .(1)如图①,当40FAB ∠=︒,25E ∠=︒时,求EMF ∠的度数.(2)如图②,N 为射线AB 上一动点,连接FN ,使得FN EM ∥,作CFN ∠的角平分线交AB 于点G ,猜想E ∠与AFG ∠的数量关系,并说明理由.(3)如图③,在(2)的条件下,作GH GF ⊥,并延长FN 交GH 于点H ,已知3426E AFG ∠-∠=︒,求EAF GHF ∠+∠的度数.12.已知:AB //CD ,点E 在直线AB 上,点F 在直线CD 上.(1)如图①,EM 平分∠BEF , FN 平分∠CFE ,试判断EM 与FN 的位置关系,并说明理由;(2)如图②,EG平分∠MEF,EH平分∠AEM,试判断∠GEH与∠EFD的数量关系,并说明理由;答案与解析【例题讲解】如图1,AB∥CD,点E,F分别在直线CD,AB上,∠BEC=2∠BEF,过点A作AG⊥BE的延长线交于点G,交CD于点N,AK平分∠BAG,交EF于点H,交BE于点M.(1)直接写出∠AHE,∠FAH,∠KEH之间的关系:________;(2)若∠BEF=12∠BAK,求∠AHE;(3)如图2,在(2)的条件下,将△KHE绕着点E以每秒5°的速度逆时针旋转,旋转时间为t,当KE 边与射线ED重合时停止,则在旋转过程中,当△KHE的其中一边与△ENG的某一边平行时,直接写出此时t的值.解:(1)∵AB∥CD∴∠KEH=∠AFH∵∠AHE=∠AFH+∠FAH∴∠AHE=∠KEH+∠FAH故答案为:∠AHE=∠KEH+∠FAH(2)设∠BEF=x∵∠BEF= 12∠BAK,∠BEC=2∠BEF∴∠BAK=∠BEC=2x∵AK平分∠BAG∴∠BAK=∠KAG=2x由(1)的结论可得:∠AME=2x+2x=4x,∠AHE=2x+3x=5x∵AG⊥BE∴∠G=90°∴∠AME+∠KAG=2x+4x=90°∴x=15°∴∠AHE=5x=75°;(3)由(2)可得,∠KHE=105°,∠BEF=15°,∠HEK=45°,∠NEG=30°,∠ENG=60°①当KH∥NG时5°×t=60°-30°=30°∴t=6②当KE∥GN时5°×t=60°∴t=12③当HE∥GN时5°×t=45°+60°=105°∴t=21④当HK∥EG时,5°×t=180°-30°-30°=120°∴t=24⑤当HK∥EN时,5t=150°∴t=30综上所述,t的值为:6或12或21或24或30.【综合演练】1.如图,直线PQ∥MN,一副直角三角板ABC、DEF中∠ACB=∠EDF=90°,∠ABC=∠BAC=45°,∠DFE =30°,∠DEF =60°.(1)若△ABC ,△DEF 如图1摆放时,则∠PDE = .(2)若图1中△ABC 固定,将△DEF 沿着AC 方向平移,边DF 与直线PQ 相交于点G ,作∠FGQ 和∠GF A 的角平分线GH 、FH 相交于点H (如图2),求∠GHF 的度数.(3)若图1中△DEF 固定,(如图3)将ABC 绕点A 顺时针旋转,30秒转半圈,旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF 的一条边平行时,求旋转的时间. 【答案】(1)15°(2)67.5°(3)5秒或15秒或20秒【分析】(1)如图2,过点E 作EK MN ⊥,利用平行线性质即可求得答案;(2)如图3,分别过点F 、H 作//FL MN ,//HR PQ ,运用平行线性质和角平分线定义即可得出答案; (3)设旋转时间为t 秒,由题意旋转速度为30s 转半圈,即每秒转6︒,分三种情况:①当//BC DE 时,②当//BC EF 时,③当//BC DF 时,分别求出旋转角度后,列方程求解即可.