2017-2018学年浙江省温州市瑞安市八年级(下)期末数学试卷
【三套打包】温州市八年级下学期期末数学试题含答案

新人教版八年级数学下册期末考试试题(含答案) 一、选择题(每小题3分,共30分)1.当分式3-1x有意义时,字母x应满足()A、x≠1B、x=0C、x≠-1D、x≠3 答案:A考点:分式的意义。
解析:由分式的意义,得:10x-≠,得:x≠12.若把分式2xyx y+的x、y同时扩大3倍,则分式值()A、不变B、扩大为原来的3倍C、缩小为原来的13D、扩大为原来的9倍答案:B考点:分式的运算。
解析:把分式2xyx y+的x、y同时扩大3倍,得:2339223333()x y xy xyx y x y x y⨯⨯⨯==⨯+++,所以,分式值扩大为原来的3倍3.平行四边形、矩形、菱形、正方形共有的性质是()A、对角线相等B、对角线互相垂直C.对角线互相平分D、对角形互相垂直平分答案:C考点:特殊四边形的性质。
解析:平行四边形的性质:对角线互相平分,矩形的性质:对角线互相平分且相等,菱形的性质:对角线互相平分且垂直,正方形的性质:对角线互相垂直平分且相等,所以,共有的性质为:对角线互相平分4.在反比例函数y=1mx-的图象的每一条曲线上,y都随x的增大而减小,则m的值可以是()A、0B、1C、2D、3答案:A考点:反比例函数的图象及其性质。
解析:反比例函数图象的每一条曲线上,y都随x的增大而减小,所以,图象在一、三象限,有1-m>0,解得:m<1,符合的选项只有A。
5.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A、x>1.5B、x<1.5C、x>3D、x<3答案:B考点:一次函数图象,图象与不等式。
解析:依题意,有:3=2m,即m=32,所以,A(32,3),由图象可知:不等式2x<ax+4的解集为:x<1.56.我省某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是()A、71.8B、77C、82D、95.7答案:C考点:平均数。
2017-2018学年第二学期期末八年级数学试题(含答案)

2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。
浙江省温州市八年级下册期末数学试卷(含解析)

2017年浙江省温州市八年级下册期末数学试卷本试卷分选择题部分与非选择题部分,共6页,满分100分,答题时不得使用计算器选择题部分一、选择题(每小题3分,共30分)1.下列几何图形中,是中心对称图形的是( )x 有意义,则x应满足()2、要使二次根式2A.x≥2 B.x>2 C。
x≤2 D.x≠23、在端午节到来之前,某公司工会推荐了A.B.C三种口味的粽子,并对全体员工喜欢哪种口味的粽子作调查,以决定最终采购哪种口味的粽子,下列统计量中,最值得关注的是( )A.方差 B.平均数C.中位数D.众数4、已知x=2是方程x2+ax—2=0的一个根,则a的值( )A.3 B。
-3 C.1 D.-15、用配方法解一元二次方程x2-4x=6时,下列变形正确的是( )A.(x-2)2=2 B。
(x—2)2=10 C.(x-4)2=10 D。
(x-4)2=226.用反证法证明命题:如图,直线a,b被直线c所截,已知∠1≠∠2,求证:a,b不平行,的一步应假设( )A.a∥b B。
a⊥b C。
∠1=∠2 D.∠1≠∠27、如图,矩形ABC DA 的对角线AC,BD 交于点O ,AB=2,AB=4,则OC的长是( )A .3B 、32C 、5D 、528、某超市销售一种饮料,平均每天可销售出50箱,每箱利润为15元,为了减少库存,增加利润,超市准备适当降价,据测算,每箱每降1元,平均每天可多售出10箱,若要使每天销售这种饮料获利960元,则每箱降价多少元?设每箱降价X 元,可列方程为( )A 、(50+10x )(15-x )=960B 、(50-10x)(15+x )=960C 、(50+x)(15—10x)=960D 、(50—x)(15+10x )=960 9、如图, ABCD 中,A B=4,BC =6,∠ABC ,∠ADC 的角平分线分别交AD,BC 于点E ,F 若 ABCD 的面积为18,则四边形BFDE 的面积为( )A 。
2017-2018学年浙教版数学八年级(下册)期末考试试卷及答案

2017-2018学年八年级(下册)期末数学试卷一、选择1.下列二次根式:中,是最简二次根式的有()A.2个B.3个C.4个D.5个2.用配方法解方程x2﹣2x﹣2=0,下列配方正确的是()A.(x﹣1)2=2 B.(x﹣1)2=3 C.(x﹣2)2=3 D.(x﹣2)2=6 3.已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则a2+b2的值为()A.36 B.50 C.28 D.254.小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB 的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A.矩形B.菱形C.正方形D.平行四边形5.已知点A(x1,y1),B(x2,y2)是反比例函数y=(k>0)图象上的两点,若x1<0<x2,则有()A.y1<0<y2B.y2<0<y1C.y1<y2<0 D.y2<y1<06.如图,E是矩形ABCD内的一个动点,连接EA、EB、EC、ED,得到△EAB、△EBC、△ECD、△EDA,设它们的面积分别是m、n、p、q,给出如下结论:①m+n=q+p;②m+p=n+q;③若m=n,则E点一定是AC与BD的交点;④若m=n,则E点一定在BD上.其中正确结论的序号是()A.①③B.②④C.①②③D.②③④7.如图,矩形ABCD的边分别与两坐标轴平行,对角线AC经过坐标原点,点D在反比例函数(x>0)的图象上.若点B的坐标为(﹣4,﹣4),则k的值为()A.2 B.6 C.2或3 D.﹣1或68.如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为()A.B.C.D.9.如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?()A.一组对边平行,另一组对边相等的四边形是平行四边形B.有一组对边平行的四边形是梯形C.一组对边相等,一组对角相等的四边形是平行四边形D.对角线相等的平行四边形是矩形10.已知:如图,梯形ABCD是等腰梯形,AB∥CD,AD=BC,AC⊥BC,BE⊥AB交AC 的延长线于E,EF⊥AD交AD的延长线于F,下列结论:①BD∥EF;②∠AEF=2∠BAC;③AD=DF;④AC=CE+EF.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题11.命题:“三角形中至多有两个角大于60度”,用反证法第一步需要假设.12.如图,在梯形ABCD中,CD∥AB,且CD=6cm,AB=9cm,P、Q分别从A、C同时出发,P以1cm/s的速度由A向B运动,Q以2cm/s的速度由C向D运动.则秒时,直线QP将四边形ABCD截出一个平行四边形.13.如图所示,点D、E分别是AB、AC的中点,点F、G分别为BD、CE的中点,若FG=6,则DE+BC=,BC=.14.已知=5,则=.15.已知:如图,平面直角坐标系xOy中,正方形ABCD的边长为4,它的顶点A在x轴的正半轴上运动(点A,D都不与原点重合),顶点B,C都在第一象限,且对角线AC,BD相交于点P,连接OP.设点P到y轴的距离为d,则在点A,D运动的过程中,d的取值范围是.16.如图,已知双曲线y1=﹣与两直线y2=﹣x,y3=﹣8x,若无论x取何值,y总取y1,y2,y3中的最小值,则y的最大值为.三、解答题.17.计算:.18.如图,在平行四边形中挖去一个矩形,在请用无刻度的直尺,准确作出一条直线,将剩下图形的面积平分.(保留作图痕迹)19.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:甲、乙射击成绩统计表.平均数中位数方差命中10环的次数甲7 0乙 1甲、乙射击成绩折线图.(1)请补全上述图表(请直接在表中填空和补全折线图),并写出甲和乙的平均数和方差的计算过程和结果.(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由.20.阅读下列材料:求函数的最大值.解:将原函数转化成x的一元二次方程,得.∵x为实数,∴△==﹣y+4≥0,∴y≤4.因此,y的最大值为4.根据材料给你的启示,求函数的最小值.21.如图,直角坐标系中,四边形ABCO是菱形,对角线OB在x轴正半轴上,点A的坐标为(4,4),点D为AB的中点.动点M从点O出发沿x轴向点B运动,运动的速度为每秒1个单位,试解答下列问题:(1)则菱形ABCO的周长为,菱形ABCO的周长为,(2)当t=4时,求MA+MD的值;(3)当t取什么值时,使MA+MD的值最小?并求出他的最小值.22.一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,第二年的月利润稳定在第1年的第12个月的水平.(1)设使用回收净化设备后的1至x月(1≤x≤12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于700万元;(2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x 个月的利润和相等;(3)求使用回收净化设备后两年的利润总和.23.如图,在矩形ABCD中,∠ADC的平分线交BC于点E、交AB的延长线于点F,G是EF的中点,连接AG、CG.(1)求证:BE=BF;(2)请判断△AGC的形状,并说明理由.24.如图1,已知直线y=2x分别与双曲线y=、y=(x>0)交于P、Q两点,且OP=2OQ.(1)求k的值.(2)如图2,若点A是双曲线y=上的动点,AB∥x轴,AC∥y轴,分别交双曲线y=(x >0)于点B、C,连接BC.请你探索在点A运动过程中,△ABC的面积是否变化?若不变,请求出△ABC的面积;若改变,请说明理由;(3)如图3,若点D是直线y=2x上的一点,请你进一步探索在点A运动过程中,以点A、B、C、D为顶点的四边形能否为平行四边形?若能,求出此时点A的坐标;若不能,请说明理由.八年级(下)期末数学试卷参考答案与试题解析一、选择1.下列二次根式:中,是最简二次根式的有()A.2个B.3个C.4个D.5个【考点】最简二次根式.【分析】根据最简二次根式的定义分别判断解答即可.【解答】解:中是最简二次根式的有,,故答案为:A.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.用配方法解方程x2﹣2x﹣2=0,下列配方正确的是()A.(x﹣1)2=2 B.(x﹣1)2=3 C.(x﹣2)2=3 D.