高中化学中的抛物线
抛物线知识点高考

抛物线知识点高考高中数学中的抛物线知识点在高考中占据了重要的位置。
抛物线是数学中的一种曲线,具有很多有趣的性质和应用。
在本文中,我们将深入探讨抛物线的定义、性质以及高考中常见的相关考点。
首先,我们来介绍一下抛物线的定义。
抛物线是由一个定点(焦点)和一条直线(准线)确定的曲线。
对于抛物线上的任意一点P,它到焦点的距离等于它到准线的距离。
这个定义能够很好地解释抛物线的形状,以及抛物线上各个点的位置关系。
接下来,我们来探讨抛物线的性质。
首先是对称性。
抛物线具有对称轴,对称轴是通过焦点垂直于准线的直线。
抛物线的形状在对称轴两侧完全相同,即左右对称。
其次是焦点与准线之间的距离关系。
抛物线上任意一点到焦点与准线的距离之差保持不变。
这个性质在物理学中有广泛的应用,例如反射和聚焦。
最后是切线和法线。
抛物线上每一点处都有唯一的切线和法线,切线与法线相互垂直。
在高考中,抛物线相关的知识点主要包括方程求解、性质应用以及相关的解析几何问题。
首先是方程求解,即给定一个抛物线的方程,要求求解其焦点、准线以及对称轴等相关的信息。
其次是性质应用,例如给定一个抛物线上的一点,要求计算它到焦点和准线的距离之差。
另外,还会出现一些解析几何的问题,例如给定一个抛物线和一条直线,要求求解它们的交点等等。
在解决这些问题的过程中,我们可以运用一些有效的方法和技巧。
其中,最重要的是熟练掌握抛物线的标准方程和一般方程。
标准方程是y^2=4ax,其中a是抛物线的参数。
一般方程是y=ax^2+bx+c。
通过这两个方程,我们可以很方便地确定抛物线的性质和解析几何问题的解。
另外,还要注意抛物线的对称性质和距离关系,这些特性对于解题至关重要。
总之,抛物线是高中数学中一个重要的知识点,也是高考中经常出现的考点之一。
通过深入了解抛物线的定义、性质以及运用方法,我们可以更好地应对高考中的相关题目。
希望本文的介绍和解析能够帮助到同学们更好地掌握抛物线知识,取得优异的成绩。
高二抛物线必背知识点讲解

高二抛物线必背知识点讲解抛物线是高中数学中的一个重要概念,也是高二阶段的必备知识点之一。
掌握抛物线的性质和相关的公式是解决与之相关问题的基础。
本文将为你详细介绍高二抛物线的必背知识点,包括抛物线的定义、性质以及常用公式等。
1. 抛物线的定义抛物线是平面上一条特殊的曲线,其定义可由以下几个要素描述:- 定点(焦点)F,是抛物线上的一个确定点。
- 定直线(准线)L,是与抛物线相交于抛物线的两个分支的对称轴。
- 定义抛物线上的点P到焦点F的距离与点P到准线L的距离的比例保持不变。
2. 抛物线的性质抛物线具有以下几个重要性质:- 对称性:抛物线关于准线对称。
- 焦点性质:焦点是抛物线上所有点到准线距离与焦距的比例值保持不变的点。
- 直角性质:抛物线的准线与焦点连线之间的夹角是直角。
- 切线性质:过抛物线上一点的切线平行于准线,且焦点到切点的线段与准线垂直。
3. 抛物线的基本公式- 标准方程:y = ax^2 + bx + c(其中a、b、c为常数,并且a ≠ 0)。
标准方程可以用来描述抛物线的形状、位置和方向。
- 顶点坐标:抛物线的顶点坐标为(-b/2a,f(-b/2a)),其中f(x)为抛物线的方程。
- 对称轴方程:x = -b/2a。
对称轴是与抛物线两支对称的直线。
- 焦点坐标:抛物线的焦点坐标为(-b/2a,c - (b^2 - 1)/4a)。
- 焦距:抛物线的焦距为|4a|,用来确定焦点到准线的距离。
4. 抛物线的常见变形除了标准的抛物线方程之外,抛物线还有一些常见的变形形式:- 平移:将抛物线相对于坐标系的原点平移至任意位置。
- 平拉伸:通过调整a的值,控制抛物线在x轴和y轴方向上的缩放。
- 旋转:通过调整b的值,使抛物线绕着顶点旋转。
5. 抛物线的应用抛物线在现实生活中有许多应用,例如:- 炮弹的发射轨迹:抛物线方程可以用来描述炮弹在重力作用下的弹道轨迹。
- 卫星天线的调节:抛物线的反射性质可以用来调节卫星天线的接收角度。
高考抛物线专题做题技巧与方法总结

