塑胶齿轮设计要点
塑胶齿轮模具设计要点

CXSON
谷崧塑膠零件模具廠
齒輪模具設計及重點
圖其 齒 所定 輪 示位 模
极具 其的 重模 要仁 必通 須常 采采 用用 防的 呆是 功圓 能形 如的
CXSON
பைடு நூலகம்
谷崧塑膠零件模具廠
齒輪模具設計及重點
澆齒 口輪
模 3點 通 如常 左是 圖 所 3板 示模 組並 立且 圖是
直 接 點
CXSON
谷崧塑膠零件模具廠
3.齒輪的外徑和厚度(外徑齒厚越大的其齒合精度越難達到)
4.齒輪的常見結構(分為一層,二層,三層….和孔徑的形狀結構)成形齒盡 可以在同一側(公模側)
5.齒輪的進膠須完全平衡一般采用3點進膠并且不可靠齒形部位太近
一般偏靠中心﹐3點進膠須看短射料頭是否平衡﹐(會影響齒的嚙合)
6.齒輪模具的模仁必須標注几何公差精度在0.005~0.01(特別是同心度)
CXSON
谷崧塑膠零件模具廠
齒輪模具設計及重點
左圖是齒輪模 的母模仁依圖 所示其注入口 是3點進膠是3 等分是最佳的 設計方式其注 入口的大小通 常在0.7~1.2之 間
CXSON
谷崧塑膠零件模具廠
齒輪模具設計及重點
此類似的 齒輪設計 不可如雙 齒一半在 母模一半 在公模如 此其精度 保證困難 設計盡可 以在同一 側
CXSON
谷崧塑膠零件模具廠
齒輪模具設計及重點
齒輪模母模 平面組立圖 料道板﹐流 道形狀排位
CXSON
谷崧塑膠零件模具廠
齒輪模具設計及重點
左圖所示是常用 的齒套依圖所示 排氯位置大小﹐
左圖所示是常用 的齒套依圖所示 標注齒套重點寸 法﹐以及定位畫 法
左圖所示是常用 的齒套線割齒形 的參數此參數是 已加縮水(每一項 參數都要加縮水)
塑料齿轮设计(公司设计手册)

啮合率
虽说刘易斯公式是在假定所有的法向负荷都施加在一个齿尖上的基础上来加
速齿根强度的,但实际上啮合的轮齿不止一个。压力角为20°的标准齿正齿
轮的啮合率在1和2之间,如齿数为20和30的齿轮啮合率约为1.6。换言之,在1 对齿开始啮合的瞬间,另一对齿已在前1个法向节距处啮合,因此在随后的0.6 个法向节距内有2对齿啮合,而在此后的0.4个法向节距内只有1对齿啮合。因 此,考虑到把在齿尖承受所有法向负荷时所得出的值y用作齿形系数会大大超 过安全侧,于是本文采用节距附近承受负荷时的值y′。 啮合率越大则越有利于轮齿强度,因此对于传动齿轮来说,应重点考虑增大
3 计算示例
例题1
现将正齿轮的DuraconTM(等级M25)齿轮与金属齿轮组合起来,请求
出用于减速比为 的减速机时的DuraconTM齿轮的齿宽。
假定电动机的转速为1,800rpm,输出扭矩为T=0.6N·m,DuraconTM齿 轮的模数m=1mm,齿数Z=60,压力角α=20°。此外,假定金属齿轮 的齿数为10个。 假定使用条件为初期润滑脂润滑,使用温度为60℃,1天运转3小时,耐 用年数为2年。
2.1 齿隙、齿顶间隙 2.2.1 树脂层的厚度 2.3 齿轮形状
2.2.2 金属嵌件的缺口
2 齿轮形状设计方面的注意事项
2.1 齿隙、齿顶间隙
如果考虑到因热膨胀、水和润滑油而引起的尺寸变化以及成型时的尺寸公差,则塑
料齿轮的齿隙应比金属的更大。金属齿轮的齿隙是根据齿轮的制作精度、模数、节圆
直径、节点圆周速度以及润滑状态等来确定的。例如,根据日本齿轮工业会规格,轴