(x﹣2)2=6【考点】解一元二次方程-配方法.【分析】根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方得出即可.【解答】解:∵x2﹣2x﹣2=0,∴x2﹣2x=2,∴x2﹣2x+1=2+1,∴(x﹣1)2=3.故选:B.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3.已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则a2+b2的值为()A.36 B.50 C.28 D.25【考点】根与系数的关系.【分析】根据题意,a、b可看作方程x2﹣6x+4=0的两根,则根据根与系数的关系得到a+b=6,ab=4,然后把原式变形得到原式=再利用整体代入的方法计算即可.【解答】解:∵a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,∴a,b可看作方程x2﹣6x+4=0的两根,∴a+b=6,ab=4,∴原式=(a+b)2﹣2ab=62﹣2×4=28,故选C.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.4.小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB 的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A.矩形B.菱形C.正方形D.平行四边形【考点】作图—基本作图;菱形的判定.【分析】根据垂直平分线的画法得出四边形ADBC四边的关系进而得出四边形一定是菱形【解答】解:∵分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,∴AC=AD=BD=BC,∴四边形ADBC一定是菱形,故选:B.【点评】此题主要考查了线段垂直平分线的性质以及菱形的判定,得出四边形四边关系是解决问题的关键.5.已知点A(x1,y1),B(x2,y2)是反比例函数y=(k>0)图象上的两点,若x1<0<x2,则有()A.y1<0<y2B.y2<0<y1C.y1<y2<0 D.y2<y1<0【考点】反比例函数图象上点的坐标特征.【专题】压轴题.【分析】根据反比例函数的增减性再结合反比例函数图象上点的坐标特征解答即可.【解答】解:∵k>0,函数图象在一三象限;若x1<0<x2.说明A在第三象限,B在第一象限.第一象限的y值总比第三象限的点的y值大,∴y1<0<y2.故选A.【点评】在反比函数中,已知两点的横坐标,比较纵坐标的大小,首先应区分两点是否在同一象限内.在同一象限内,按同一象限内点的特点来比较,不在同一象限内,按坐标系内点的特点来比较.6.如图,E是矩形ABCD内的一个动点,连接EA、EB、EC、ED,得到△EAB、△EBC、△ECD、△EDA,设它们的面积分别是m、n、p、q,给出如下结论:①m+n=q+p;②m+p=n+q;③若m=n,则E点一定是AC与BD的交点;④若m=n,则E点一定在BD上.其中正确结论的序号是()A.①③B.②④C.①②③D.②③④【考点】矩形的性质.【分析】过E作MN⊥AB,交AB于M,CD于N,作GH⊥AD,交AD于G,BC于H,由矩形的性质容易证出①不正确,②正确;若m=n,则p=q,作AP⊥BE于P,作CQ⊥DE 于Q,延长BE交CD于F,先证AP=CQ,再证明△ABP≌△CFQ,得出AB=CF,F与D 重合,得出③不正确,④正确,即可得出结论.【解答】解:过E作MN⊥AB,交AB于M,CD于N,作GH⊥AD,交AD于G,BC于H,如图1所示:则m=ABEM,n=BCEH,p=CDEN,q=ADEG,∵四边形ABCD是矩形,∴AB=CD=GH,BC=AD=MN,∴m+p=ABMN=ABBC,n+q=(BCGH=BCAB,∴m+p=n+q;∴①不正确,②正确;若m=n,则p=q,作AP⊥BE于P,作CQ⊥DE于Q,延长BE交CD于F,如图2所示:则∠APB=∠CQF=90°,∵m=BEAP,n=BECQ,∵m=n,∴AP=CQ,∵AB∥CD,∴∠1=∠2,在△ABP和△CFQ中,,∴△ABP≌△CFQ(AAS),∴AB=CF,∴F与D重合,∴E一定在BD上;∴③不正确,④正确.故选:B.【点评】本题考查了矩形的性质、三角形面积的计算、全等三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.7.如图,矩形ABCD 的边分别与两坐标轴平行,对角线AC 经过坐标原点,点D 在反比例函数(x >0)的图象上.若点B 的坐标为(﹣4,﹣4),则k 的值为( )A .2B .6C .2或3D .﹣1或6 【考点】反比例函数综合题.【专题】计算题.【分析】根据矩形的对角线将矩形分成面积相等的两个直角三角形,找到图中的所有矩形及相等的三角形,即可推出S 四边形DEOH =S 四边形FBGO ,根据反比例函数比例系数的几何意义即可求出k 2﹣5k+10=16,再解出k 的值即可.【解答】解:如图:∵四边形ABCD 、FAEO 、OEDH 、GOHC 为矩形, 又∵AO 为四边形FAEO 的对角线,OC 为四边形OGCH 的对角线, ∴S △AEO =S △AFO ,S △OHC =S △OGC ,S △DAC =S △BCA , ∴S △DAC ﹣S △AEO ﹣S △OHC =S △BAC ﹣S △AFO ﹣S △OGC , ∴S 四边形FBGO =S 四边形DEOH =(﹣4)×(﹣4)=16,∴xy=k 2﹣5k+10=16, 解得k=﹣1或k=6. 故选:D .【点评】本题考查了反比例函数k 的几何意义、矩形的性质、一元二次方程的解法,关键是判断出S 四边形DEOH =S 四边形FBGO .8.如图,在正方形ABCD 中,AD=5,点E 、F 是正方形ABCD 内的两点,且AE=FC=3,BE=DF=4,则EF 的长为( )A .B .C .D .【考点】正方形的性质;全等三角形的判定与性质;勾股定理;等腰直角三角形.【分析】延长AE 交DF 于G ,再根据全等三角形的判定得出△AGD 与△ABE 全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根据勾股定理得出EF 的长.【解答】解:延长AE 交DF 于G ,如图: ∵AB=5,AE=3,BE=4,∴△ABE是直角三角形,∴同理可得△DFC是直角三角形,可得△AGD是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE,在△AGD和△BAE中,,∴△AGD≌△BAE(ASA),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=,故选D.【点评】此题考查正方形的性质,关键是根据全等三角形的判定和性质得出EG=FG=1,再利用勾股定理计算.9.如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?()A.一组对边平行,另一组对边相等的四边形是平行四边形B.有一组对边平行的四边形是梯形C.一组对边相等,一组对角相等的四边形是平行四边形D.对角线相等的平行四边形是矩形【考点】平行四边形的判定;全等三角形的判定与性质;等腰三角形的性质;矩形的判定;梯形;命题与定理.【分析】已知条件应分析一组对边相等,一组对角对应相等的四边不是平行四边形,根据全等三角形判定方法得出∠B=∠E,AB=DE,进而得出一组对边相等,一组对角相等的四边形不是平行四边形,得出答案即可.【解答】解:∵△ABC是等腰三角形,∴AB=AC,∠B=∠C,在△ADE与△DAC中,∵,∴△ADE≌△DAC,∴∠E=∠C,∴∠B=∠E,AB=DE,但是四边形ABDE不是平行四边形,故一组对边相等,一组对角相等的四边形是平行四边形说法错误;故选:C.【点评】此题主要考查了平行四边形的判定方法以及全等三角形的判定,结合已知选项,得出已知条件应分析一组对边相等,一组对角相等的四边不是平行四边形是解题关键.10.已知:如图,梯形ABCD是等腰梯形,AB∥CD,AD=BC,AC⊥BC,BE⊥AB交AC 的延长线于E,EF⊥AD交AD的延长线于F,下列结论:①BD∥EF;②∠AEF=2∠BAC;③AD=DF;④AC=CE+EF.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】等腰梯形的性质.【分析】根据已知利用等腰梯形的性质对各个结论进行分析从而得出最后的答案.【解答】解:根据四边形ABCD是等腰梯形,可得出的条件有:AC=BD,∠OAB=∠OBA=∠ODC=∠OCD(可通过全等三角形ABD和BAC得出),OA=OB,OC=OD,∠ACB=∠ADB=90°(三角形ACB和BDA全等).①要证BD∥EF就要得出∠ADB=∠EFD,而∠ADB=90°,∠EFD=90°,因此∠ADB=∠EFD,此结论成立;②由于BD∥EF,∠AEF=∠AOD,而∠AOD=∠OAB+∠OBA=2∠OAB,因此∠AEF=2∠OAB,此结论成立.③在直角三角形ABE中,∠OAB=∠OBA,∠OAB+∠OEB=∠OBA+∠OBE=90°,因此可得出∠OEB=∠OBE,因此OA=OB=OE,那么O就是直角三角形ABE斜边AE的中点,由于OD∥EF,因此OD就是三角形AEF的中位线,那么D就是AF的中点,因此此结论也成立.④由③可知EF=2OD=2OC,而OA=OE=OC+CE.那么AC=OA+OC=OC+OC+CE=2OC+CE=EF+CE,因此此结论也成立.故选D.【点评】本题主要考查了等腰梯形的性质.根据等腰梯形的性质得出的角和边相等是解题的基础.二、填空题11.命题:“三角形中至多有两个角大于60度”,用反证法第一步需要假设三个内角都不大于60度.【考点】反证法.【分析】利用反证法证明的步骤,进而得出答案.【解答】解:用反证法证明命题“三角形中至多有两个角大于60度”,应先假设三个内角都不大于60度.故答案为:三个内角都不大于60度.【点评】此题主要考查了反证法,正确掌握反证法的第一步是解题关键.12.如图,在梯形ABCD中,CD∥AB,且CD=6cm,AB=9cm,P、Q分别从A、C同时出发,P以1cm/s的速度由A向B运动,Q以2cm/s的速度由C向D运动.则2或3秒时,直线QP将四边形ABCD截出一个平行四边形.【考点】平行四边形的判定;梯形.【专题】动点型.【分析】设x秒时,直线QP将四边形ABCD截出一个平行四边形;则AP=xcm,BP=(9﹣x)cm,CQ=2xcm,DQ=(6﹣2x)cm;分两种情况:①当AP=DQ时,得出方程,解方程即可;②当BP=CQ时,得出方程,解方程即可.【解答】解:设x秒时,直线QP将四边形ABCD截出一个平行四边形;则AP=xcm,BP=(9﹣x)cm,CQ=2xcm,DQ=(6﹣2x)cm;∵CD∥AB,∴分两种情况:①当AP=DQ时,x=6﹣2x,解得:x=2;②当BP=CQ时,9﹣x=2x,解得:x=3;综上所述:当2秒或3秒时,直线QP将四边形ABCD截出一个平行四边形;故答案为:2或3.