(1)如图2,过点E 作//EK MN ,45BAC ∠=︒,45KEA BAC ∴∠=∠=︒,//PQ MN ,//EK MN ,//PQ EK ∴,PDE DEK DEF KEA ∴∠=∠=∠-∠,又60DEF ∠=︒.604515PDF ∴∠=︒-︒=︒;故答案为:15︒;(2)解:如图3,分别过点F 、H 作//FL MN ,//HR PQ ,45LFA BAC ∴=∠=︒,RHG QGH ∠=∠,//FL MN ,//HR PQ ,//PQ MN ,////∴FL PQ HR ,180QGF GFL ∴∠+∠=︒,RHF HFL HFA LFA ∠=∠=∠-∠,FGQ ∠和GFA ∠的角平分线GH 、FH 相交于点H ,12QGH FGQ ∴∠=∠,12HFA GFA ∠=∠,30DFE ∠=︒,180150GFA DFE ∴∠=-∠=︒,1752HFA GFA ∴∠=∠=︒,754530RHF HFL HFA LFA ∴∠=∠=∠-∠=︒-︒=︒,15045105GFL GFA LFA ∴∠=∠-∠=︒-︒=︒,()1118010537.522RHG QGH FGQ ∴∠=∠=∠=︒-︒=︒,37.53067.5GHF RHG RHF ∴∠=∠+∠=︒+︒=︒; (3)解:设旋转时间为t 秒,由题意旋转速度为30秒转半圈,即每秒转6︒,分三种情况:当//BC DE 时,如图5,此时//AC DF ,30CAE DFE ∴∠=∠=︒,630t =,解得:5t =;②当//BC EF 时,如图6,//BC EF ,45BAE B ∴∠=∠=︒,454590BAM BAE EAM ∴∠=∠+∠=︒+︒=︒,690t =,解得:15t =;③当//BC DF 时,如图7,延长BC 交MN 于K ,延长DF 交MN 于R ,453075DRM EAM DFE ∠=∠+∠=︒+︒=︒,75BKA DRM ∴∠=∠=︒,18090ACK ACB ∠=︒-∠=︒,9015CAK BKA ∴∠=︒-∠=︒,1801804515120CAE EAM CAK ∴∠=-∠-∠=︒-︒-︒=︒,6120t ∴=,解得:20t =,综上所述,ABC 绕点A 顺时针旋转的时间为5s 或15s 或20s 时,线段BC 与DEF 的一条边平行.【点评】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.2.已知,直线AB ∥CD ,AD 与BC 交于点E .(1)如图1,100AEC ∠=︒,则ABC ADC ∠+∠=_________°;(2)如图2,ABC ADC ∠∠,的平分线交于点F ,则F ∠与AEC ∠有怎样的数量关系,请说明理由;(3)如图3,(),3AEC ABC αβαβ∠=∠=>,在ADC ∠的平分线上任取一点P ,连接PB ,当12ABP PBC ∠=∠时,请直接写出BPD ∠的度数(用含有αβ、的式子表示).【答案】(1)100;(2)∠F =12AEC ∠,理由见解析; (3)∠BPD =1126αβ-,证明见解析. 【分析】(1)根据平行线的性质得出∠BAD =∠ADC ,结合图象及三角形外角的性质即可得出结果;(2)设AD 与BF 的交点为G ,BC 与DF 的交点为H ,根据三角形内角和定理及对顶角相等得出∠BAD +∠ABF =∠F +∠ADF ①,∠BCD +∠CDF =∠F +∠CBF ②,结合角平分线可得∠BAD +∠BCD =2∠F ,找准图中各角之间的数量关系即可得出结果;(3)利用三角形外角的性质得出∠ADC=α-∠BCD,由平行线的性质可得∠ABC=∠BCD=β,结合角平分线及各角之间的数量关系进行等量代换求解即可得出结果.(1)解:∵AB∥CD,∴∠BAD=∠ADC,∵∠AEC是∆ABE的一个外角,∴∠AEC=∠ABC+∠BAD,∴∠AEC=∠ABC+∠ADC,∵∠AEC=100°,∴∠ABC+∠ADC=100°,故答案为:100;(2)解:∠F=12AEC,理由如下:设AD与BF的交点为G,BC与DF的交点为H,∵∠BAD+∠ABF+∠AGB=180°,∠AGB=∠DGF,∠F+∠ADF+∠DGF=180°,∴∠BAD+∠ABF=∠F+∠ADF①,∵∠BCD+∠CDF+∠CHD=180°,∠F+∠CBF+∠BHF=180°,∠BHF=∠CHD,∴∠BCD+∠CDF=∠F+∠CBF②,①+②得:∠BAD+∠ABF+∠BCD+∠CDF=2∠F+∠CBF+∠ADF,∵BF平分∠ABC,DF平分∠ACD,∴∠ABF=∠CBF,∠CDF=∠ADF,∴∠BAD+∠BCD=2∠F,∵∠BAD=∠AEC-∠ABC,∠BCD=∠AEC-∠ADC,∴∠BAD+∠BCD=2∠AEC-∠AEC=∠AEC,∴2∠F=∠AEC,∴∠F =12∠AEC ; (3)解:∠BPD =1126αβ-,理由如下: 如图所示,DF 平分ADC ∠,且12ABP PBC ∠=∠,连接AP ,∵∠AEC 是∆ECD 的一个外角,∠AEC =α,∴∠AEC =∠BCD +∠ADC =α,∴∠ADC =α-∠BCD ,∵AB ∥CD ,∠ABC =β,∴∠ABC =∠BCD =β,∴∠ADC =∠DAB =α-β,∵DP 是∠ADC 的角平分线,∴∠ADP =12∠ADC =()12αβ-, ∵∠ABP =12∠PBC , ∴∠PBC =2∠ABP ,∵∠ABP +∠PBC =∠ABC =β,∴∠ABP +2∠ABP =β,即3∠ABP =β,在∆ADP 中,∠APD +∠DAP +∠ADP =180°,即∠BPD +∠APB +∠DAP +∠ADP =180°,在∆ABP 中,∠BAP +∠APB +∠ABP =180°,即∠DAP +∠DAB +∠APB +∠ABP =180°,∴∠BPD +∠APB +∠DAP +∠ADP =∠DAP +∠DAB +∠APB +∠ABP ,∴∠BPD +∠ADP =∠DAB +∠ABP ,∴∠BPD +()1123αβαββ-=-+, ∴∠BPD =1126αβ-. 【点评】题目主要考查平行线的性质,三角形内角和与外角的性质,角平分线的定义等,理解题意,找准图中各角之间的数量关系是解题关键.3.已知AB ∥CD ,∠ABE 的角分线与∠CDE 的角分线相交于点F .(1)如图1,若BM 、DM 分别是∠ABF 和∠CDF 的角平分线,且∠BED =100°,求∠M 的度数;(2)如图2,若∠ABM =13∠ABF ,∠CDM =13∠CDF ,∠BED =α°,求∠M 的度数; (3)若∠ABM =1n ∠ABF ,∠CDM =1n∠CDF ,请直接写出∠M 与∠BED 之间的数量关系.【答案】(1)65°(2)3606α︒-︒(3)2n ∠M +∠BED =360° 【分析】(1)首先作EG ∥AB ,FH ∥AB ,利用平行线的性质可得∠ABE +∠CDE =260°,再利用角平分线的定义得到∠ABF +∠CDF =130°,从而得到∠BFD 的度数,再根据角平分线的定义可求∠M 的度数;(2)先由已知得到∠ABE =6∠ABM ,∠CDE =6∠CDM ,由(1)得∠ABE +∠CDE =360°-∠BED ,∠M =∠ABM +∠CDM ,等量代换即可求解;(3)先由已知得到ABF n ABM ∠=∠,CDF n CDM ∠=∠,由(2)的方法可得到2n ∠M +∠BED =360°.【解析】解:(1)如图1,作//EG AB ,//FH AB ,∵AB CD ∥,∴EG AB FH CD ∥∥∥,∴ABF BFH ∠=∠,CDF DFH ∠=∠,180ABE BEG ∠+∠=︒,180GED CDE ∠+∠=︒,4.阅读下面材料:小亮遇到这样问题:如图1,已知AB CD ∥,EOF 是直线AB 、CD 间的一条折线.判断CFO ∠、BEO ∠、DFO ∠三个角之间的数量关系.小亮通过思考发现:过点O 作OP AB ∥,通过构造内错角,可使问题得到解决.(1)请回答:EOF ∠、BEO ∠、DFO ∠三个角之间的数量关系是__________.(2)如图2,将ABC 沿BA 方向平移到DEF (B 、D 、E 共线),50B ∠=︒,AC 与DF 相交于点G ,GP 、EP 分别平分CGF ∠、FEA ∠相交于点P ,求P ∠的度数;(3)如图3,直线m n ∥,点B 、F 在直线m 上,点E 、C 在直线n 上,连接FE 并延长至点A ,连接BA 、BC 和CA ,做CBF ∠和CED ∠的平分线交于点M ,若ADC α∠=,则M ∠=__________(直接用含α的式子表示). 【答案】(1)EOF BEO DFO ∠=∠+∠(2)65︒(3)1902α︒- 【分析】(1)根据平行线的性质求出∠EOM=∠BEO ,∠FOM=∠DFO ,即可求出答案;(2)由DF ∥BC ,AC ∥EF ,推出∠EDF =∠B =50°,∠F=∠CGF ,推出∠DEF +∠F =180°-50°=130°,再由三角形内角和定理可得∠P +∠FGP =∠F +∠FEP ,由此即可解决问题;(3)由()1111180902222M FBM CEM FBC CEM αα∠=∠+∠=∠+∠=︒-=︒-即可解决问题. (1)如图1中,∵AB ∥OP ,∴∠EOP =∠BEO ,∵AB ∥CD ,∴OP ∥CD ,∴∠FOP =∠DFO ,∴∠EOP +∠FOP =∠BEO +∠DFO ,即∠EOF =∠BEO +∠DFO .