齿顶间隙也一样,金属取模数的12~25%,而DuraconTM则要取得更大。如果运转中 温度上升,则应估计到热膨胀,因此还要取得更大些。
塑料齿轮的设计和制造介绍

塑料齿轮的设计和制造介绍一塑胶齿轮优缺点和应用相对金属齿轮,塑料齿轮具有质量轻、工作噪音小、耐磨损、无须润滑、可以成型较复杂的形状、大批量生产成本低等优点。
但由于塑料本身具有收缩、吸水,相对金属强度也比较弱,对工作环境要求高,对温度较敏感等特性。
因而,塑料齿轮同时就有精度低、寿命短、使用环境要求高等缺点。
随着新材料的应用及制造技术的发展,塑料齿轮的精度越来越高,寿命也越来越长,并广泛应用于仪器、仪表、玩具、汽车、打印机等行业。
二塑料齿轮的模具制造方法由于塑料制品成型收缩,因此阴模尺寸要较制品尺寸大。
见附图:因而标准的齿轮制品意味着不标准的阴模尺寸。
这就对阴模的制造提出了严格的要求。
以下是常用的两种阴模制造方法1.先制作一母齿轮,然后通过铸造、电火花加工、电铸等方法制作母齿轮。
如:涡轮、涡杆、锥齿轮。
2.不需母齿轮,直接线切割制作阴模。
常用于正齿轮,斜齿轮。
2.1母齿轮的制作方法前面所提,母模要比制品大,因此标准制品齿轮就必须由特殊母齿轮制作特殊的阴模。
特殊的母齿轮就需特殊的切齿刀来加工。
通常方法:(1)特殊模数的切齿刀具(2)加上成型收缩率的余量用特殊压力角的切齿道具(3)加上成型收缩率的余量用标准切齿刀具(4)不需添加余量用标准切齿刀具以下是各种方法的详细介绍(1)特殊模数的切齿刀具制作一个特殊模数的切齿刀具,其压力角为标准压力角。
在制作这个切齿刀具时必须考虑到成型收缩率以及后面要讲到的阴模制作法所规定的修正值,然后用这个特殊刀具来加工母齿轮。
假设要制作下面的成型齿轮时Z=30 m=1 d=m*Z=30mm 假设成型收缩率与根据阴模制作法所得到的修正值之和为2%。
则要求母齿轮的各参数为 Z=30 m=1.02 d=m*z=30.6mm 根据这个方法制作出来的齿轮能得到比较正确的齿形。
但时间长,成本较高。
(2)加上成型收缩率的余量用特殊压力角的切齿道具加上成型收缩率的余量用标准的切齿刀具来制作母齿轮时会造成齿形的偏移,用节点上的压力角的变化来表示的话如下公式所示。
标准结构篇:7)塑料齿轮轮系设计总章

标准结构篇:7)塑料齿轮轮系设计总章本章⽬的:了解塑料齿轮设计常⽤知识1.塑料齿轮的前置知识要学习设计塑料齿轮,就需要先了解齿轮。
因为塑料齿轮是齿轮中之⼀,其材质为塑料。
需要学习的齿轮知识包括:齿轮的定义,齿轮轮系的作⽤,齿轮的分类等。
2.齿轮2.1 齿轮定义齿轮是指轮缘上有齿的连续啮合传递运动和动⼒的机械元件。
2.2 齿轮轮系的作⽤在实际机械中,少有使⽤单个齿轮,往往要采⽤⼀系列相互啮合的齿轮来满⾜⼯作要求。
这种由⼀系列的齿轮组成的传动系统称为轮系。
齿轮轮系的作⽤⼀般有:2.2.1 改变扭矩(⼀般⽤于增⼤电机扭矩)电机的扭矩是有限的,在尺⼨重量规定的情况下,我们就算选⽤最⼤扭矩的电机也常常不符⽽设计要求。
所以轮系的最⼤作⽤就是⼤幅度增加电机的扭矩。
2.2.2 改变转速(⼀般⽤于降低电机转速)同理,电机的转速通常⾮常快,轮系的另⼀个作⽤就是⼤幅度减少电机的转速。
