齿轮强度及其设计汇总
齿轮传动(强度计算,结构设计)

A. 经 济 性:正确选择材料和毛坯状态。 B. 工艺要求:选择合理的热处理方式。 C. 硬度选择:*软齿面硬度350HBS; *软齿面齿轮HBS1-HBS230~50; *选择避免胶合的材料合适配对。
齿轮的热处理方法:
软齿面齿轮 HBS≤350
工艺流程短, 成本低
常化(正火)
调质
毛坯 热处理 切齿 成品
例题
一对标准直齿圆柱齿轮传动,已知Z1=20,Z2=40,小轮材料 为45Cr钢,大轮材料为45# 钢,许用应力是[σH1]=600MPa, [σH2]=500MPa;[σF1]=179MPa,[σF2]=144MPa;齿形系数 YFS1=2.8,YFS2=2.4;试问:(1)哪个齿轮的接触强度弱? (2)哪个齿轮的弯曲强度弱?为什么?
表面淬火 淬火 整体淬火 渗碳淬火 氮化
毛坯 退火 切齿
成品 磨齿
硬齿面齿轮 HBS>350
工艺流程复 杂,成本高
热处理
§06 直齿圆柱齿轮的强度计算 一、轮齿上的作用力
2T1 Ft d1
9.55106 P T1 N mm n1
Fr Ft tg
Ft Fn cos
力的分析:①大小 ②方向 ③关系
F1
YFS1
F2
YFS 2
2、齿轮弯曲强度比较
[ F ] [ F ] 较小者危险! 较大者强度高。 YFS YFS
四、许用应力的确定
[ H ]
H lim
SH
[ F ]
F lim
SF
SH——接触疲劳强度安全系数,一般情况下, SH=1.0 ~ 1.2; SF——弯曲疲劳强度安全系数,一般情况下, SF=1.25~1.5。 σHlim、σFlim——齿轮的疲劳极限。
齿轮传动机构设计及强度校核

齿轮传动机构设计及强度校核一、概述1.优点:传动效率高;工作可靠、寿命长;传动比准确;结构紧凑;功率和速度适用范围很广。
2.缺点:制造成本高;精度低时振动和噪声较大;不宜用于轴间距离较大的传动。
3.设计齿轮——设计确定齿轮的主要参数以及结构形式主要参数有:模数m、齿数z、螺旋角β以及齿宽b、中心距a、直径(分度圆、齿顶圆、齿根圆)、变位系数、力的大小。
齿轮类型:—外形及轴线:—根据装置形式:开式齿轮:齿轮完全外露,润滑条件差,易磨损,用于低速简易设备的传动中闭式齿轮:齿轮完全封闭,润滑条件好半开式齿轮有简单的防护罩—根据齿面硬度(hardness):硬度:金属抵抗其它更硬物体压入其表面的能力;硬度越高,耐磨性越好硬度检测方法:布氏硬度法(HBS)洛氏硬度法(HRC)软齿面齿面硬度≤350HBS 或≤38HRC硬齿面齿面硬度>350HBS或>38HRC二.齿轮传动的失效形式和设计准则齿轮传动的失效形式1)轮齿折断(Tooth breakage)疲劳折断齿根受弯曲应力-初始疲劳裂纹-裂纹不断扩展-轮齿折断2)过载折断短时过载或严重冲击,静强度不够全齿折断—齿宽较小的齿轮局部折断—斜齿轮或齿宽较大的直齿轮措施:增大模数(主要方法)、增大齿根过渡圆角半径、增加刚度(使载荷分布均匀)、采用合适的热处理(增加芯部的韧性)、提高齿面精度、正变位等。
备注:疲劳折断是闭式硬齿面的主要失效形式!疲劳折断产生机理:齿面受交变的接触应力-齿面受交变的接触应力-润滑油进入裂纹并产生挤压-表层金属剥落-麻点状凹坑注意:凹坑先出现在节线附近的齿根表面上,再向其它部位扩展;其形成与润滑油的存在密切相关;常发生于闭式软齿面(HBS≤350)传动中;开式传动中一般不会出现点蚀现象(磨损较快);措施:提高齿面硬度和质量、增大直径(主要方法)等。