故答案为:∠EOF =∠BEO +∠DFO .(2)如图2中,∵DF ∥BC ,AC ∥EF ,∴∠EDF =∠B =50°,∠F =∠CGF ,∴∠DEF +∠F =180°-50°=130°∵GP 、EP 分别平分CGF ∠、FEA ∠∴12FEP DEF ∠=∠,12FGP FGC ∠=∠ ∴∠P =∠F +∠FEP -∠FGP =11112222F DEF FGC F DEF F ∠+∠-∠=∠+∠-∠, ∴()11165222P F DEF DEF P ∠=∠+∠=∠+∠=︒. (3)如图3中,由(1)易知∠M =∠FBM +∠CEM ,∵BF ∥EC ,∴∠DCE=∠DBF ,∵∠DEC +∠DCE =180°-α,BM 和EM 平分CBF ∠和CED ∠,∴12FBM FBC ∠=∠,12CEM CED ∠=∠, ∴()1111122222FBM CEM FBC CED DCE CED DCE CED ∠+∠=∠+∠=∠+∠=∠+∠ ∴()111809022FBM CEM αα∠+∠=︒-=︒-. ∴1902M α∠=︒-. 故答案为:1902α︒-. 【点评】本题考查了平行线的性质、三角形内角和定理、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题.5.如图1,已知两条直线AB ,CD 被直线EF 所截,分别交于点E ,点F ,EM 平分∠AEF 交CD 于点M ,且∠FEM =∠FME .(1)判断直线AB 与直线CD 是否平行,并说明理由;(2)如图2,点G 是射线MD 上一动点(不与点M ,F 重合),EH 平分∠FEG 交CD 于点H ,过点H 作HN ⊥EM 于点N ,设∠EHN =α,∠EGF =β.①当点G 在点F 的右侧时,若β=56°,求α的度数;②当点G 在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明. 【答案】(1)AB ∥CD ,理由见解析;(2)①28α=︒;②当点G 在点F 的右侧时,12αβ=;当点G 在点F 的左侧时, 1902βα︒=-;理由见解析【分析】(1)依据角平分线,可得∠AEF =∠FME ,根据∠FEM =∠FME ,可得∠AEF =∠FEM ,进而得出AB ∥CD ;(2)①依据平行线的性质可得∠AEG =124°,再根据EH 平分∠FEG ,EM 平分∠AEF ,即可得到∠MEH =12∠AEG =62°,再根据HN ⊥ME ,即可得到Rt △EHN 中,∠EHN =90°-62°=28°;②分两种情况进行讨论:当点G 在点F 的右侧时,12αβ=.当点G 在点F 的左侧时, 1902βα︒=-. (1)解:∵EM 平分∠AEF ,∴∠AEM =∠MEF ,又∵∠FEM =∠FME ,∴∠AEM =∠EMF ,∴AB ∥CD ;(2)解:①如图2,∵AB∥CD,β=56°,∴∠AEG=124°,又∵EH平分∠FEG,EM平分∠AEF,∴∠HEF=12∠FEG,∠MEF=12∠AEF,∴∠MEH=12∠AEG=62°,又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°-62°=28°,即α=28°;②分两种情况讨论:如图2,当点G在点F的右侧时,α=12β.证明:∵AB∥CD,∴∠AEG=180°-β,又∵EH平分∠FEG,EM平分∠AEF,∴∠HEF=12∠FEG,∠MEF=12∠AEF,∴∠MEH=12∠AEG=12(180°-β),又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°-∠MEH=90°1 2(180°-β)=12β,即α=12β;如图3,当点G在点F的左侧时,α=90°-12β.证明:∵AB ∥CD ,∴∠AEG =∠EGF =β,又∵EH 平分∠FEG ,EM 平分∠AEF ,∴∠HEF =12∠FEG ,∠MEF =12∠AEF ,∴∠MEH =∠MEF -∠HEF=12(∠AEF -∠FEG ) =12∠AEG =12β,又∵HN ⊥ME ,∴Rt △EHN 中,∠EHN =90°-∠MEH ,即α=90°12-β. 