【点评】本题考查了梯形的性质、平行四边形的判定、解方程等知识;熟练掌握梯形的性质和平行四边形的判定方法是解决问题的关键.13.如图所示,点D、E分别是AB、AC的中点,点F、G分别为BD、CE的中点,若FG=6,则DE+BC=12,BC=8.【考点】三角形中位线定理.【专题】计算题.【分析】根据中位线定理得:DE=BC,根据梯形中位线定理得FG=(DE+BC),由FG=6求得DE+BC的值即可.【解答】解:∵点F、G分别为BD、CE的中点,∴FG=(DE+BC),∵FG=6,∴DE+BC=2FG=2×6=12;∵D、E分别是AB、AC的中点,∴DE=BC,∴DE+BC=BC+BC=BC=12,∴BC=8.故答案为:12;8.【点评】本题考查了梯形的中位线与三角形的中位线的性质,是一道不错的几何综合题.14.已知=5,则=﹣4或﹣1.【考点】二次根式的化简求值.【分析】利用完全平方公式得出=6,即可求出=2,=3或=3,=2.分别代入求解即可.【解答】解:∵ =5,∴()2=25,解得=6,∴解得=2,=3或=3, =2.∴=﹣4或﹣1,故答案为:﹣4或﹣1.【点评】本题主要考查了二次根式的化简求值,解题的关键是求出与的值.15.已知:如图,平面直角坐标系xOy 中,正方形ABCD 的边长为4,它的顶点A 在x 轴的正半轴上运动(点A ,D 都不与原点重合),顶点B ,C 都在第一象限,且对角线AC ,BD 相交于点P ,连接OP .设点P 到y 轴的距离为d ,则在点A ,D 运动的过程中,d 的取值范围是 2<d ≤2.【考点】正方形的性质;坐标与图形性质;全等三角形的判定与性质.【分析】根据垂线段最短,A 、O 重合时,点P 到y 轴的距离最小,为正方形ABCD 边长的一半,OA=OD 时点P 到y 轴的距离最大,为PD 的长度,即可得解.【解答】解:当A 、O 重合时,点P 到y 轴的距离最小,d=×4=2,当OA=OD 时,点P 到y 轴的距离最大,d=PD=2,∵点A ,D 都不与原点重合,∴2<d ≤2,故答案为2<d ≤2.【点评】本题考查了正方形的性质,坐标与图形的性质,全等三角形的判定与性质,角平分线的判定,(2)作辅助线构造出全等三角形是解题的关键,(2)根据垂线段最短判断出最小与最大值的情况是解题的关键.16.如图,已知双曲线y 1=﹣与两直线y 2=﹣x ,y 3=﹣8x ,若无论x 取何值,y 总取y 1,y 2,y 3中的最小值,则y 的最大值为 2.【考点】反比例函数与一次函数的交点问题.【分析】y 始终取三个函数的最小值,y 最大值即求三个函数的公共部分的最大值.【解答】解:联立y 1、y 2可得,解得或,∴A (﹣2,),B (2,),联立y 1、y 3可得,解得或,∴C (﹣,2),D (,﹣2), ∵无论x 取何值,y 总取y 1,y 2,y 3中的最小值, ∴y 的最大值为A 、B 、C 、D 四点中的纵坐标的最大值,∴y 的最大值为C 点的纵坐标,∴y的最大值为2,故答案为:2.【点评】本题主要考查一次函数与反比例函数的交点问题,确定出y的最大值为三个函数公共部分的最大值是解题的关键.三、解答题.17.计算:.【考点】二次根式的混合运算.【分析】根据二次根式的性质,先化简,再进一步按照运算顺序计算合并即可.【解答】解:原式=3﹣+2(﹣)=3﹣+6﹣4=5﹣.【点评】此题考查二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.18.如图,在平行四边形中挖去一个矩形,在请用无刻度的直尺,准确作出一条直线,将剩下图形的面积平分.(保留作图痕迹)【考点】作图—应用与设计作图.【分析】先找到矩形和平行四边形的中心,然后过中心作直线即可.【解答】解:如图所示:【点评】本题考查了作图﹣应用与设计作图,用到的知识点有中心对称及矩形、平行四边形的性质,有一定难度,注意掌握中心与中心对称点之间的关系.19.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:甲、乙射击成绩统计表.平均数中位数方差命中10环的次数甲7 740乙77.5 5.4 1甲、乙射击成绩折线图.(1)请补全上述图表(请直接在表中填空和补全折线图),并写出甲和乙的平均数和方差的计算过程和结果.(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由.【考点】折线统计图;算术平均数;中位数;方差.【专题】图表型.【分析】(1)分别利用中位数以及方差和平均数求法得出即可;(2)利用方差的意义,分析得出答案即可.【解答】解:(1)甲、乙射击成绩统计表平均数中位数方差命中10环的次数甲7 7 4 0乙7 7.5 5.4 1甲、乙射击成绩折线图,根据折线统计图得:乙的射击成绩为:2,4,6,8,7,7,8,9,9,10,则平均数为=7(环),方差为:[(2﹣7)2+(4﹣7)2+(6﹣7)2+(8﹣7)2+(7﹣7)2+(7﹣7)2+(8﹣7)2+(9﹣7)2+(9﹣7)2+(10﹣7)2]=5.4;甲的射击成绩为9,6,7,6,2,7,7,?,8,9,平均数为7(环),则甲第八环成绩为70﹣(9+6+7+6+2+7+7+8+9)=9(环),所以甲的10次成绩为:9,6,7,6,2,7,7,9,8,9.方差为:[(9﹣7)2+(6﹣7)2+(7﹣7)2+(6﹣7)2+(2﹣7)2+(7﹣7)2+(7﹣7)2+(9﹣7)2+(8﹣7)2+(9﹣7)2]=4.…(8分)(2)由甲的方差小于乙的方差,甲比较稳定,故甲胜出.【点评】此题主要考查了中位数以及方差和平均数求法,正确记忆相关定义是解题关键.20.阅读下列材料:求函数的最大值.解:将原函数转化成x的一元二次方程,得.∵x为实数,∴△==﹣y+4≥0,∴y≤4.因此,y的最大值为4.根据材料给你的启示,求函数的最小值.【考点】一元二次方程的应用.【专题】压轴题.【分析】根据材料内容,可将原函数转换为(y﹣3)x2+(2y﹣1)x+y﹣2=0,继而根据△≥0,可得出y的最小值.【解答】解:将原函数转化成x的一元二次方程,得(y﹣3)x2+(2y﹣1)x+y﹣2=0,∵x为实数,∴△=(2y﹣1)2﹣4(y﹣3)(y﹣2)=16y﹣23≥0,∴y≥,因此y的最小值为.【点评】本题考查了一元二次方程的应用,这样的信息题,一定要熟读材料,套用材料的解题模式进行解答.21.如图,直角坐标系中,四边形ABCO是菱形,对角线OB在x轴正半轴上,点A的坐标为(4,4),点D为AB的中点.动点M从点O出发沿x轴向点B运动,运动的速度为每秒1个单位,试解答下列问题:(1)则菱形ABCO的周长为32,菱形ABCO的周长为32,(2)当t=4时,求MA+MD的值;(3)当t取什么值时,使MA+MD的值最小?并求出他的最小值.【考点】四边形综合题.【分析】(1)根据坐标与图形的关系求出OF,AF的长,根据勾股定理求出菱形的边长,根据菱形的性质求出周长;(2)根据直角三角形的斜边的中线是斜边的一半求出MD的值,计算得到MA+MD的值;(3)作点D关于x轴的对称点D′,连接AD′交x轴于点M,作出MA+MD的值最小时的点M,根据菱形的性质和坐标与图形的关系求出AD′的长,得到答案.【解答】解:(1)∵点A的坐标为(4,4),∴OF=4,AF=4,由勾股定理得,OA==8,∴菱形ABCO的周长为32;(2)当t=4时,点M与对角线的交点F重合,则MA=4,在Rt△AMB中,AB=8,点D为AB的中点,∴MD=AB=4,∴MA+MD=4+4;(3)作点D关于x轴的对称点D′,连接AD′交x轴于点M,则此时MA+MD的值最小,由题意和菱形的性质可知,点D的坐标为(6,2),则D′的坐标为(6,﹣2),设直线AD′的解析式为:y=kx+b,,解得,,则直线AD′的解析式为:y=﹣3x+16,﹣3x+16=0,x=,点M的坐标为(,0),即OM=,则当t=时,MA+MD的值最小,作D′E⊥AC于E,由菱形的性质可知,D′为BC的中点,∴D′E=2,EF=2,则AE=6,在Rt△AED′中,AE=6,D′E=2,AD′==4,则MA+MD的最小值为4.【点评】本题考查的是菱形的性质、勾股定理和轴对称﹣最短路径问题以及待定系数法求一次函数解析式,灵活应用待定系数法求函数解析式、掌握直角三角形的斜边的中线是斜边的一半,作出对称点得到最短路径是解题的关键.22.一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,第二年的月利润稳定在第1年的第12个月的水平.(1)设使用回收净化设备后的1至x月(1≤x≤12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于700万元;(2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x 个月的利润和相等;(3)求使用回收净化设备后两年的利润总和.【考点】一元二次方程的应用.【专题】销售问题;压轴题.【分析】(1)因为使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,所以y=xw=x(10x+90);要求前几个月的利润和=700万元,可令y=700,利用方程即可解决问题;(2)因为原来每月利润为120万元,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等,所以有y=120x,解之即可求出答案;(3)因为使用回收净化设备后第一、二年的利润=12×(10×12+90),求出它们的和即可.【解答】解:(1)y=xw=x(10x+90)=10x2+90x,10x2+90x=700,解得:x1=5或x2=﹣14(不合题意,舍去),答:前5个月的利润和等于700万元;(2)10x2+90x=120x,解得:x1=3,x2=0(不合题意,舍去),答:当x为3时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等;(3)第一年全年的利润是:12(10×12+90)=2520(万元),前11个月的总利润是:11(10×11+90)=2200(万元),∴第12月的利润是2520﹣2200=320(万元),第二年的利润总和是12×320=3840(万元),2520+3840=6360(万元).答:使用回收净化设备后两年的利润总和是6360万元.【点评】本题需正确理解题意,找出数量关系,列出函数关系式进一步求解.23.如图,在矩形ABCD中,∠ADC的平分线交BC于点E、交AB的延长线于点F,G是EF的中点,连接AG、CG.(1)求证:BE=BF;(2)请判断△AGC的形状,并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形;矩形的性质.【分析】(1)由矩形的性质结合角平分线的定义可证得∠ADF=∠BEF=∠CDF=∠F,可证明BE=BF;(2)连接BG,可证明△AGF≌△CGB,可证得AG=CG,进一步可证明∠AGC=90°,可判定△AGC为等腰直角三角形.