3、齿面胶合产生机理:高速重载-摩擦热使油膜破裂-齿面金属直接接触并粘接-齿面相对滑动-较软齿面金属沿滑动方向被撕落。
齿轮强度及其设计

—标准直齿圆柱齿轮强度计算
(1)、轮齿的受力分析:
齿轮的受力分析是进行齿轮传动强度计算的基础,也是进一步设计计算安 装齿轮轴及轴承所必须的。力分析时,一般可忽略啮合齿面间的摩擦力。
以节点 P 处的啮合力为分析对象,可得:
Ft
2T1 d1
Fr
Ft
tan
2T1 d1
tan
Fn
Ft
cos
2T1
d1 cos
齿轮传动设计培训
第二部分:齿轮设计基础知识 2、齿轮强度及其设计
本章要点
齿轮受力分析和强度计算 (1)齿轮传动的受力分析。 (2)齿轮的失效形式。 (3)强度计算准则、强度公式的物理意义和参数选择。
二、齿轮设计基础知识 2、齿轮强度及其设计 —齿轮传动失效形式与设计准则
齿轮的主要失效形式:齿轮传动的失效主要是指轮齿的 失效,其失效形式是多种多样的。常见的失效形式有:
8
上午2时45分
二、齿轮设计基础知识 2、齿轮强度及其设计 —齿轮传动的计算载荷
接触线单位长度上的最大载荷为:
pca
Kp
KFn L
注:K为载荷系数,K=KA·Kv·Kα·Kβ
式中: KA ——使用系数
Kv ——动载系数
Kα ——齿间载荷分配系数
Kβ ——齿向载荷分布系数
9
上午2时45分
二、齿轮设计基础知识 2、齿轮强度及其设计 —齿轮传动的计算载荷
1. 齿轮材料须满足工作条件的要求,如强度、寿命、可靠性、经济性等 2. 应考虑齿轮尺寸大小,毛坯成型方法及热处理和制造工艺 3. 钢制软齿面齿轮,配对两轮齿面的硬度差应保持在30~50HBS或更 多
5
上午2时45分
二、齿轮设计基础知识 2、齿轮强度及其设计 —齿轮材料及其选用原则
圆形齿轮的受力分析与强度设计

圆形齿轮的受力分析与强度设计圆形齿轮又称圆柱齿轮,是一种常见的传动装置。
在实际工程应用中,齿轮设计的受力分析和强度设计是十分重要的。
本文将从受力分析和强度设计两个方面探讨圆形齿轮的相关知识。
一、受力分析圆形齿轮的受力分析是齿轮设计的基础,也是齿轮强度设计的依据。
圆形齿轮的受力分析主要是通过确定齿轮的受力状态来计算其所受的载荷和应力,并以此推导出齿轮的强度等参数。
1.1 齿轮受力状态圆形齿轮的受力状态主要包括以下三类:弯曲应力、剪切应力和接触应力。
其中,弯曲应力是由于齿轮在扭转过程中受到的曲率半径不等而产生的应力;剪切应力是由于齿轮齿条之间的摩擦而产生的应力;接触应力则是由于齿轮齿条之间的接触而产生的应力。
1.2 计算载荷和应力根据齿轮受力状态的不同,可以得到相应的载荷和应力计算公式。
具体来说,弯曲应力的计算公式为σW=(KW*Mt)/(b*y*g),其中,KW是弯曲应力系数,Mt是齿轮传递的扭矩,b是齿轮齿宽,y和g是几何函数;剪切应力的计算公式为τ=(Kt*Mt)/(b*z),其中,Kt是剪切应力系数,z是齿数;接触应力的计算公式为σH=(KH*F)/(bw*c),其中,KH是接触应力系数,F是齿轮传递的载荷,bw和c是几何函数。
1.3 常见强度参数圆形齿轮的强度参数主要包括极限扭矩、安全系数、弯曲疲劳强度、齿面接触疲劳强度和齿根抗弯强度等。
其中,极限扭矩是指齿轮所能承受的最大扭矩;安全系数是指齿轮极限扭矩与实际传递扭矩之比,一般要求大于1.5;弯曲疲劳强度是指在一定的试验条件下,齿轮在其寿命期内所能承受的最大弯曲应力;齿面接触疲劳强度是指在一定的试验条件下,齿轮在其寿命期内所能承受的最大接触应力;齿根抗弯强度则是指齿轮齿条的根部能够承受的最大弯曲应力。