【点评】本题主要考查了平行线的性质与判定,角平分线的定义的运用,解决问题的关键是掌握:两直线平行,内错角相等;两直线平行,同旁内角互补;利用角的和差关系进行推算.6.已知AB CD ∥,连接A ,C 两点.(1)如图1,CAB ∠与ACD ∠的平分线交于点E ,则AEC ∠等于__________度;(2)如图2,点M 在射线AB 反向延长线上,点N 在射线CD 上.AMN ∠与ACN ∠的平分线交于点E .若45AMN ∠=︒,70ACN ∠=︒,求MEC ∠的度数;(3)如图3,图4,M ,N 分别为射线AB ,射线CD 上的点,AMN ∠与ACN ∠的平分线交于点E .设AMN α∠=,()ACN βαβ∠=≠,请直接写出图中MEC ∠的度数(用含α,β的式子表示). 【答案】(1)90;(2)57.5MEC ∠=︒;(3)18022αβ︒-+或18022αβ︒+-【分析】(1)根据平行线的性质可得180CAB ACD ︒∠+∠=,根据角平分线的定义可得90CAE ACE ︒∠+∠=,从而可求出AEC ∠;(2)过E 作EF ∥AB ,利用平行线的性质以及角平分线的定义计算即可.(3)分两种情况,过E 作EF ∥AB ,利用平行线的性质以及角平分线的定义计算即可.(1),AB CD ∥180,CAB ACD ︒∴∠+∠=∵CAB ∠与ACD ∠的平分线交于点E ,11,,22CAE CAB ACE ACD ∴∠=∠∠=∠ 1()902CAE ACE CAB ACD ︒∴∠+∠=∠+∠= 180()90AEC CAE ACE ︒︒∴∠=-∠+∠=即90AEC ︒∠=故答案为:90︒(2)如图,过点E 作EF AB ∥,∴FEM AME ∠=∠.∵AB CD ∥,∴EF CD ∥.∴FEC ECN ∠=∠.∴MEC FEM FEC AME ECN ∠=∠+∠=∠+∠.∵ME 平分AMN ∠,CE 平分ACN ∠,∴114522.522AME AMN ︒∠=∠=⨯=︒, 11703522ECN ACN ∠=∠==︒⨯︒. ∴22.53557.5MEC ∠=︒+︒=︒;(3)过点E 作,EF AB ∥如图3,∵∠AMN 与∠ACN 的平分线交于点E ,∠,(),AMN ACN αβαβ=∠=≠∴11,22AME AMN α∠=∠=∠1122DCE ACN β=∠= ,B EF A ∥180,MEF AME ︒∴∠+∠=11801802MEF AME α︒︒∴∠=-∠=- ,AB CD ∥,EF CD ∴∥1,2CEF DCE β∴∠=∠= 1118022MEC MEF CEF αβ︒∴∠=∠+∠=-+ 如图4,∵AB //CD,EF CD ∴∥1,2MEF AME α∴∠=∠= ∵AB //CD,EF CD ∴∥180,CEF DCE ︒∴∠+∠=11801802CEF DCE β︒︒∴∠=-∠=- 1118022MEC MEF CEF αβ︒∴∠=∠+∠=+- 综上,MEC ∠的度数为18022αβ︒-+或18022αβ︒+-【点评】本题主要考查了平行线的性质,角平分线的定义,作出适当的辅助线,结合图形等量代换是解答此题的关键.7.(1)【问题情境】小明翻阅自己数学学习笔记时发现,数学老师在讲评七下《伴你学》第6页“迁移应用”第1题时,曾做过如下追问:如图1,已知AB CD ,点E 、F 分别在AB 、CD 上,点G 为平面内一点,当点G 在AB 、CD 之间,且在线段EF 左侧时,连接EG 、FG ,则一定有AEG CFG G ∠+∠=∠,为什么?请帮助小明再次说明理由;(2)【变式思考】如图2,当点G 在AB 上方时,且90EGF ∠=︒,请直接写出BEG ∠与DFG ∠之间的数量关系______;(3)【迁移拓展】①如图3,在(2)的条件下,过点E 作直线HK 交直线CD 于K ,使HEG ∠与GEB ∠互补,作EKD ∠的平分线与直线GE 交于点L ,请你判断FG 与KL 的位置关系,并说明理由;②在①的条件下,第一次操作;分别作∠BEL 和∠DKL 的平分线,交点为L 1;第二次操作,分别作∠BEL 1和∠DKL 1的平分线,交点为L 2;……第n 次操作,分别作∠BEL n-1和∠DKL n-1的平分线,交点为L 、则∠L n =______.