【解答】(1)证明:∵四边形ABCD为矩形,∴AB∥CD,AD∥BC,∴∠F=∠CDF,∠ADF=∠BEF,∵DF平分∠ADC,∴∠CDF=∠ADF,∴∠F=∠BEF,∴BE=BF;(2)解:△AGC为等腰直角三角形,理由如下:如图,连接BG,由(1)可知BE=BF,且∠FBE=90°,∴∠F=45°,∴AF=AD=BC,∵G为EF中点,∴BG=FG,∠EBG=45°,在△AGF和△CGB中,,∴△AGF≌△CGB(SAS),∴AG=CG,∠AGF=∠BGC,∴∠BGF+∠AGB=∠AGB+∠AGC,∴∠AGC=∠BGF=90°,∴△AGC为等腰直角三角形.【点评】本题主要考查全等三角形的判定和性质和矩形的性质,在(1)中充分利用矩形的对边分别平行是解题的关键,在(2)构造三角形全等是解题的关键.24.如图1,已知直线y=2x分别与双曲线y=、y=(x>0)交于P、Q两点,且OP=2OQ.(1)求k的值.(2)如图2,若点A是双曲线y=上的动点,AB∥x轴,AC∥y轴,分别交双曲线y=(x >0)于点B、C,连接BC.请你探索在点A运动过程中,△ABC的面积是否变化?若不变,请求出△ABC的面积;若改变,请说明理由;(3)如图3,若点D是直线y=2x上的一点,请你进一步探索在点A运动过程中,以点A、B、C、D为顶点的四边形能否为平行四边形?若能,求出此时点A的坐标;若不能,请说明理由.【考点】反比例函数综合题;解分式方程;待定系数法求反比例函数解析式;反比例函数与一次函数的交点问题;平行四边形的性质;相似三角形的判定与性质.【专题】综合题.【分析】(1)先求出点P的坐标,再从条件OP=2OQ出发,构造相似三角形,求出点Q的坐标,就可求出k的值.(2)设点A的坐标为(a,b),易得b=,结合条件可用a的代数式表示点B、点C的坐标,进而表示出线段AB、AC的长,就可算出△BAC的面积是一个定值.(3)以点A、B、C、D为顶点的四边形为平行四边形可分成两类:①AC为平行四边形的一边,②AC为平行四边形的对角线;然后利用平行四边形的性质建立关于a的方程,即可求出a的值,从而求出点A的坐标.【解答】解:(1)过点Q作QE⊥x轴,垂足为E,过点P作PF⊥x轴,垂足为F,如图1,联立,解得:或.∵x>0,∴点P的坐标为(2,4).∴OF=2,PF=4.。
2017-2018学年浙江省温州市八年级(下)期末数学试卷(解析版)

2017-2018学年浙江省温州市八年级(下)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(3分)要使二次根式有意义,则x应满足()A.x≥6B.x>6C.x≤6D.x<62.(3分)下列地铁标志图形中,属于中心对称图形的是()A.B.C.D.3.(3分)在一次中学生田径运动会上,男子跳高项目的成绩统计如下:表中表示成绩的一组数据中,众数和中位数分别是()A.1.55m,1.55m B.1.55m,1.60mC.1.60m,1.65m D.1.60m,1.70m4.(3分)在平面直角坐标系中,点(5,﹣2)关于原点对称的点的坐标是()A.(﹣5,﹣2)B.(﹣2,5)C.(5,2)D.(﹣5,2)5.(3分)若一个多边形的内角和是900°,则这个多边形的边数是()A.5B.6C.7D.86.(3分)若关于x的方程x2+6x+c=0有两个相等的实数根,则常数c的值是()A.6B.9C.24D.367.(3分)如图,O是▱ABCD对角线的交点,AB⊥AC,AB=4,AC=6,则△OAB的周长是()A.17B.13C.12D.108.(3分)如图,在正方形ABCD中,E为AB中点,连结DE,过点D作DF⊥DE交BC 的延长线于点F,连结EF.若AE=1,则EF的值为()A.3B.C.2D.49.(3分)对于反比例函数y=﹣,当﹣1≤x<0时,y的取值范围是()A.y<﹣6B.﹣6≤y<0C.0<y≤6D.y≥610.(3分)如图,△ABO,△A1B1C1,△A2B2C2,…都是正三角形,边长分别为2,22,23,…,且BO,B1C1,B2C2,…都在x轴上,点A,A1,A2,…从左至右依次排列在x轴上方,若点B1是BO中点,点B2是B1C1中点,…,且B为(﹣2,0),则点A6的坐标是()A.(61,32)B.(64,32)C.(125,64)D.(128,64)二、填空题(本题有8小题,每小题3分,共24分)11.(3分)计算=.12.(3分)已知反比例函数y=的图象经过点(﹣1,b),则b的值为.13.(3分)甲、乙两名同学的5次数学成绩情况统计结果如下表:根据上表,甲、乙两人成绩发挥较为稳定的是.(填:甲或乙)14.(3分)用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设.15.(3分)如图,在▱ABCD中,∠A=130°,在边AD上取点E,使DE=DC,则∠ECB 等于度.16.(3分)某企业两年前创办时的资金为1000万元,现在已有资金1210万元,设该企业两年内资金的年平均增长率是x,则根据题意可列出方程:.17.(3分)已知关于x的方程ax2﹣bx﹣c=0(a≠0)的系数满足4a﹣2b﹣c=0,且c﹣a ﹣b=0,则该方程的根是.18.(3分)如图,在平面直角坐标系中,点A为(6,0),点C是第一象限上一点,以OA,OC为邻边作▱OABC,反比例函数y=的图象经过点C和AB的中点D,反比例函数y=图象经过点B,则的值为.三、解答题(本题有6小题,共46分.解答需要写出必要的文字说明、演算步骤或证明过程)19.(8分)(1)计算:(﹣1)0+﹣×(2)解方程:x2﹣2x﹣3=0.20.(6分)如图,在方格纸中,线段AB的两个端点都在小方格的格点上,分别按下列要求画格点四边形.(1)在图甲中画一个以AB为对角线的平行四边形.(2)在图乙中画一个以AB为边的矩形.21.(6分)如图,在▱ABCD中,AB⊥BD,P,O分别为AD,BD的中点,延长PO交BC 于点Q,连结BP,DQ,求证:四边形PBQD是菱形.22.(6分)某校在一次广播操比赛中,甲、乙、丙各班得分如下表:(1)根据三项得分的平均分,从高到低确定三个班级排名顺序.(2)该校规定:服装统一、动作整齐、动作准确三项得分都不得低于80分,并按50%,30%,20%的比例计入总分.根据规定,请你通过计算说明哪一组获得冠军.23.(8分)如图1,有一张长40cm,宽30cm的长方形硬纸片,截去四个小正方形之后,折成如图2所示的无盖纸盒,设无盖纸盒高为xcm.(1)用关于x的代数式分别表示无盖纸盒的长和宽.(2)若纸盒的底面积为600cm2,求纸盒的高.(3)现根据(2)中的纸盒,制作了一个与下底面相同大小的矩形盒盖,并在盒盖上设计了六个总面积为279cm2的矩形图案A﹣F(如图3所示),每个图案的高为ycm,A图案的宽为xcm,之后图案的宽度依次递增1cm,各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距均相等,且不小于0.3cm,求x的取值范围和y的最小值.24.(12分)如图,在△ABC中,∠ACB=90°,∠B=30°,DF是△ABC的中位线,点C 关于DF的对称点为E,以DE,EF为邻边构造矩形DEFG,DG交BC于点H,连结CG.(1)求证:△DCF≌△FGD.(2)若AC=2.①求CG的长.②在△ABC的边上取一点P,在矩形DEFG的边上取一点Q,若以P,Q,C,G为顶点的四边形是平行四边形,求出所有满足条件的平行四边形的面积.(3)在△DEF内取一点O,使四边形AOHD是平行四边形,连结OA,OB,OC,直接写出△OAB,△OBC,△OAC的面积之比.2017-2018学年浙江省温州市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(3分)要使二次根式有意义,则x应满足()A.x≥6B.x>6C.x≤6D.x<6【解答】解:根据题意得:x﹣6≥0,解得x≥6.故选:A.2.(3分)下列地铁标志图形中,属于中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故选项错误;B、不是中心对称图形,故选项错误;C、不是中心对称图形,故选项错误;D、是中心对称图形,故选项正确.故选:D.3.(3分)在一次中学生田径运动会上,男子跳高项目的成绩统计如下:表中表示成绩的一组数据中,众数和中位数分别是()A.1.55m,1.55m B.1.55m,1.60mC.1.60m,1.65m D.1.60m,1.70m【解答】解:出现次数最多的数为1.55m,是众数;21个数按照从小到大的顺序排列,中间一个是1.60m,所以中位数是1.60m.故选:B.4.(3分)在平面直角坐标系中,点(5,﹣2)关于原点对称的点的坐标是()A.(﹣5,﹣2)B.(﹣2,5)C.(5,2)D.(﹣5,2)【解答】解:点(5,﹣2)关于原点对称的点的坐标是(﹣5,2),故选:D.5.(3分)若一个多边形的内角和是900°,则这个多边形的边数是()A.5B.6C.7D.8【解答】解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选:C.6.(3分)若关于x的方程x2+6x+c=0有两个相等的实数根,则常数c的值是()A.6B.9C.24D.36【解答】解:∵方程x2+6x+c=0有两个相等的实数根,∴△=62﹣4×1×c=0,解得:c=9,故选:B.7.(3分)如图,O是▱ABCD对角线的交点,AB⊥AC,AB=4,AC=6,则△OAB的周长是()A.17B.13C.12D.10【解答】解:∵▱ABCD的对角线AC与BD相交于点O,∴AO=CO=3∵AB⊥AC,AB=4,AC=6,∴BO===5.∴△AOB的周长=AB+AO+BO=4+3+5=12,故选:C.8.(3分)如图,在正方形ABCD中,E为AB中点,连结DE,过点D作DF⊥DE交BC 的延长线于点F,连结EF.若AE=1,则EF的值为()A.3B.C.2D.4【解答】解:∵ABCD是正方形∴AB=BC=CD,∠A=∠B=∠DCB=∠ADC=90°∵DF⊥DE∴∠EDC+∠CDF=90°且∠ADE+∠EDC=90°∴∠ADE=∠CDF且AD=CD,∠A=∠DCF=90°∴△ADE≌△CDF∴AE=CF=1∵E是AB中点∴AB=BC=2∴BF=3在Rt△BEF中,EF==故选:B.9.(3分)对于反比例函数y=﹣,当﹣1≤x<0时,y的取值范围是()A.y<﹣6B.﹣6≤y<0C.0<y≤6D.y≥6【解答】解:∵k=﹣6<0,∴在每个象限内y随x的增大而增大,又∵当x=﹣1时,y=6,∴当﹣1≤x<0时,y≥6.故选:D.10.(3分)如图,△ABO,△A1B1C1,△A2B2C2,…都是正三角形,边长分别为2,22,23,…,且BO,B1C1,B2C2,…都在x轴上,点A,A1,A2,…从左至右依次排列在x轴上方,若点B1是BO中点,点B2是B1C1中点,…,且B为(﹣2,0),则点A6的坐标是()A.