高考抛物线专题做题技巧与方法总结知识点梳理:1.抛物线的标准方程、类型及其几何性质 (0>p ): 标准方程 px y 22=px y 22-=py x 22=py x 22-=图形▲y xO▲yxO▲y xO▲yxO焦点 )0,2(pF )0,2(pF - )2,0(p F )2,0(p F - 准线 2p x -= 2p x = 2p y -= 2p y =范围 R y x ∈≥,0 R y x ∈≤,0 0,≥∈y R x 0,≤∈y R x对称轴 x 轴y 轴顶点 (0,0)离心率 1=e2.抛物线的焦半径、焦点弦①)0(22≠=p px y 的焦半径=PF 2P x +;)0(22≠=p py x 的焦半径=PF 2P y +;② 过焦点的所有弦中最短的弦,也被称做通径.其长度为2p.③ AB 为抛物线px y 22=的焦点弦,则=B A x x 42p ,=B A y y 2p -,||AB =p x x B A ++ 3. px y 22=的参数方程为⎩⎨⎧==pt y pt x 222(t 为参数),py x 22=的参数方程为⎩⎨⎧==222pt y ptx (t 为参数). 重难点突破重点:掌握抛物线的定义和标准方程,会运用定义和会求抛物线的标准方程,能通过方程研究抛物线的几何性质难点: 与焦点有关的计算与论证重难点:围绕焦半径、焦点弦,运用数形结合和代数方法研究抛物线的性质 1.要有用定义的意识问题1:抛物线y=42x 上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A.1617 B. 1615 C.87D. 0点拨:抛物线的标准方程为y x 412=,准线方程为161-=y ,由定义知,点M 到准线的距离为1,所以点M 的纵坐标是16152.求标准方程要注意焦点位置和开口方向问题2:顶点在原点、焦点在坐标轴上且经过点(3,2)的抛物线的条数有点拨:抛物线的类型一共有4种,经过第一象限的抛物线有2种,故满足条件的抛物线有2条3.研究几何性质,要具备数形结合思想,“两条腿走路” 问题3:证明:以抛物线焦点弦为直径的圆与抛物线的准线相切点拨:设AB 为抛物线的焦点弦,F 为抛物线的焦点,点''、B A 分别是点B A 、在准线上的射影,弦AB 的中点为M ,则''BB AA BF AF AB +=+=,点M 到准线的距离为AB BB AA 21)''(21=+,∴以抛物线焦点弦为直径的圆总与抛物线的准线相切3、典型例题讲解: 考点1 抛物线的定义题型 利用定义,实现抛物线上的点到焦点的距离与到准线的距离之间的转换 [例1 ]已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和的最小值为解题思路:将点P 到焦点的距离转化为点P 到准线的距离 [解析]过点P 作准线的垂线l 交准线于点R ,由抛物线的定义知,PR PQ PF PQ +=+,当P 点为抛物线与垂线l 的交点时,PR PQ +取得最小值,最小值为点Q 到准线的距离 ,因准线方程为x=-1,故最小值为3总结:灵活利用抛物线的定义,就是实现抛物线上的点到焦点的距离与到准线的距离之间的转换,一般来说,用定义问题都与焦半径问题相关 练习:1.已知抛物线22(0)y px p =>的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且||1F P 、||2F P 、||3F P 成等差数列, 则有 ( ) A .321x x x =+B . 321y y y =+C .2312x x x =+ D. 2312y y y =+[解析]C 由抛物线定义,2132()()(),222p p px x x +=+++即:2312x x x =+.2. 已知点),4,3(A F 是抛物线x y 82=的焦点,M 是抛物线上的动点,当MF MA +最小时,M 点坐标是 ( )A. )0,0(B. )62,3(C. )4,2(D. )62,3(- [解析] 设M 到准线的距离为MK ,则MK MA MF MA +=+|||,当MK MA +最小时,M 点坐标是)4,2(,选C考点2 抛物线的标准方程 题型:求抛物线的标准方程[例2 ] 求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点(-3,2) (2)焦点在直线240x y --=上 解题思路:以方程的观点看待问题,并注意开口方向的讨论. [解析] (1)设所求的抛物线的方程为22y px =-或22(0)x py p =>,∵过点(-3,2) ∴229)3(24⋅=--=p p 或∴2934p p ==或∴抛物线方程为243y x =-或292x y =,前者的准线方程是1,3x =后者的准线方程为98y =-(2)令0x =得2y =-,令0y =得4x =,∴抛物线的焦点为(4,0)或(0,-2),当焦点为(4,0)时,42p=, ∴8p =,此时抛物线方程216y x =;焦点为(0,-2)时22p= ∴4p =,此时抛物线方程28x y =-.∴所求抛物线方程为216y x =或28x y =-,对应的准线方程分别是4,2x y =-=.总结:对开口方向要特别小心,考虑问题要全面 练习:3.若抛物线22y px =的焦点与双曲线2213x y -=的右焦点重合,则p 的值[解析]4132=⇒+=p p4. 对于顶点在原点的抛物线,给出下列条件:①焦点在y 轴上; ②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6; ④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).能使这抛物线方程为y 2=10x 的条件是____________.(要求填写合适条件的序号)[解析] 用排除法,由抛物线方程y 2=10x 可排除①③④,从而②⑤满足条件. 5. 若抛物线的顶点在原点,开口向上,F 为焦点,M 为准线与Y 轴的交点,A 为抛物线上一点,且3||,17||==AF AM ,求此抛物线的方程[解析] 设点'A 是点A 在准线上的射影,则3|'|=AA ,由勾股定理知22|'|=MA ,点A 的横坐标为)23,22(p-,代入方程py x 22=得2=p 或4,抛物线的方程y x 42=或y x 82=考点3 抛物线的几何性质题型:有关焦半径和焦点弦的计算与论证[例3 ]设A 、B 为抛物线px y 22=上的点,且 90=∠AOB (O 为原点),则直线AB 必过的定点坐标为__________.解题思路:由特殊入手,先探求定点位置[解析]设直线OA 方程为kx y =,由⎩⎨⎧==pxy kx y 22解出A 点坐标为)2,2(2k pk p⎪⎩⎪⎨⎧=-=pxy x k y 212解出B 点坐标为)2,2(2pk pk -,直线AB 方程为221)2(2k pk x k pk y ---=+,令0=y 得p x 2=,直线AB 必过的定点)0,2(p总结:(1)由于是填空题,可取两特殊直线AB, 求交点即可;(2)B 点坐标可由A 点坐标用k1-换k 而得。
高中抛物线性质总结