【答案】(1)理由见解析;(2)90BEG DFG ∠-∠=︒;(3)①FG ∥KL ,理由见解析,②902n︒ 【分析】(1)过点G 作GH AB ∥,则AB CD GH ∥∥,根据平行线的性质即可求解;(2)过点G 作GH AB ∥,则AB CD GH ∥∥,根据平行线的性质即可求解;(3)①根据HEG ∠与GEB ∠互补,可得AEG HEG ∠=∠,即GL 平分BEK ∠,根据角平分线的定义,进而可得90BEL LKD ELK ∠+∠=∠=︒,即可得出FG KL ⊥;②根据①的结论,求得12,L L 发现规律,即可求解.【解析】(1)如图,过点G 作GH AB ∥,则AB CD GH ∥∥,,AEG EGH HGF CFG ∠=∠∠=∠,AEG CFG EGH FGH EGF ∴∠+∠=∠+∠=∠;(2)如图,过点G 作GH AB ∥,则AB CD GH ∥∥,180,180BEG EGH HGF DFG ∠+∠=︒∠+∠=︒,180,180BEG EGH DFG FGH ∴∠=︒-∠∠=︒-∠,FGH FGE HGE ∠=∠+∠,()()180180BEG DFG EGH FGH ∴∠-∠=︒-∠-︒-∠180180EGH FGE HGE =︒-∠-︒+∠+∠FGE =∠,90EGF ∠=︒,∴90BEG DFG ∠-∠=︒;(3)①HEG ∠+GEB ∠=180°,180GEB AEG ∠+∠=︒,AEG HEG ∴∠=∠,GE ∴是AEH ∠的角平分线,BEK AEH ∠=∠,EL ∴平分BEK ∠,BEL KEL ∴∠=∠,又KL 平分EKD ∠,EKL DKL ∴∠=∠,AB CD ∥,180BEK EKD ∴∠+∠=︒,同(1)可得ELK BEL DKL ∠=∠+∠1122BEK EKD =∠+∠ 11802=⨯︒ 90=︒,又∵∠EGF =90°,∴∠EGF =∠ELK ,∴FG ∥KL ;②根据题意可得11111902222L BEL DKL ELK ∠=∠+∠=∠=⨯︒ 同理可得21112111119090222222L BEL DKL L ︒∠=∠+∠=∠=⨯⨯︒= ……902n nL ︒∴∠=.故答案为:902n︒ 【点评】本题考查了平行线的性质与判定,角平分线的性质,掌握平行线的性质与判定是解题的关键.8.已知:直线AB ∥CD ,一块三角板EFH ,其中∠EFH =90°,∠EHF =60°.(1)如图1,三角板EFH的顶点H落在直线CD上,并使EH与直线AB相交于点G,若∠2=2∠1,求∠1的度数;(2)如图2,当三角板EFH的顶点F落在直线AB上,且顶点H仍在直线CD上时,EF与直线CD相交于点M,试确定∠E、∠AFE、∠MHE的数量关系;(3)如图3,当三角板EFH的顶点F落在直线AB上,顶点H在AB、CD之间,而顶点E恰好落在直线CD 上时得△EFH,在线段EH上取点P,连接FP并延长交直线CD于点T,在线段EF上取点K,连接PK 并延长交∠CEH的角平分线于点Q,若∠Q-∠HFT=15°,且∠EFT=∠ETF,求证:PQ∥FH.【答案】(1)∠1=40°(2)∠AFE=∠E+∠MHE,理由见解析(3)见解析【分析】(1)利用两直线平行,同位角相等和平角的意义解答即可;(2)利用平行线的性质和三角形内角和定理的推论解答即可;(3)设∠AFE=x,利用平行线的性质和角平分线的定义在△QEP中,通过计算∠QPE=60°,利用同位角相等,两直线平行判定即可得出结论.(1)解:∵AB∥CD,∴∠1=∠CHG.∵∠2=2∠1,∴∠2=2∠CHG.∵∠CHG+∠EHF+∠2=180°,∴3∠CHG+60°=180°.∴∠CHG=40°.∴∠1=40°;(2)9.对于平面内的M ∠和N ∠,若存在一个常数0k >,使得360M k N ∠+∠=︒,则称N ∠为M ∠的k 系补周角,若90,45M N ∠=∠=︒︒,则N ∠为M ∠的6系补周角.(1)若80H ∠=︒,则H ∠的4系补周角的度数为__________︒.(2)在平面内AB CD ,点E 是平面内一点,连接BE DE 、.①如图1,60D ∠=︒,若B ∠是E ∠的3系补周角,求B ∠的度数.