(61,32)B.(64,32)C.(125,64)D.(128,64)【解答】解:根据题意点A在边长为2的等边三角形顶点,则由图形可知点A坐标为(﹣1,)由于等边三角形△A1B1C1,的顶点A1在BO中点,则点A到A1的水平距离为边长2,则点A1坐标为(1,2)以此类推,点A2坐标为(5,4),点A3坐标为(13,8),各点横坐标从﹣1基础上一次增加2,22,23,…,纵坐标依次是前一个点纵坐标的2倍则点A6的横坐标是:﹣1+2+22+23+24+25+26=125,纵坐标为:26×=64则点A6坐标是(125,64)故选:C.二、填空题(本题有8小题,每小题3分,共24分)11.(3分)计算=2.【解答】解:==2,故答案为:2.12.(3分)已知反比例函数y=的图象经过点(﹣1,b),则b的值为﹣4.【解答】解:把点(﹣1,b)代入y=,得b==﹣4.故答案是:﹣4.13.(3分)甲、乙两名同学的5次数学成绩情况统计结果如下表:根据上表,甲、乙两人成绩发挥较为稳定的是甲.(填:甲或乙)【解答】解:∵S甲2=4,S乙2=16,∴S甲2=4<S乙2=16,∴成绩稳定的是甲,故答案为:甲.14.(3分)用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设三角形的三个内角都小于60°.【解答】解:第一步应假设结论不成立,即三角形的三个内角都小于60°.15.(3分)如图,在▱ABCD中,∠A=130°,在边AD上取点E,使DE=DC,则∠ECB 等于65度.【解答】解:在平行四边形ABCD中,∠A=130°,∴∠BCD=∠A=130°,∠D=180°﹣130°=50°,∵DE=DC,∴∠ECD=×(180°﹣50°)=65°,∴∠ECB=130°﹣65°=65°.故答案为65.16.(3分)某企业两年前创办时的资金为1000万元,现在已有资金1210万元,设该企业两年内资金的年平均增长率是x,则根据题意可列出方程:1000(1+x)2=1210.【解答】解:设该企业两年内资金的年平均增长率是x,则根据题意可列出方程:1000(1+x)2=1210.故答案为:1000(1+x)2=1210.17.(3分)已知关于x的方程ax2﹣bx﹣c=0(a≠0)的系数满足4a﹣2b﹣c=0,且c﹣a ﹣b=0,则该方程的根是﹣1和2.【解答】解:∵ax2﹣bx﹣c=0(a≠0),把x=2代入得:4a﹣2b﹣c=0,即方程的一个解是x=2,把x=﹣1代入得:c﹣a﹣b=0,即方程的一个解是x=﹣1,故答案为:﹣1和2.18.(3分)如图,在平面直角坐标系中,点A为(6,0),点C是第一象限上一点,以OA,OC为邻边作▱OABC,反比例函数y=的图象经过点C和AB的中点D,反比例函数y=图象经过点B,则的值为.【解答】解:如图,过C作CE⊥x轴于E,过D作DF⊥x轴于F,则∠OEC=∠AFD=90°,又∵CO∥AB,∴∠COE=∠DAF,∴△COE∽△DAF,又∵D是AB的中点,AB=CO,∴===,设C(a,b),则OE=a,CE=b,∴AF=a,DF=b,∴D(6+a,b),∵反比例函数y=的图象经过点C和AB的中点D,∴ab=(6+a)×b,解得a=4,∴C(4,b),又∵BC=AO=6,∴B(10,b),∴==,故答案为:.三、解答题(本题有6小题,共46分.解答需要写出必要的文字说明、演算步骤或证明过程)19.(8分)(1)计算:(﹣1)0+﹣×(2)解方程:x2﹣2x﹣3=0.【解答】解:(1)原式=1+2﹣2=2﹣1;(2)x2﹣2x﹣3=0(x﹣3)(x+1)=0,解得:x1=﹣1,x2=3.20.(6分)如图,在方格纸中,线段AB的两个端点都在小方格的格点上,分别按下列要求画格点四边形.(1)在图甲中画一个以AB为对角线的平行四边形.(2)在图乙中画一个以AB为边的矩形.【解答】解:(1)如图甲所示:四边形ACBD是平行四边形;(2)如图乙所示:四边形ABCD是矩形.21.(6分)如图,在▱ABCD中,AB⊥BD,P,O分别为AD,BD的中点,延长PO交BC 于点Q,连结BP,DQ,求证:四边形PBQD是菱形.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC,∴∠ABD=∠BDC,∵AB⊥BD,∴∠ABD=∠BDC=90°,∵AP=PD,BQ=QC,∴PB=PD=AP,DQ=BQ=QC,∴PB=PD=BQ=DQ,∴四边形PBQD是菱形.22.(6分)某校在一次广播操比赛中,甲、乙、丙各班得分如下表:(1)根据三项得分的平均分,从高到低确定三个班级排名顺序.(2)该校规定:服装统一、动作整齐、动作准确三项得分都不得低于80分,并按50%,30%,20%的比例计入总分.根据规定,请你通过计算说明哪一组获得冠军.【解答】解:(1)==84(分)、==85(分)、==83(分),所以从高到低确定三个班级排名顺序为:乙、甲、丙;(2)∵乙班的“动作整齐”分数低于80分,∴乙班首先被淘汰,而=80×50%+84×30%+88×20%=82.8(分)、=86×50%+80×30%+83×20%=83.6(分),∴丙班级获得冠军.23.(8分)如图1,有一张长40cm,宽30cm的长方形硬纸片,截去四个小正方形之后,折成如图2所示的无盖纸盒,设无盖纸盒高为xcm.(1)用关于x的代数式分别表示无盖纸盒的长和宽.(2)若纸盒的底面积为600cm2,求纸盒的高.(3)现根据(2)中的纸盒,制作了一个与下底面相同大小的矩形盒盖,并在盒盖上设计了六个总面积为279cm2的矩形图案A﹣F(如图3所示),每个图案的高为ycm,A图案的宽为xcm,之后图案的宽度依次递增1cm,各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距均相等,且不小于0.3cm,求x的取值范围和y的最小值.【解答】解:(1)根据题意得:长=(40﹣2x)cm,宽=(30﹣2x)cm,(2)根据题意得:(40﹣2x)(30﹣2x)=600整理得:(x﹣5)(x﹣30)=0解得:x1=30(舍去),x2=5,纸盒的高为5cm,(3)设各图案的间距、A图案与左边沿的间距、F图案与右边沿的间距为m,x+(x+1)+(x+2)+(x+3)+(x+4)+(x+5)+7m=40﹣2×5,m=≥0.3,解得:x≤2.15,根据题意得:y[x+(x+1)+(x+2)+(x+3)+(x+4)+(x+5)]=279,y=,y随着x的增大而减小,当取到最大值时,y取到最小值,即当x=2.15时,y最小=10,x的取值范围为:x≤2.15,y的最小值为10.24.(12分)如图,在△ABC中,∠ACB=90°,∠B=30°,DF是△ABC的中位线,点C 关于DF的对称点为E,以DE,EF为邻边构造矩形DEFG,DG交BC于点H,连结CG.(1)求证:△DCF≌△FGD.(2)若AC=2.①求CG的长.②在△ABC的边上取一点P,在矩形DEFG的边上取一点Q,若以P,Q,C,G为顶点的四边形是平行四边形,求出所有满足条件的平行四边形的面积.(3)在△DEF内取一点O,使四边形AOHD是平行四边形,连结OA,OB,OC,直接写出△OAB,△OBC,△OAC的面积之比.【解答】解:(1)如图1中,∵四边形DEFG是矩形,∴DE=FG,∠DGF=90°,由翻折不变性可知:CD=DE,∠DCF=∠DEF=90°,∴∠DCF=∠FGD=90°,CD=GF,∵DF=FD,∴Rt△CDF≌Rt△GFD,(2)①如图1中,∵Rt△CDF≌Rt△GFD,∴CF=DG,∠CFD=∠GDF,∴HD=HF,∴HC=HG,∴∠HCG=∠HGC,∠HDF=∠HFD,∵∠CHG=∠DHF,∴∠CGH=∠HDF,∴CG∥DF,∵CD=DA,CF=FB,∴DF∥AB,∵∠CFD=∠B=30°,∴∠HDF=∠CDH=∠CGD=30°,∴CG=CD=AC=1.②如图2中,当点P与A重合,点Q与E重合时,四边形PQGC是平行四边形,此时S=1×=如图3中,当四边形QPGC是平行四边形时,S=1×=.如图4中,当四边形PQCG是平行四边形时,作FM⊥PQ于M,CE交DF于N.易知FM=,CN=,∴S=1×(+)=如图4﹣1中,当四边形PQCG是平行四边形时,S=×1=,综上所述,满足条件的平行四边形的面积为或或.(3)如图5中,连接OD、OE、OB、OC.∵四边形AOHD是平行四边形,∴OH=AD=CD,OH∥CD,∴四边形CDOH是平行四边形,∵∠DCH=90°,∴四边形CDOH是矩形,∴∠ODC=90°,∵△AOD≌△AOE,∴∠OEA=∠ADO=90°,∵AC=2,∠B=30°,∴AB=4,BC=2,OH=CD=1,OD=OE=,∴S△OAB:S△OBC:S△OAC=×:××1:×2×=2:3:1.。
2017-2018学年浙教版八年级数学下册期末测试卷及答案

2017-2018学年度八年级下学期数学期末试卷姓名 班级 学号 成绩一、选择题(本小题共12小题,每小题3分,共36分)下列各题给出的四个选项中,只有一个是正确的,请将正确答案填写在括号中。
1、如果分式x11有意义,那么x 的取值范围是( ) A 、x >1 B 、x <1 C 、x ≠1 D 、x =12. 命题“两点之间线段最短”是( )A.角的定义B.假命题C.公理D.定理 3、一直角三角形两边分别为3和5,则第三边为( ) A 、4 B 、34 C 、4或34 D 、2 4、用两个全等的等边三角形,可以拼成下列哪种图形( ) A 、矩形 B 、菱形 C 、正方形 D 、等腰梯形 5. 若一个多边形的内角和等于720度,则这个多边形的边数是( ) A.5 B.6 C.7 D.86、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考( )A 、众数B 、平均数C 、加权平均数D 、中位数7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为( ) A 、120cm B 、360cm C 、60cm D 、320cm第7题图 第8题图 第9题图8、如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为( ) A 、16 B 、14 C 、12 D 、109、如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC 的大小为( )A 、100B 、150C 、200D 、300 10、下列命题正确的是( )A 、同一边上两个角相等的梯形是等腰梯形;B 、一组对边平行,一组对边相等的四边形是平行四边形;C 、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。
2017-2018年第二学期八年级数学期末试卷(参考答案)

∴ BC AC 2 AB 2 32 42 5 ……8 分
作 AH⊥BC
则 1 BC AH 1 AC AB
2
2
∴5AH=3×4
八年级数学 第 3 页(共 8 页)
∴AH= 12 ……9 分 5