二、强度设计圆形齿轮的强度设计是指根据受力分析的结果,选择合适的齿轮材料、齿轮模数和齿隙等参数,使得齿轮在设计寿命内能够满足强度及韧性的要求。
齿轮设计中的强度计算方法

齿轮设计中的强度计算方法齿轮作为机械传动中常用的元件,其设计中的强度计算是十分重要的。
强度计算是为了保证齿轮在工作过程中能够承受所受力的作用,不会发生破坏或变形。
本文将介绍齿轮设计中的强度计算方法。
我们需要了解齿轮的受力情况。
齿轮主要受到两种力的作用,一种是齿面上的接触力,另一种是轴向力。
接触力是由于齿轮齿面间的相互作用而产生的,其大小与传动比、输入功率、齿轮材料等因素有关。
轴向力则是由于齿轮的传动力矩而产生的,其大小与传动比、输入功率等因素有关。
在进行强度计算时,首先需要确定齿轮的材料强度。
常用的齿轮材料有铸铁、钢和铜合金等。
不同材料的强度不同,需要根据具体情况选择合适的材料。
接下来,我们来分析齿轮的受力情况。
齿轮的接触力会使齿面产生弯曲应力和接触应力。
弯曲应力是由于齿轮齿面弯曲而产生的,其大小与齿轮的模数、齿轮的参数等因素有关。
接触应力则是由于齿轮齿面间的接触而产生的,其大小与接触面积、接触力、齿轮的参数等因素有关。
在进行强度计算时,我们需要计算齿轮的弯曲强度和接触强度。
弯曲强度是指齿轮在受到弯曲应力作用时能够承受的最大应力值,接触强度是指齿轮在受到接触应力作用时能够承受的最大应力值。
弯曲强度的计算可以使用刘易斯公式或双曲线公式。
刘易斯公式适用于模数较大的齿轮,双曲线公式适用于模数较小的齿轮。
这两种公式都是根据齿轮的几何参数和材料强度来计算弯曲强度的。
接触强度的计算可以使用弗·里兰德公式或哈克公式。
弗·里兰德公式适用于传动比较小的齿轮,哈克公式适用于传动比较大的齿轮。
这两种公式都是根据齿轮的几何参数和材料强度来计算接触强度的。
除了弯曲强度和接触强度的计算外,我们还需要考虑齿轮的疲劳寿命。
疲劳寿命是指齿轮在反复受力下能够工作的时间,其大小与齿轮的材料、强度、工作条件等因素有关。
我们需要通过疲劳寿命计算来确定齿轮是否能够满足使用要求。
齿轮设计中的强度计算方法包括确定材料强度、计算弯曲强度和接触强度,以及考虑疲劳寿命等因素。
齿轮传动强度设计计算

直齿轮箱尺寸变化影响传动强度分析阮超传递:功率P,转速n,扭矩T齿轮:齿数Z,齿宽b,模数m,材料强度σ 强度公式: 弯曲 T∝b(Zm)mσ 接触 T∝b(Zm)2σ2(体积关联) 条件变化: 1.齿轮箱外形尺寸不变,n2=3600r/min, m2=4mm,求P2? 弯曲 模数变化4/3,转速变化3600/3000, P2=120*4/3KW 接触 体积不变,转速变化3600/3000,P2=120KW;弯曲变化机理:齿形变大 接触变化机理:P=T*n/9550已知:功率P1=100KW,转速n1=3000r/min,模数m1=3mm直齿轮箱尺寸变化影响传动强度分析阮超传递:功率P,转速n,扭矩T齿轮:齿数Z,齿宽b,模数m,材料强度σ 强度公式: 弯曲 T∝b(Zm)mσ 接触 T∝b(Zm)2σ2(体积关联) 条件变化: 2.齿轮箱齿数不变,n2=3600r/min, m2=4mm,求P2? 弯曲 模数变化4/3,转速变化3600/3000, P =120*(4/3) KW 接触 模数变化4/3,转速变化3600/3000, P =120*(4/3) KW2 2 2 2弯曲变化机理:力臂和曲率半径增大 接触变化机理:单位齿宽负载和直径增大已知:功率P1=100KW,转速n1=3000r/min,模数m1=3mm直齿轮箱尺寸变化影响传动强度分析阮超传递:功率P,转速n,扭矩T齿轮:齿数Z,齿宽b,模数m,材料强度σ 强度公式: 弯曲 T∝b(Zm)mσ 接触 T∝b(Zm)2σ2(体积关联) 条件变化: 3.