②如图2,ABE ∠和CDE ∠均为钝角,点F 在点E 的右侧,且满足ABF n ABE ∠=∠,CDF n CDE ∠=∠(其中n 为常数且1n >),点P 是ABE ∠角平分线BG 上的一个动点,在P 点运动过程中,请你确定一个点P 的位置,使得BPD ∠是F ∠的k 系补周角,写出你的解题思路并求出此时的k 值(用含n 的式子表示). 【答案】(1)70︒(2)①75°;②当BG 上的动点P 为CDE ∠的角平分线与BG 的交点时,满足BPD ∠是F ∠的k 系补周角,此时2k n =【分析】(1)根据题中新定义列出方程求解,即可得出答案.(2)①过点E 作EF ∥AB ,得B D BED ∠+∠=∠,由60D ∠=︒,B ∠是E ∠的3系补周角,列出B ∠的方程,即可求出B ∠的度数.②根据k 系补周角的定义先确定点P 的位置,再结合ABF n ABE ∠=∠,CDF n CDE ∠=∠求解与n 的关系即可求解.(1)解:设H ∠的4系补周角为x ,根据题意,有80+4x =360解得x =70°.故答案为:70°.(2)①解:如图,过点E 作EF AB ∥,∴B BEF ∠=∠,∵,AB CD EF AB ∥∥∴EF CD ,∵60D ∠=︒,∴60D DEF ∠=∠=︒,∵60B BEF DEF ∠+︒=∠+∠,即60B BED ∠+︒=∠∵B ∠是BED ∠的3系补周角,∴3360BED B ∠+∠=︒,∴603360B B ∠+︒+∠=︒,∴75B ∠=︒.②解:当BG 上的动点P 为CDE ∠的角平分线与BG 的交点时,满足BPD ∠是F ∠的k 系补周角,此时2k n =.若BPD ∠是F ∠的k 系补周角,则F ∠+k BPD ∠=360°,∴k BPD ∠=360°-F ∠,由图可知360ABF CDF F ∠+∠+∠=︒,即360ABF CDF F ∠+∠=︒-∠,∴k BPD ∠=ABF CDF ∠+∠,又∵ABF n ABE ∠=∠,CDF n CDE ∠=∠,∴k BPD ∠=n ABE ∠+n CDE ∠,∵BPD ∠=PHD ∠+PDH ∠,ABCD ,PG 平分ABE ∠,PD 平分CDE ∠, ∴PHD ∠=ABH ∠=12ABE ∠,PDH ∠=12CDE ∠,∴2k =()ABE CDE ∠+∠=n ()ABE CDE ∠+∠ ∴2k n =.【点评】本题主要考查平行线的性质与判定、角平分线的定义,理解题意是解题的关键. 10.如图,直线,AB CD EF CD ⊥∥分别交AB 、CD 于点E 、F ,射线EP 、EQ 分别从EC 、EF 同时开始绕点E 顺时针旋转,分别与直线AB 交于点M 、N ,射线EP 每秒转10︒,射线EQ 每秒转5︒,点O 是PMN ∠、MNQ ∠角平分线的交点.设旋转时间为t 秒(08t <<).(1)①用含t 的代数式表示:AMP ∠=___________︒,QNB ∠=__________︒;②当4t =时,OMN ∠=____________︒;(2)试探索MON ∠与ONM ∠的数量关系,并说明理由;(3)MEF ∠的角平分线与直线MO 交于点K ,直接写出MKE ∠的度数为___________. 【答案】(1)①10t ,(90−5t );70(2)MON ∠=ONM ∠,理由见解析(3)45°【分析】(1)①由平行线的性质及垂直关系、旋转关系即可求得结果;②由①得∠AMP 的度数,再由互补关系、角平分线的意义即可求得;(2)两者相等,由(1)中①可得∠PMN 及∠QNM ,再由角平分线的性质可得∠OMN 、∠ONM ,由三角形内角和得∠MON ,即可判断∠MON 与∠ONM 的数量关系;(3)由题意可求得∠MEK 与∠KME 的度数,由三角形内角和即可求得∠MKE 的度数.(1)①由题意得:∠CEP =10°t =(10t )°,∠FEQ =5°t .∵AB ∥CD ,∴∠AMP =∠CEP = (10t )°,∠QNB =∠DEQ .∵EF ⊥CD ,∴∠DEQ =90°−∠FEQ =90°−5°t =(90−5t )°.∴∠QNB =(90−5t )°.故答案为:10t ,(90-5t );②当t =4时,由①得:∠AMP =10°×4=40°,∴∠PMN =180°−∠AMP =140°.∵MO 平分∠PMN ,∴111407022OMN PMN ∠=∠=⨯︒=︒. 