∴ S菱形ADCF
DC AH
5 12 25
6
答:菱形 ADCF 的面积是 6.……10 分
∴点 D’在直线 y=x-3 上运动,当 OD’⊥直线 y=x-3 时,OD’最小,此时∆OBD’是等腰直
角三角形,……9 分
作 D’H⊥x 轴,垂足为 H,则 OH=HD’=HB= 3 ……10 分 2
∴4-m= 3 , m 5 ……11 分
2
2
∴D 点坐标( 5 , 1 )……12 分 22
∵四边形 ABCD 是正方形,
∴∠ABK=∠ABC=∠ADC=∠BAD=90°,AB=AD
在∆AKB 和∆AFD 中
BE
C
图2
AB AD ABK ADF KB DF
∴∆AKB≌∆AFD……1 分 ∴AK=AF,∠KAB=∠FAD ∵2∠EAF=∠ADC=90° ∴∠EAF=45° ∴∠BAK+∠BAE=∠DAF+∠BAE=45° 即∠KAE=∠FAE 在∆AKE 和∆AFE 中
说明:此题可用平行线等积变换,即△ABF 的面积与△ACF 的面积相等,或连接 DF 等。
五.解答题(本题共 3 小题,其中 24 题 11 分,25、26 题各 12 分,共 35 分)
24.(1)1,16;……2 分
(2)∵四边形 ABCD 是正方形
D
C
∴AB=AD,∠ADB=∠ABD=45°
_浙江省温州市瑞安市2018-2019学年八年级下学期数学期末考试试卷(含答案解析)

…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………浙江省温州市瑞安市2018-2019学年八年级下学期数学期末考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 五 六 总分 核分人 得分注意事项:1、填写答题卡的内容用2B 铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共10题)1. 若一个多边形的内角和为360°,则这个多边形的边数是( ) A . 3 B . 4 C . 5 D . 62. 欧几里得是古希腊数学家,所著的《几何原本》闻名于世.在《几何原本》中,形如x 2+ax =b 2的方程的图解法是:如图,以和b 为直角边作Rt △ABC ,再在斜边上截取BD =,则图中哪条线段的长是方程x 2+ax =b 2的解?答:是( )A . ACB . ADC . ABD . BC3. 下列各点中,在函数的图象上的点是( )A . (3,4)B . (﹣2,﹣6)C . (﹣2,6)D . (﹣3,﹣4)答案第2页,总21页…○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…○…………内…………○…………装…………○…………订…………○…………线…………○…………4. 二次根式在实数范围内有意义,则x 应满足的条件是( )A . x≥1B . x >1C . x >﹣1D . x≥﹣15. 下列选项中,计算正确的是( ) A .+=B .÷=2 C . 5﹣5=D . 3-2=16. 小红连续6次掷骰子得到的点数分别是5、4、4、2、1、6.则这组数据的众数是( )A . 5B . 4C . 2D . 67. 下列四个手机应用图标中,属于中心对称图形的是( )A .B .C .D .8. 下列选项,可以用来证明命题“若a 2>b 2 , 则a >b”是假命题的反例是( ) A . a =3,b =﹣2 B . a =2,b =1 C . a =﹣3,b =2 D . a =﹣2,b =39. 用配方法将方程x 2+4x ﹣4=0化成(x+m )2=n 的形式,则m ,n 的值是( ) A . ﹣2,0 B . 2,0 C . ﹣2,8 D . 2,810. 如图,将矩形ABCD 的四个角向内折叠铺平,恰好拼成一个无缝隙无重叠的矩形EFGH ,若EH =5,EF =12,则矩形ABCD 的面积是( )…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………A . 13B .C . 60D . 120第Ⅱ卷 主观题第Ⅱ卷的注释评卷人 得分一、填空题(共6题)1. 化简: = .2. 已知一组数据1,4,a ,3,5,若它的平均数是3,则这组数据的中位数是 .3. 写出一个二次项系数为1,解为1与﹣3的一元二次方程: .4. 如图,矩形ABCD 中,对角线AC 与BD 相交于点O ,AB =3,BC =4,则△AOB 的周长为 .5. 如图,菱形ABCD 中,DE ⊥AB ,垂足为点E ,连接CE .若AE =2,∠DCE =30°,则菱形的边长为 .6. 如图,反比例函数y = (x >0)的图象经过矩形OABC 对角线的交点M ,分别交AB 、BC 于点D 、E ,连结DE .若四边形ODBE 的面积为9,则△ODE 的面积是 .答案第4页,总21页…○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…○…………内…………○…………装…………○…………订…………○…………线…………○…………评卷人得分二、计算题(共1题)7. 解下列方程:(1)x 2﹣3x =0.(2)(x ﹣3)(x ﹣1)=8. 评卷人得分三、解答题(共1题)8. 在▱ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 在AC 上且AE =CF ,证明:DE =BF .评卷人得分四、作图题(共1题)9. 如图,图1、图2是两张大小完全相同的6×6方格纸,每个小方格的顶点叫做格点,以格点为顶点的多边形叫做格点多边形.网格中有一个边长为2的格点正方形,按下列要求画出拼图后的格点平行四边形(用阴影表示)(1)把图1中的格点正方形分割成两部分,再通过图形变换拼成一个平行四边形,在图1中画出这个格点平行四边形;…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………(2)把图2中的格点正方形分割成三部分,再通过图形变换拼成一个平行四边形,在图2中画出这个格点平行四边形. 评卷人 得分五、综合题(共4题)10. 某校要从小红、小明和小亮三名同学中挑选一名同学参加数学素养大赛,在最近的四次专题测试中,他们三人的成绩如下表所示:学生 专题 集合证明 P ISA 问题 应用题 动点问题 小红 70 75 80 85 小明 80 80 72 76 小亮 7575 90 65(1)请算出小红的平均分为多少?(2)该校根据四次专题考试成绩的重要程度不同而赋予每个专题成绩一个权重,权重比依次为x :1:2:1,最后得出三人的成绩(加权平均数),若从高分到低分排序为小亮、小明、小红,求正整数x 的值. 11. 如图,在△ABC 中,CA =CB =5,AB =6,AB ⊥y 轴,垂足为A .反比例函数y = (x >0)的图象经过点C ,交AB 于点D .(1)若OA =8,求k 的值;(2)若CB =BD ,求点C 的坐标.12. 某花圃用花盆培育某种花苗,经过试验发现,每盆花的盈利与每盆株数构成一定的关系.每盆植入3株时,平均每株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年浙江省温州市瑞安市八年级(下)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)化简4的结果是( )A .2B .2-C .4D .16 2.(3分)一组数据3,5,4,7,10的中位数是( )A .4B .5C .6D .73.(3分)一个多边形的内角和是360︒,则这个多边形的边数为( )A .6B .5C .4D .34.(3分)剪纸艺术是中国传统的民间工艺.下列剪纸的图案中,属于中心对称图形的是( )A .B .C .D .5.(3分)已知点(2,3)-在反比例函数(0)k y k x=≠的图象上,则下列点也在该函数图象上的是( )A .(1,5)B .(1,5)-C .(3,2)D .(2,3)-6.(3分)用配方法解方程2610x x +-=时,配方变形结果正确的是( )A .2(3)8x +=B .2(3)8x -=C .2(3)10x +=D .2(3)10x -=7.(3分)关于x 的一元二次方程2210x x m -+-=有两个相等的实数根,则m 的值( )A .2B .3C .1-D .528.(3分)如图,平行四边形ABCD 中,增加下列选项中的一个条件,不一定能判定它是矩形的是( )A .90ABC ∠=︒B .AC BD ⊥ C .AC BD = D .OBA OAB ∠=∠9.(3分)如图,正方形ABCD 的一边AB 为边向下作等边三角形ABE ,则CDE ∠的度数是( )A .30︒B .25︒C .20︒D .15︒10.(3分)如图,点A ,B ,C 三点在x 轴的正半轴上,且OA AB BC ==,过点A ,B ,C 分别作x 轴的垂线交反比例函数(0)k y k x=>的图象于点D ,E ,F ,连结OD ,AE ,BF ,则::OAD ABE BCF S S S ∆∆∆为( )A .12:7:4B .3:2:1C .6:3:2D .12:5:4二、填空题(本题有6小题,每小题3分,共18分)11.(33x -中字母x 的取值范围是 .12.(3分)在某次射击训练中,教练员统计了甲、乙两位运动员10次射击成绩,两人的平均成绩都是8.8环,且方差分别是1.8环2,1.3环2,则射击成绩较稳定的运动员是 (填“甲”或“乙” ).13.(3分)已知一个一元二次方程,它的二次项系数为1,两根分别是2和3,则这个方程是 .14.(3分)如图,平行四边形ABCD的周长为20cm,对角线交于点O,点E是边AB的中点,已知6=,则OE=cm.AB cm15.(3分)如图,在矩形ABCD中,6BC=,点E,F分别在边AD,BC上,AB=,10以线段EF为折痕,将矩形ABCD折叠,使其点C与点A恰好重合并铺平,则线段GE=.16.(3分)如图1,在菱形ABCD中,60∠的∠=︒,点E在AB的延长线上,在CBEBAD角平分线上取一点F(含端点)B,连结AF并过点C作AF所在直线的垂线,垂足为G.设线段AF的长为x,CG的长为y,y关于x的函数图象及有关数据如图2所示,点Q为图象的端点,则3y=时,x=,BF=.三、解答题(本题有7小题,共52分)17.(6分)请用合适的方法解下列一元二次方程:(1)240x-=;(2)2230x x+-=.18.(6分)如图,在ABC∆中,点E,F分别为边AB,AC的中点,延长EF到点G使FG EF=.求证:四边形EGCB是平行四边形.19.(6分)顶点都在格点上的多边形叫做格点多边形.以下67⨯的网格中,小正方形的边长为1.请按以下要求,画出一个格点多边形(要标注其它两个顶点字母).(1)在图甲中,画一个以AB 为一边且面积为15的格点平行四边形;(2)在图乙中,画一个以AB 为一边的格点矩形.20.(6分)在“国学经典”主题比赛活动中,甲、乙、丙三位同学的三项比赛成绩如下表(单位:分).