齿轮箱尺寸放大4/3倍,n2=3600r/min, 求P2? 弯曲 模数变化4/3,转速变化3600/3000, P =120*(4/3) KW 接触 模数变化4/3,转速变化3600/3000, P =120*(4/3) KW2 2 3 3弯曲变化机理:齿宽b,模数m增大 接触变化机理:齿宽b,模数m增大已知:功率P1=100KW,转速n1=3000r/min,模数m1=3mm直齿轮箱尺寸变化影响传动强度分析阮超传递:功率P,转速n,扭矩T齿轮:齿数Z,齿宽b,模数m,材料强度σ 强度公式: 弯曲 T∝b(Zm)mσ 接触 T∝b(Zm)2σ2(体积关联) 条件变化: 4.齿轮材料选用1.2倍σ,n2=3600r/min, 求P2? 弯曲 模数变化4/3,转速变化3600/3000, P =120*1.2KW 接触 模数变化4/3,转速变化3600/3000, P =120*(1.2) KW2 2 2弯曲变化机理:材料增强 接触变化机理:材料增强已知:功率P1=100KW,转速n1=3000r/min,模数m1=3mm。
《齿轮强度设计》课件

齿轮的运动和受力特点
结构和用途
回顾齿轮的结构和常见用 途,理解齿轮的基本形式。
运动方式
探讨齿轮的旋转和传动方 式,了解齿轮的运动特点。
受力特点
分析齿轮所受的受力情况, 揭示齿轮的受力特点。
齿轮强度设计基础
齿轮齿数的计算方法
根据负载计算齿轮的模数
介绍计算齿轮齿数的常用方法, 确保齿轮传动的准确性。
材料的选择
介绍常用的齿轮材料,并讨论如何选 择合适的材料。
强度计算
详细说明齿轮强度计算的公式和步骤, 确保齿轮的强度要求。
举例:齿轮强度设计的实际应用
某汽车发动机的齿轮设计
通过具体案例,展示齿轮强度设计在汽车发 动机中的应用。
其他行业中的齿轮强度设计案例
介绍其他行业中齿轮强度设计的实际案例, 展示其普适性和重要性。
总结
1 齿轮强度设计的重
要性
强调齿轮强度设计对齿 轮运行稳定和寿命的重 要影响。
2 齿轮强度设计的基
础知识
总结齿轮强度设计的核 心知识和基本原则,为 进一步学习打下基础。
3 齿轮强度设计的实
际应用
回顾齿轮强度设计在实 际工程中的应用,激发 学习者的兴趣和动力。
《齿轮强度设计》PPT课 件
这是一份关于齿轮强度设计的课件,将深入介绍齿轮的运动和受力特点,以 及齿轮强度设计的基础知识和实际应用案例。
什么是齿轮强度设计
齿轮强度设计是指根据齿轮的结构和用途,通过计算齿轮的齿数、模数等参 数,选择合适的材料,并进行强度计算和修正系数计算,确保齿轮的运行稳 定性和寿命。
讲解根据负载条件计算齿轮模 数的步骤和公式,保证齿轮的 强度。
齿轮强度设计中的安全 系数
解读齿轮强度设计中的安全系 数的作用和取值范围,确保齿 轮的可靠性。
齿轮强度计算完整版本

SF-弯曲疲劳安全系数
由表14-6查得
Yx-尺寸系数
由图14-26查得
考虑齿轮的实际尺寸大于试件尺寸 时,对弯曲疲劳的影响系数。
.
接触疲劳极限Hlim
在当一
区材般
域料取
的、区上工域半艺图部及的分热中取处间
值理值
。性或
能中
好间
时偏
返
,下
回
可值
.
表14-6安全系数
可靠程度
SH
高可靠性 1.25
一般可靠性 1.00
四、直齿圆柱齿轮的齿根弯曲强度计算 设计公式:
m3 2 dZ 01 20 K F 0 1 T P Y FY aSY a
齿形系数Yfa可由图14-19查取
.