当然,降低电机转速的⽅法不只是⼀种,⽐如步进电机的细分驱动器就能提供降低转速作⽤,还有改变电机控制电流等。
2.2.3 改变转动⽅向(⼀般⽤于垂直于电机旋转⽅向)如果设计中电机的⽅向位置是固定且设计要求改变转动⽅向,则需要⽤到蜗轮蜗杆等齿轮。
反之,可以直接更改电机位置。
2.3 齿轮的分类齿轮可按齿形、齿轮外形、齿线形状、轮齿所在的表⾯和制造⽅法等分类。
2.3.1 齿轮齿形分类齿轮的齿形包括齿廓曲线、压⼒⾓、齿⾼和变位等参数。
渐开线齿轮⽐较容易制造,因此现代使⽤的齿轮中,渐开线齿轮占绝对多数,⽽摆线齿轮和圆弧齿轮应⽤较少。
在压⼒⾓⽅⾯,⼩压⼒⾓齿轮的承载能⼒较⼩;⽽⼤压⼒⾓齿轮,虽然承载能⼒较⾼,但在传递转矩相同的情况下轴承的负荷增⼤,因此仅⽤于特殊情况。
⽽齿轮的齿⾼已标准化,⼀般均采⽤标准齿⾼。
变位齿轮的优点较多,已遍及各类机械设备中。
2.3.2 齿轮外形分类另外,齿轮还可按其外形分为圆柱齿轮、锥齿轮、⾮圆齿轮、齿条、蜗杆蜗轮;2.3.3 齿线形状分类按齿线形状分为直齿轮、斜齿轮、⼈字齿轮、曲线齿轮;2.3.4 轮齿所在的表⾯分类按轮齿所在的表⾯分为外齿轮、内齿轮;2.3.5 齿轮制造⽅法分类按制造⽅法可分为铸造齿轮、切制齿轮、轧制齿轮、烧结齿轮、注塑齿轮等。
塑胶齿轮模具设计 (2)

塑胶齿轮模具设计齿轮传动是机械传动件中应用最广的一种传动方式,而塑胶齿轮作为齿轮产品中的一种,在各领域中的应用也越来越广泛,塑胶齿轮质轻、传动噪音低,而且随着塑料工业的发展,齿轮耐高温、承受高负载的能力也越来越强,甚至在许多场合都可替代金属齿轮。
齿轮传动要求准确、平稳、均匀;特别是高端产品对齿轮的精度要求更高。
塑胶齿轮模具作为高效、批量、稳定的成型设备,其结构、制造工艺尤为重要。
本公司拥有十多年齿轮模具制造的经验,并且与国外许多同行均有密切的技术交往,通过吸收、消化国外同行的许多丰富经验,而且自主创新许多结构、改善生产工艺,形成了较为完善的中高端塑胶齿轮制造技术,现将本公司的齿轮制造技术介绍给国内同行,以期大家一起进步,共同促进国内塑胶齿轮技术的提升。
一、塑胶齿轮结构⑴、塑胶制品重要的特征是公称壁,公称壁的厚度将影响部件的强度、成本、重量和精度。
塑胶制品的公称壁厚在范围内时,注塑成型制品效果最好;2-3mm 是塑胶制品中较常用的尺寸。
塑胶制品不能达到完全平均胶厚,对于低收缩率的材料,公称壁厚变化应控制在25%以下,对于高收缩率的材料,公称壁厚变化控制在15%以下。
如图1所示,局部位置胶厚不均匀将影响到齿轮胶位厚精度得到了改善。
⑵、修圆角当两个壁在部件中相交形尖角时,在该处可以出现应力集中和流动性降低,可以通过把夹角修成圆角,可使应力分布到较大区域内,同时提高材料的流动性,较大的圆角半径可以减少应力集中,但材料截面积加大,影响产品收缩,内角修圆时,建议修圆半径为公称壁厚的25%,如图3所示。
⑶、加强筋当齿宽高度较大时,为增强齿轮的刚性,必须增加适当加强筋,为便于填充、排气和脱模,加强筋的高度不应大于公称壁厚的倍,对于高收缩率的材料,加强筋的厚度大约取公称壁厚的一半,对于低收缩率的材料可以取公称壁厚的75%。
当齿轮承受较大负载时,可采用(如图4)加强筋形式,但靠近加强筋处齿形精度将受一定影响,当齿轮承受负载不大时,为保证齿形精度,同时又有足够的强度,可采用(如图5)加强筋形式。