国学知识 现场写作 经典诵读 甲86 70 90 乙86 80 90 丙 86 85 90(1)若“国学知识”、“现场写作”“经典诵读”分别按30%,20%,50%的比例计入该同学的比赛得分,请分别计算甲、乙两位同学的得分;(2)若甲同学的得分是80分,乙同学的得分是84分,则丙同学的得分是 分.21.(8分)如图,在直角坐标系中,点O 为坐标原点,点B ,A 分别在x 轴,y 轴的正半轴上,矩形AOBC 的边4AO =,3BO =,反比例函数(0)k y k x=>的图象经过边AC 的中点D .(1)求该反比例函数的表达式;(2)求ODE ∆的面积.22.(8分)瑞安市文化创意实践学校是一所负责全市中小学生素质教育综合实践活动的公益类事业单位,学校目前可开出:创意手工、创意表演、科技制作(创客)、文化传承、户外拓展等5个类别20多个项目课程.(1)学校3月份接待学生1000人,5月份增长到2560人,求该学校接待学生人数的平均月增长率是多少?(2)在参加“创意手工”体验课程后,小明发动本校同学将制作的作品义卖募捐.当作品卖出的单价是2元时,每天义卖的数量是150件;当作品的单价每涨高1元时,每天义卖的数量将减少10件.问:在作品单价尽可能便宜的前提下,当单价定为多少元时,义卖所得的金额为600元?23.(12分)如图,在正方形ABCD中,10=,点E是边AD上的动点(含端点A,)D,BC cm连结CE,以CE所在直线为对称轴作点D的对称点P,连结AP、BP、CP、EP,点F、G、H分别是线段CP、BP、BC的中点,连结FG,GH.(1)求证:四边形CFGH是菱形;(2)若四边形CFGH的面积为220cm,求DE的长;(3)以ABP∆其中两边为邻边构造平行四边形,当所构造的平行四边形恰好是菱形时,这时该菱形的面积是.2017-2018学年浙江省温州市瑞安市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3的结果是()A.2B.2-C.4D.16【分析】直接根据算术平方根的定义化简即可得到结果.【解答】2=,故选:A.【点评】此题考查了算术平方根,比较简单,熟练掌握算术平方根的定义是解本题的关键.2.(3分)一组数据3,5,4,7,10的中位数是()A.4B.5C.6D.7【分析】先将题目中的数据按照从小到大排列,然后即可得到该组数据的中位数.【解答】解:将数据3,5,4,7,10按照从小到大排列是:3,4,5,7,10,故这组数的中位数是5,故选:B.【点评】本题考查中位数,解答本题的关键是明确中位数的含义,会求一组数据的中位数.3.(3分)一个多边形的内角和是360︒,则这个多边形的边数为()A.6B.5C.4D.3【分析】n边形的内角和是(2)180n-︒,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式,得(2)180360n-=,解得4n=.故这个多边形的边数为4.故选:C.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.4.(3分)剪纸艺术是中国传统的民间工艺.下列剪纸的图案中,属于中心对称图形的是( )A .B .C .D .【分析】根据中心对称图形定义:把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【解答】解:A 、不是中心对称图形,故此选项不合题意;B 、不是中心对称图形,故此选项不合题意C 、不是中心对称图形,故此选项不合题意;D 、是中心对称图形,故此选项符合题意;故选:D .【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形定义.5.(3分)已知点(2,3)-在反比例函数(0)k y k x=≠的图象上,则下列点也在该函数图象上的是( )A .(1,5)B .(1,5)-C .(3,2)D .(2,3)-【分析】将(2,3)-代入(0)k y k x=≠即可求出k 的值,再根据k xy =解答即可. 【解答】解:点(2,3)-在反比例函数(0)k y k x=≠的图象上, 2(3)6k ∴=⨯-=-,四个选项中只有D 符合.故选:D .【点评】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.6.(3分)用配方法解方程2610x x +-=时,配方变形结果正确的是( )A .2(3)8x +=B .2(3)8x -=C .2(3)10x +=D .2(3)10x -=【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.【解答】解:2610x x +-=,261x x ∴+=, 则26919x x ++=+,即2(3)10x +=,故选:C .【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.7.(3分)关于x 的一元二次方程2210x x m -+-=有两个相等的实数根,则m 的值( )A .2B .3C .1-D .52【分析】由于关于x 的一元二次方程2210x x m -+-=有两个相等的实数根,可知其判别式为0,据此列出关于m 的不等式,解答即可.【解答】解:关于x 的一元二次方程2210x x m -+-=有两个相等的实数根,∴△22424(1)0b ac m =-=--=,解得2m =.故选:A .【点评】本题考查了根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.8.(3分)如图,平行四边形ABCD 中,增加下列选项中的一个条件,不一定能判定它是矩形的是( )A .90ABC ∠=︒B .AC BD ⊥ C .AC BD = D .OBA OAB ∠=∠【分析】根据矩形的判定和菱形的判定分别对各个选项进行判断即可.【解答】解:四边形ABCD 是平行四边形,OA OC ∴=,OB OD =,A、90ABC∠=︒时,平行四边形ABCD是矩形;故选项A不符合题意;B、AC BD⊥时,平行四边形ABCD是菱形;故选项B符合题意;C、AC BD=时,平行四边形ABCD是矩形;故选项C不符合题意;D、OBA OAB∠=∠时,OA OB=,AC BD∴=,∴平行四边形ABCD是矩形;故选项D不符合题意;故选:B.【点评】此题主要考查了矩形的判定、菱形的判定以及平行四边形的性质,正确掌握矩形的判定方法是解题的关键.9.(3分)如图,正方形ABCD的一边AB为边向下作等边三角形ABE,则CDE∠的度数是()A.30︒B.25︒C.20︒D.15︒【分析】根据正方形的性质和等边三角形的性质,可以得到EAD∠的度数,再根据等腰三角形的性质,可以得到ADE∠的度数,然后即可求得CDE∠的度数,本题得以解决.【解答】解:四边形ABCD为正方形,ABE∆为等边三角形,60BAE∴∠=︒,90BAD ADC∠=∠=︒,AB AE AD==,30EAD∴∠=︒,AD AB AE==,AED ADE∴∠=∠,∴18030752ADE︒-︒∠==︒,9015 CDE ADE∴∠=︒-∠=︒.故选:D.【点评】本题考查正方形的性质、等边三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.10.(3分)如图,点A,B,C三点在x轴的正半轴上,且OA AB BC==,过点A,B,C 分别作x 轴的垂线交反比例函数(0)k y k x=>的图象于点D ,E ,F ,连结OD ,AE ,BF ,则::OAD ABE BCF S S S ∆∆∆为( )A .12:7:4B .3:2:1C .6:3:2D .12:5:4【分析】设OA AB BC a ===,求出点A 、E 、F 的坐标,利用面积公式即可求解.【解答】解:设OA AB BC a ===,∴(,)k D a a ,(2,)2k E a a ,(3,)3k F a a . ∴111222AOD k S OA AD a k a ∆===, ∴1112224ABE k S AB BE a k a ∆===, ∴1112236BCF k S BC CF a k a ∆===. ::6:3:2AOD ABE BCF S S S ∆∆∆∴=.故选:C .【点评】本题考查了反比例函数的图象与性质.解题关键在于OA AB BC ==,即::1:2:3OA OB OC =,因此可以得到D ,E ,F 坐标的关系.二、填空题(本题有6小题,每小题3分,共18分) 11.(33x -中字母x 的取值范围是 3x .【分析】由二次根式有意义的条件得出不等式,解不等式即可.【解答】解:当30x -3x -有意义,则3x ;故答案为:3x .【点评】本题考查了二次根式有意义的条件、不等式的解法;熟记二次根式有意义的条件是解决问题的关键.12.(3分)在某次射击训练中,教练员统计了甲、乙两位运动员10次射击成绩,两人的平均成绩都是8.8环,且方差分别是1.8环2,1.3环2,则射击成绩较稳定的运动员是 乙 (填“甲”或“乙” ).【分析】根据方差的定义,方差越小数据越稳定即可求解.【解答】解:21.8S =甲,2 1.3S =乙,1.3 1.8<, ∴射击成绩较稳定的运动员是乙,故答案为:乙.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.(3分)已知一个一元二次方程,它的二次项系数为1,两根分别是2和3,则这个方程是 2560x x -+= .【分析】首先设此一元二次方程为20x px q ++=,由二次项系数为1,两根分别为2,3,根据根与系数的关系可得(23)5p =-+=-,236q =⨯=,继而求得答案. 【解答】解:设此一元二次方程为20x px q ++=, 二次项系数为1,两根分别为2,3, (23)5p ∴=-+=-,236q =⨯=,∴这个方程为:2560x x -+=.故答案为:2560x x -+=.【点评】此题考查了根与系数的关系.此题难度不大,注意若二次项系数为1,1x ,2x 是方程20x px q ++=的两根时,12x x p +=-,12x x q =,反过来可得12()p x x =-+,12q x x =. 14.(3分)如图,平行四边形ABCD 的周长为20cm ,对角线交于点O ,点E 是边AB 的中点,已知6AB cm =,则OE = 2 cm .【分析】根据平行四边形的性质可得OA OC =,再由E 为BC 边中点可得EO 是ABC ∆的中位线,利用三角形中位线定理可得答案.【解答】解:()220ABCD C AD AB =+=平行四边形,6AB =,4AD ∴=, E 为AB 的中点,四边形ABCD 是平行四边形, AO CO ∴=,OE ∴为ABD ∆的中位线, 122OE AD ∴==. 故答案为:2.【点评】此题主要考查了平行四边形的性质和三角形中位线定理,关键是掌握平行四边形的对角线互相平分.15.