齿形系数Yfa
.
应力修正系数YSa
.
重合度系数Y
.
齿宽系数d
表14-4
齿轮相对于轴承
齿面硬度
的位置
软齿面 硬齿面
对称布置
0.8 ~ 1.4 0.4 ~ 0.9
.
低可靠性 0.80
SF 1.50 1.00 0.70
对于高速重载或重要的齿轮传动,应按
高可靠性选取,一般传动齿轮可适当降
低可靠性要求。
返
回
.
接触寿命系数ZN
.
返回
齿轮的弯曲疲劳极限Flim 当齿根弯曲应力为对称循环. 时,将查出的Flim乘以 0.7
返回
弯曲寿命系数YN
.
返回
尺寸系数Yx
返
.
e<1.6m时,将齿轮与 轴做成一体,称为齿 轮轴.。
齿轮轴 直齿轮的齿轮轴
锥齿轮的齿. 轮轴
2、实心齿轮 当齿轮的齿根圆直径与轴的直径相差较 大时,应分开制造。 当da<=180 mm 时,齿轮做成实心结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13
下午2时20分
二、齿轮设计基础知识
2、齿轮强度及其设计 —齿轮传动的计算载荷
Kβ是考虑载荷在齿面上分布不均 匀的影响系数。
当轴承相对于齿轮作不对称配置 时,在受载后,轴产生弯曲变形,轴 上齿轮也随之偏斜。这就使作用在齿 面上的载荷沿接触线分布不均匀。当 然,轴的扭曲变形、轴承与支座的变 形、以及齿轮的制造与装配误差等也 造成齿面上的载荷分配不均匀。
• 常用的齿轮材料:
钢:许多钢材经适当的热处理或表面处理,可以成为常用的齿轮材料; 铸铁:常作为低速、轻载、不太重要的场合的齿轮材料; 非金属材料:适用于高速、轻载、且要求降低噪声的场合。
4
下午2时20分
二、齿轮设计基础知识 2、齿轮强度及其设计 —齿轮材料及其选用原则
• 齿轮材料选用的基本原则 :
1. 齿轮材料须满足工作条件的要求,如强度、寿命、可靠性、经济性等 2. 应考虑齿轮尺寸大小,毛坯成型方法及热处理和制造工艺 3. 钢制软齿面齿轮,配对两轮齿面的硬度差应轮设计基础知识 2、齿轮强度及其设计 —齿轮材料及其选用原则
6
下午2时20分
二、齿轮设计基础知识 2、齿轮强度及其设计 —齿轮材料及其选用原则
7
下午2时20分
二、齿轮设计基础知识 2、齿轮强度及其设计 —齿轮传动的计算载荷
齿轮传动强度计算中所用的载荷,通常取沿齿面接触 线单位长度上所受的载荷,即:
p Fn 注:Fn 为轮齿所受的公称法向载荷。 L
但实际传动中由于原动机、工作机性能的影响以及制造误差的影响, 载荷会有所增大,且沿接触线分布不均匀。
—标准直齿圆柱齿轮强度计算
(1)、轮齿的受力分析:
齿轮的受力分析是进行齿轮传动强度计算的基础,也是进一步设计计算安 装齿轮轴及轴承所必须的。力分析时,一般可忽略啮合齿面间的摩擦力。
以节点 P 处的啮合力为分析对象,可得:
Ft
2T1 d1
Fr
Ft
tan
2T1 d1
tan
Fn
Ft
cos
2T1
d1 cos
8
下午2时20分
二、齿轮设计基础知识 2、齿轮强度及其设计 —齿轮传动的计算载荷
接触线单位长度上的最大载荷为:
pca
Kp
KFn L
注:K为载荷系数,K=KA·Kv·Kα·Kβ
式中: KA ——使用系数
Kv ——动载系数
Kα ——齿间载荷分配系数
Kβ ——齿向载荷分布系数
9
下午2时20分
二、齿轮设计基础知识 2、齿轮强度及其设计 —齿轮传动的计算载荷
14
下午2时20分
二、齿轮设计基础知识 2、齿轮强度及其设计 —齿轮传动的计算载荷
增大轴及支承的刚度,尽量对称布置轴 承、适当限制齿宽等措施均有助于改善载荷 分布不均匀。把齿轮修成鼓形也是一个很好 的办法。