齿轮模具设计及重点

塑 膠 齒 輪 的 介 紹
塑 膠 齒 輪 的 介 紹
塑 膠 齒 輪 的 介 紹
塑 膠 齒 輪 的 介 紹
塑 膠 齒 輪 的 介 紹
塑 膠 齒 輪 的 介 紹
以上是齒輪產品測量單齒齒輪的換算表Z是齒數 H是換 算參數,實測值除換算參數等於實際齒外徑
1.齒輪材質(塑膠)的特性(POM \PC\ PA\)常用的是POM 其次PA其縮水大眾(16/1000到25/1000不等)孔
設
計
5.齒輪的進膠須完全平衡一般采用3點進膠并且不可靠齒形部位太近
前 注
一般偏靠中心﹐3點進膠須看短射料頭是否平衡﹐(會影響齒的嚙合)
意 的
6.齒輪模具的模仁必須標注几何公差精度在0.005~0.01(特別是同心度)
點
7.齒輪的加強肋不可不平均分部且對正的方向統一齒根或齒頂,其肋位的肉厚不可超過平均肉厚的2/3
左圖是齒輪模的母 模仁依圖所示其注 入口是3點進膠是3 等分是最佳的設計 方式其注入口的大 小通常在0.7~1.2之 間
此類似的齒輪 設計不可如雙 齒一半在母模 一半在公模如 此其精度保證 困難設計盡可 以在同一側
A01-302T
斜齒輪的結構斷面組 立圖
A01-302T
斜齒輪的結構平面組 立圖
中托司﹐水路以及 模仁這間的相對距 离和模 座的大小(以 上所指個數位置參 考)
齒輪模母模平面 組立圖
料道板﹐流道形 狀排位
左圖所示是常用的齒套 依圖所示排氯位置大 小﹐
左圖所示是常用的齒套 依圖所示標注齒套重點 寸法﹐以及定位畫法
左圖所示是常用的齒套 線割齒形的參數此參數 是已加縮水(每一項參數 都要加縮水)
C08-504T
精密塑胶齿轮模具设计

02
模具设计基础
模具结构类型
01Leabharlann 0203两板模结构
由定模和动模两部分组成, 结构简单,适用于小型齿 轮模具。
三板模结构
在定模和动模之间增加了 一块中间板,适用于需要 点浇口的齿轮模具。
热流道模具
通过加热装置使流道内的 塑料保持熔融状态,实现 连续注射,提高生产效率。
智能化设计与制造 借助人工智能、大数据等先进技术,实现塑胶齿轮模具设 计的智能化和自动化。通过数据分析和机器学习算法优化 设计方案,提高设计效率和准确性。
绿色环保理念
在塑胶齿轮模具设计过程中,应充分考虑环保因素,选用 环保材料和工艺,降低生产过程中的能耗和废弃物排放, 推动绿色制造和可持续发展。
06
家电行业
塑胶齿轮在家用电器如洗衣机、吸尘 器、空调等中大量使用,以降低噪音、 提高运行平稳性。
市场需求
1 2 3
高精度要求
随着工业技术的不断发展,对塑胶齿轮的精度要 求越来越高,需要提高模具设计和制造水平以满 足市场需求。
多样化需求 不同行业和应用领域对塑胶齿轮的需求多样化, 需要开发不同规格、材质和性能的塑胶齿轮以满 足客户需求。
噪音低
塑胶齿轮在运行过程中产生的噪 音较低,有利于改善工作环境和 降低噪音污染。
耐磨损
塑胶齿轮具有良好的耐磨损性能, 能够在恶劣的工作环境下保持较
长的使用寿命。
应用领域
汽车行业
工业设备
塑胶齿轮在汽车发动机、变速器等部 件中广泛应用,以降低噪音、减轻重 量并提高燃油经济性。
塑胶齿轮在各类工业设备如机床、印 刷机、包装机等中广泛应用,以提高 设备运行效率和降低维护成本。
塑料齿轮设计注意事项