(3分)如图,在矩形ABCD 中,6AB =,10BC =,点E ,F 分别在边AD ,BC 上,以线段EF 为折痕,将矩形ABCD 折叠,使其点C 与点A 恰好重合并铺平,则线段GE = 3.2 .【分析】依据折叠即可得到GE DE =,6AG CD ==.设GE DE x ==,则10AE x =-.在Rt AGE ∆中,利用勾股定理即可得到GE 的长.【解答】解:由折叠可得,GE DE =,6AG CD ==. 设GE DE x ==,则10AE x =-. 在Rt AGE ∆中,222AG GE AE +=,2226(10)x x ∴+=-, 解得 3.2x =, 3.2GE ∴=,故答案为:3.2.【点评】本题主要考查了折叠问题,我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.16.(3分)如图1,在菱形ABCD 中,60BAD ∠=︒,点E 在AB 的延长线上,在CBE ∠的角平分线上取一点F (含端点)B ,连结AF 并过点C 作AF 所在直线的垂线,垂足为G .设线段AF 的长为x ,CG 的长为y ,y 关于x 的函数图象及有关数据如图2所示,点Q 为图象的端点,则3y =时,x = 8 ,BF = .【分析】证明四边形ABCD 为菱形,60BAD ∠=︒,则CG AE ⊥,则323BCCG ==,即83y =,当3y =时,8x =,即8AF =;在Rt AFH ∆中,利用222AF AH FH =+,即可求解.【解答】解:Q 为图象端点, Q ∴与B 重合,4AB ∴=.四边形ABCD 为菱形,60BAD ∠=︒, 60CBE ∴∠=︒,此时CG AE ⊥,∴323BC CG ==,即83y =. 当3y =时,8x =,即8AF =; 过点F 作FH AE ⊥于H .设BF m =.1302FBE EBC ∠=∠=︒,∴12FH m =,3BH .在Rt AFH ∆中,222AF AH FH =+,即22164(4)()2m =+,∴m =即BF =故答案为8,【点评】本题考查的是动点图象问题,涉及到勾股定理的运用、菱形的性质、解直角三角形等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解. 三、解答题(本题有7小题,共52分)17.(6分)请用合适的方法解下列一元二次方程: (1)240x -=; (2)2230x x +-=.【分析】(1)利用直接开平方法求解可得; (2)利用因式分解法求解可得. 【解答】解:(1)240x -=,24x ∴=,解得:12x =,22x =-. (2)2230x x +-=,(3)(1)0x x ∴+-=,则30x +=或10x -=, 解得11x =,23x =-.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.18.(6分)如图,在ABC ∆中,点E ,F 分别为边AB ,AC 的中点,延长EF 到点G 使FG EF =.求证:四边形EGCB 是平行四边形.【分析】由三角形中位线定理得//EF BC ,12EF BC =,证出EG BC =,即可得出结论. 【解答】证明:E ,F 分别为AB ,AC 的中点,EF ∴是ABC ∆的中位线,//EF BC ∴,12EF BC =, EF FG =, EG BC ∴=.∴四边形EGCB 是平行四边形.【点评】此题主要考查了平行四边形的判定、三角形中位线定理;熟练掌握平行四边形的判定和三角形中位线定理是解题的关键.19.(6分)顶点都在格点上的多边形叫做格点多边形.以下67⨯的网格中,小正方形的边长为1.请按以下要求,画出一个格点多边形(要标注其它两个顶点字母).(1)在图甲中,画一个以AB 为一边且面积为15的格点平行四边形; (2)在图乙中,画一个以AB 为一边的格点矩形.【分析】(1)利用数形结合的思想画出底为5,高为3的平行四边形即可. (2)利用数形结合的思想画出矩形即可.【解答】解:(1)如图1中,四边形ABCD 即为所求.(2)如图2中,矩形ABCD 即为所求.【点评】本题考查作图-应用与设计,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.20.(6分)在“国学经典”主题比赛活动中,甲、乙、丙三位同学的三项比赛成绩如下表(单位:分).国学知识现场写作经典诵读甲867090乙868090丙868590(1)若“国学知识”、“现场写作”“经典诵读”分别按30%,20%,50%的比例计入该同学的比赛得分,请分别计算甲、乙两位同学的得分;(2)若甲同学的得分是80分,乙同学的得分是84分,则丙同学的得分是86分.【分析】(1)根据加权平均数的定义列式计算可得;(2)先根据乙比甲多得4分得出现场写作的占比为40%,结合丙的现场写作比乙多5分列式求解可得.【解答】解:(1)甲:8630%7020%9050%84.8⨯+⨯+⨯=(分);乙:8630%8020%9050%86.8⨯+⨯+⨯=(分).(2)86,理由如下:甲得分80分,乙得分84分,∴乙比甲多得4分,∴现场写作的占比为440%8070=-,丙的现场写作比乙多5分,∴丙的得分为84540%86+⨯=(分).故答案为:86.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.21.(8分)如图,在直角坐标系中,点O 为坐标原点,点B ,A 分别在x 轴,y 轴的正半轴上,矩形AOBC 的边4AO =,3BO =,反比例函数(0)ky k x=>的图象经过边AC 的中点D .(1)求该反比例函数的表达式; (2)求ODE ∆的面积.【分析】(1)首先根据题意求出C 点的坐标,然后根据中点坐标公式求出D 点坐标,代入反比例函数ky x=中可得k 的值; (2)先确定点E 的坐标,根据面积差可得结论. 【解答】解:(1)4AO =,3OB =,(3,4)C ∴.D 为AC 的中点,∴3(,4)2D .将3(2D ,4)代入k y x =可得3462k =⨯=,∴6y x=. (2)将3x =代入6y x=得2y =, (3,2)E ∴.()1113393466426222222ODE AOD BOE DCE AOBC S S S S S ∆∆∆∆∴=---=⨯-⨯-⨯-⨯⨯-=-=矩形.【点评】本题主要考查反比例函数的解析式,矩形的性质,解答本题的关键是熟练掌握反比例函数的性质,属于基础题,此题难度不大.22.(8分)瑞安市文化创意实践学校是一所负责全市中小学生素质教育综合实践活动的公益类事业单位,学校目前可开出:创意手工、创意表演、科技制作(创客)、文化传承、户外拓展等5个类别20多个项目课程.(1)学校3月份接待学生1000人,5月份增长到2560人,求该学校接待学生人数的平均月增长率是多少?(2)在参加“创意手工”体验课程后,小明发动本校同学将制作的作品义卖募捐.当作品卖出的单价是2元时,每天义卖的数量是150件;当作品的单价每涨高1元时,每天义卖的数量将减少10件.问:在作品单价尽可能便宜的前提下,当单价定为多少元时,义卖所得的金额为600元?【分析】(1)设平均月增长率为x ,则根据题意列出一元二次方程,则可得出答案; (2)设定价为m 元,此时可卖出(17010)m -件,由题意列出方程解答即可. 【解答】解:(1)设平均月增长率为x ,则根据题意得:21000(1)2560x +=,解得10.6x =,2 2.6x =-(舍),∴该学校接待学生人数的增长率为60%.答:该学校接待学生人数的平均月增长率是60%;(2)设定价为m 元,此时可卖出15010(2)(17010)m m --=-件, (17010)600m m ∴-=,解得15m =,212m =. 作品单价要尽可能便宜,∴单价定为5元.答:单价定为5元时,义卖所得的金额为600元.【点评】本题考查了一元二次方程的应用,关键在于明确数量与每件利润的表示方法. 23.(12分)如图,在正方形ABCD 中,10BC cm =,点E 是边AD 上的动点(含端点A ,)D ,连结CE ,以CE 所在直线为对称轴作点D 的对称点P ,连结AP 、BP 、CP 、EP ,点F 、G 、H 分别是线段CP 、BP 、BC 的中点,连结FG ,GH .(1)求证:四边形CFGH 是菱形;(2)若四边形CFGH 的面积为220cm ,求DE 的长;(3)以ABP ∆其中两边为邻边构造平行四边形,当所构造的平行四边形恰好是菱形时,这时该菱形的面积是 2100cm 或250cm 或2(100cm - .【分析】(1)证得四边形CFGH 为平行四边形.由轴对称的性质得出CD CP BC ==,则可得出结论;(2)过点F 作FM BC ⊥于点M ,过点P 作PN BC ⊥于点N ,PQ AD ⊥于点Q ,求出4FM cm =,4AQ cm =.设DE PE x ==,则(6)QE x cm =-.由勾股定理得出方程2222(6)x x =+-,则可得出答案;(3)如图2,过点P 作AB 的垂线,分别交AB ,CD 于点K ,L .分三种情况,由等边三角形的性质及菱形的面积公式可求出答案. 【解答】(1)证明:F ,G ,H 分别为PC ,BP ,BC 的中点,//GF BC ∴,12GF BC =, GF HC ∴=,//GF HC .∴四边形CFGH 为平行四边形.D 与P 关于CE 对称,CD CP BC ∴==, CF CH ∴=,∴四边形CFGH 为菱形.(2)解:如图1.过点F 作FM BC ⊥于点M ,过点P 作PN BC ⊥于点N ,PQ AD ⊥于点Q ,520CFGH S CH FM FM =⋅==四边形, 4FM cm ∴=.F 为CP 的中点,28PN FM cm ∴==,2PQ QN PN cm ∴=-=. 5CF cm =,4FM cm =, 3CM cm ∴=, 26CN CM cm ∴==. 4BN cm ∴=,4AQ cm ∴=.设DE PE x ==, (6)QE x cm ∴=-.在Rt PQE ∆中,222PE PQ QE =+, 即2222(6)x x =+-, 解得103x =, 103DE cm ∴=. (3)解:如图2,过点P 作AB 的垂线,分别交AB ,CD 于点K ,L .当AB AP =时,点P 在点D 处,此时212210101002ABP S S cm ∆==⨯⨯⨯=菱形;当AB BP =时,此时BPC ∆是正三角形, 9030ABP PBC ∴∠=︒-∠=︒,2112221055022ABP S S AB PK cm ∆∴==⨯⋅=⨯⨯⨯=菱形;当AP BP =时,此时PCD ∆是正三角形, 则53PL cm =,2(1053)PK cm =-,((21122210105310050322ABP S S AB PK cm ∆∴==⨯⋅=⨯⨯⨯-=-菱形.综上所述,菱形的面积为2100cm或250cm或2(100cm-.故答案为:2100cm或250cm或2(100cm-.【点评】本题是四边形综合题,考查了平行四边形的性质和判定,菱形的判定与性质,勾股定理,等边三角形的性质和判定,菱形的面积等知识,熟练掌握菱形的判定与性质是解题的关键.第1页(共1页)。