15
下午2时20分
二、齿轮设计基础知识 2、齿轮强度及其设计 —齿轮传动的计算载荷
16
下午2时20分
10
下午2时20分
二、齿轮设计基础知识 2、齿轮强度及其设计 —齿轮传动的计算载荷
11
下午2时20分
二、齿轮设计基础知识 2、齿轮强度及其设计 —齿轮传动的计算载荷
12
下午2时20分
二、齿轮设计基础知识 2、齿轮强度及其设计 —齿轮传动的计算载荷
注:1、对修缘齿轮,取KHα=KFα=1 2、如大、小齿轮精度等级不同时,按精度等级较低者取值。 3、KHα为按齿面接触疲劳强度计算时用的齿间载荷分配系数。 KFα为按齿根弯曲疲劳强度计算时用的齿间载荷分配系数。
由实践得知:闭式软齿面齿轮传动,以保证齿面接触疲劳强度为主。 闭式硬齿面或开式齿轮传动,以保证齿根弯曲疲劳强度为主。
3
下午2时20分
二、齿轮设计基础知识
2、齿轮强度及其设计 —齿轮材料及其选用原则
• 对齿轮材料性能的要求:
齿轮的齿体应有较高的抗折断能力,齿面应有较强的抗点蚀、抗磨损 和较高的抗胶合能力,即要求:齿面硬、芯部韧。
19
下午2时20分
二、齿轮设计基础知识
2、齿轮强度及其设计
—标准直齿圆柱齿轮强度计算
(2)、齿根弯曲疲劳强度计算
齿根理论弯曲应力:
F0
KFtYFa bm
注:YFa为齿形系数,是仅与齿形有关而与模数m无关
的系数,其值可根据齿数查表获得。
计入齿根应力校正系数Ysa后,强度条件式为: F
KFtYFaYsa bm
基本公式──赫兹应力计算公式,即:
H
Fca
(
1
1
1
2
)
(1
12
1
2 2
)L
E1
E1
在节点啮合时,接触应力较大,故以节点为接触应力计算点,节点处 的综合曲率半径为:
d1
sin 2
u u 1
22
下午2时20分
二、齿轮设计基础知识 2、齿轮强度及其设计 —标准直齿圆柱齿轮强度计算
二、齿轮设计基础知识 2、齿轮强度及其设计 —齿轮传动的计算载荷
17
下午2时20分
二、齿轮设计基础知识 2、齿轮强度及其设计 —齿轮传动的计算载荷
按弯曲疲劳强 度计算的齿向载荷 分布系数KFβ可根据 KHβ、齿宽b与齿高 h之比值由图查得。
18
下午2时20分
二、齿轮设计基础知识
2、齿轮强度及其设计
轮齿折段 齿面磨损 齿面点蚀 齿面胶合 塑性变形
2
下午2时20分
二、齿轮设计基础知识
2、齿轮强度及其设计 —齿轮传动失效形式与设计准则
【齿轮的设计准则】
对一般工况下的齿轮传动,其设计准则是:
保证足够的齿根弯曲疲劳强度,以免发生齿根折断。 保证足够的齿面接触疲劳强度,以免发生齿面点蚀。
对高速重载齿轮传动,除以上两设计准则外,还应按齿 面抗胶合能力的准则进行设计。
齿轮传动设计培训
第二部分:齿轮设计基础知识 2、齿轮强度及其设计
本章要点
齿轮受力分析和强度计算 (1)齿轮传动的受力分析。 (2)齿轮的失效形式。 (3)强度计算准则、强度公式的物理意义和参数选择。
二、齿轮设计基础知识 2、齿轮强度及其设计 —齿轮传动失效形式与设计准则
齿轮的主要失效形式:齿轮传动的失效主要是指轮齿的 失效,其失效形式是多种多样的。常见的失效形式有:
[ F ]
引入齿宽系数后
d
b,可得设计公式: d1
m
3
2KT1
d Z12
YFaYsa
[ F ]
20
下午2时20分
二、齿轮设计基础知识 2、齿轮强度及其设计 —标准直齿圆柱齿轮强度计算
21
下午2时20分
二、齿轮设计基础知识
2、齿轮强度及其设计 —标准直齿圆柱齿轮强度计算
(3)、齿面接触疲劳强度计算