故答案为:70;(2)MON ∠=ONM ∠,理由如下:由(1)中①知:∠AMP = (10t )°,∠QNB =(90−5t )°,∴∠PMN =180°−∠AMP =(180−10t )°,∠QNM =180°−∠QNB =(90+5t )°.∵MO 平分∠PMN , NO 平分∠MNQ ,∴1(905)2OMN PMN t ∠=∠=-︒,11(905)22ONM QNM t ∠=∠=+︒. ∴1180(905)2MON OMN ONM t ∠=︒-∠-∠=+︒. ∴∠MON =∠ONM .(3)∵EF ⊥CD ,∠CEP = (10t )°,∴∠MEF =90°−∠CEP =(90-10t )°.∵EK 平分∠MEF ,∴11(9010)45(5)22MEK MEF t t ∠=∠=-︒=︒-︒. ∵()(905)1090(5)KME OMN EMF OMN AMP t t t ∠=∠+∠=∠+∠=-︒+︒=︒+︒,∴在△EMK 中,18045MKE KME MEK ∠=︒-∠-∠=︒.故答案为:45°.【点评】本题主要考查了平行线的性质,角平分线的意义,垂直的意义,三角形内角和定理,关键是熟练掌握它们并灵活运用.11.已知点C 在线段AE 上,AB CD ∥,EAB ∠的角平分线交CD 于点F ,M 为线段CF 上一动点,连接EM .(1)如图①,当40FAB ∠=︒,25E ∠=︒时,求EMF ∠的度数.(2)如图②,N 为射线AB 上一动点,连接FN ,使得FN EM ∥,作CFN ∠的角平分线交AB 于点G ,猜想E ∠与AFG ∠的数量关系,并说明理由.(3)如图③,在(2)的条件下,作GH GF ⊥,并延长FN 交GH 于点H ,已知3426E AFG ∠-∠=︒,求EAF GHF ∠+∠的度数. 【答案】(1)105︒(2)2E AFG ∠=∠,理由见解析(3)77︒【分析】(1)先由AF 平分EAB ∠得出80EAB ∠=︒,再根据平行线的性质得出80ECD EAB ∠=∠=︒,进而根据EMF E ECM ∠=∠+∠得出答案.(2)首先设CAF FAG x ∠=∠=,得2ECF x ∠=,再设CFG GFN y ∠=∠=,得2EMF CFN y ∠=∠=,最后根据三角形外角定理用x ,y 的代数式表示出E ∠和AFG ∠即可得出答案.(3)设AFG α∠=,则E ∠为2α,根据题目所给条件得出13AFG ∠=︒,进而由(2)中条件得出答案.(1)∵AF 平分EAB ∠,∴224080EAB FAB ∠=∠=⨯︒=︒,∵AB CD ∥,∴80ECD EAB ∠=∠=︒,∵在ECM ∆中,EMF E ECM ∠=∠+∠,∴8025105EMF ∠=︒+︒=︒.(2)猜想:2E AFG ∠=∠理由:设CAF FAG x ∠=∠=,∴2ECF x ∠=,∵GF 平分CFN ∠,∴设CFG GFN y ∠=∠=,∵AB CD ∥,∴FGN CFG y ∠=∠=,∵EM FN ∥,∴2EMF CFN y ∠=∠=,在ECM ∆中,()222E EMF ECF y x y x ∠=∠-∠=-=-,在AGF ∆中,AFG FGN FAG y x ∠=∠-∠=-,∴2E AFG ∠=∠.(3)设AFG α∠=,则E ∠为2α,∵3426E AFG ∠-∠=︒,∴6426αα-=︒,∴13α=︒,∴13AFG ∠=︒,由(2)得()90909077EAF GHF x y y x AFG ∠+∠=+-=--=-∠=︒.【点评】本题考查了平行线的性质、角平分线的性质以及三角形外角定理等知识,解题的关键是熟练掌握三角形外角定理并能灵活运用.12.已知:AB //CD ,点E 在直线AB 上,点F 在直线CD 上.(1)如图①,EM 平分∠BEF , FN 平分∠CFE ,试判断EM 与FN 的位置关系,并说明理由;(2)如图②,EG 平分∠MEF ,EH 平分∠AEM ,试判断∠GEH 与∠EFD 的数量关系,并说明理由;【答案】(1)//EM FN ,见解析;(2)2EFD GEH ∠=∠,见解析【分析】(1)由平行线的性质可得∠BEF =∠CFE ,再根据角平分线的定义得到∠MEF =∠EFN ,则EM //FN ;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档