塑料齿轮是慢丝切割的螺纹可以对半分模,也可以旋转抽芯张学孟先生提出过两种噪音指标:一、控制最大滑动比的噪音指标Bcg。
原理是:在齿轮基圆的附近的渐开线的曲率变化大,敏感性高,齿面在啮合时的接触滑动比也大,所以在基圆附近的齿高传递力时,力的变化比较剧烈,齿面的粗糙度对力的影响也大,因此容易引起齿的振动,产生较大的噪音。
所以,应该使啮合起始圆尽可能的远离基圆。
二、摩擦噪音指标。
原理是:先说两个定义:1、主动齿轮的节园到啮合起始圆的这段弧形称为进弧区;2、从节园到其齿顶称为退弧区。
当齿面接触由进弧区移动到退弧区时,摩擦力的方向在节园处发生突变。
在进弧区内,主动齿轮的齿腹先于从动齿轮的齿顶接触,齿面滑动的方向是朝着主动齿轮的齿顶,摩擦力与之相反。
摩擦力产生的力矩的方向正好和主动齿轮加载的方向相同,因此摩擦力增大了齿面的法向压力。
刚超过节园时,摩擦力随着滑动方向的改变而改变。
齿面受力发生突变,导致牙齿发生振动而产生噪音。
减小从动齿轮的外径和增大主动齿轮的外径和改善摩擦噪音指标。
2.关于塑齿双啮测试压力的规定①目前未查到国内相关标准是如何规定的;②日本的齿轮标准:JISB1702-3_2008和JISB1752_1989都对测试压力进行了规定。
这两个标准对于塑齿测试压力的规定是一致的,如附图所示。
但是问题是:这两个标准中对于塑齿测试压力的数值规定明显的偏大。
以1个模数,齿宽b=20mm的齿轮为例,标准规定的测试压力是5.4*2=8.4N=856.56161890146gf=0.85656161890146kgf,这对于一般的双啮仪提供的测试力范围是不相符合的。
而且这个力明显的偏大。
从实际的情况是,对于塑齿的双啮测试一般是在100gf~200gf,一般取200gf=1.96133N≈2N。
对于塑胶斜齿轮一般都是用滚齿加工铜公,然后再用铜公加工模具。
对于斜齿设计推荐用标准的,但是如果斜齿轮的齿厚很小的情况下,在精度要求不是很苛刻的条件下也可以考虑用线割的方式直接割除斜齿齿廓,其出差在um (丝)级的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、材料:POM M90-44 (宝理)。 2、模具与进浇方式:三板模,三点点进浇。 3、与轴配合的孔用镶针的形式。 4、孔的镶件处做凹入的 台阶,防止镶件的披锋。 5、孔与轴的配合间隙: A、间隙配合时:双边间隙为0.01~0.09。 轴与孔的基本尺寸相同, 孔的公差为(+0.04,+0.01), 轴的公差为(0,-0.05)。 B、过ቤተ መጻሕፍቲ ባይዱ配合时:双边过盈量为0~0.1mm 轴比孔的基本尺寸小0.1, 孔的公差为(0,-0.05), 轴的公差为(0,-0.05)。 6、尺寸控制:通过外形尺寸来控制。
塑胶齿轮设计要点:
7、模数:电机输出第一级M为0.5,之后M可以为0.4。 8、齿轮的最小厚度为1.0mm,通常取1.5以上。 9、齿轮的最小齿数Z为9,塑胶齿轮不存在根切问题。 10、两齿轮配合的条件:模数相同,压力角相等(一般 取20度) 11、外啮合齿轮转向相反,内啮合齿轮转向相同。 12、转速计算:A——输入 B——输出
iAB =nA/nB=ZB乘积/ ZA乘积。
13、齿轮轴孔与齿上要涂润滑油。