高中抛物线性质总结高中数学中,抛物线是一种重要的二次曲线,具有许多重要的性质。
在学习和理解抛物线的过程中,我们需要研究和掌握这些性质。
本文将总结和介绍高中抛物线的一些重要性质。
首先,抛物线的定义对于理解它的性质至关重要。
抛物线是由一系列平面上满足特定关系的点组成的图形。
它的定义方程可以写成y=ax^2+bx+c的形式,其中a、b和c是实数,且a不等于零。
根据a的正负和b的零或非零,抛物线可以有不同的形状。
第一个要介绍的性质是抛物线的焦点和准线。
抛物线上的所有点到焦点的距离与到准线的距离相等。
这个性质被称为焦准性质,是抛物线最重要的性质之一。
焦点和准线的位置可以通过抛物线的定义方程来确定,其中焦点的坐标可以用a和b表示,准线的方程是x=-b/2a。
第二个要介绍的性质是抛物线的对称性。
抛物线的定点坐标是它的开口朝上或者朝下的端点,被称为顶点。
抛物线以顶点为中轴线对称,也就是说,如果点P(x, y)在抛物线上,那么点P'(-x, y)也在抛物线上。
这个性质可以用定义方程来证明。
第三个要介绍的性质是抛物线的切线和法线。
抛物线上的任意一点P(x, y)处的切线是过点P且与抛物线相切的直线。
切线的斜率等于抛物线在该点的导数。
法线是与切线垂直的直线,它的斜率等于切线的斜率的负倒数。
第四个要介绍的性质是抛物线的拐点。
抛物线在顶点处有一个拐点,也就是说,抛物线在开口朝上或者朝下端点处的切线是水平的。
第五个要介绍的性质是抛物线的焦直径性质。
对于抛物线上的任意一点P(x, y),它到焦点的距离等于它到准线的距离的二倍。
这个性质可以用定义方程和几何性质来证明。
第六个要介绍的性质是抛物线的判别式。
通过判别式可以判断给定的二次方程是否表示一条抛物线,并且可以确定抛物线的开口朝上还是朝下。
判别式的符号取决于二次方程的系数。
如果判别式大于零,那么抛物线开口朝上;如果判别式小于零,那么抛物线开口朝下;如果判别式等于零,那么二次方程表示一条抛物线。
高三抛物线的知识点归纳

高三抛物线的知识点归纳一、抛物线的定义及方程抛物线是二次函数的图像,它的一般方程可以表示为 y = ax^2 + bx+ c。
在这个方程中,a、b、c 是常数,其中 a 决定抛物线的开口方向和大小,b 影响抛物线沿着 x 轴的位置,而 c 则决定了抛物线与y 轴的交点。
二、抛物线的性质1. 开口方向:当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
2. 对称性:抛物线是轴对称图形,对称轴为直线 x = -b/(2a)。
3. 顶点:抛物线的最高点或最低点称为顶点,其坐标可以通过公式(-b/(2a), -Δ/(4a)) 计算得出,其中Δ = b^2 - 4ac 称为判别式。
4. 焦点和准线:对于开口向上或向下的抛物线,可以定义一个焦点和一条准线。
焦点位于距离顶点 a/(4a) 的位置,准线则是与抛物线对称轴平行且距离顶点 a/(2a) 的直线。
三、抛物线的应用1. 物理现象:在物理学中,抛物线常用于描述物体在重力作用下的抛射运动轨迹。
2. 工程建筑:在建筑设计中,抛物线形状常用于拱桥、穹顶等结构,以实现良好的力学性能。
3. 艺术设计:在艺术领域,抛物线因其优美的曲线被广泛应用于雕塑和装饰品的设计。
四、解题技巧1. 确定方程:根据题目条件确定抛物线的一般方程 y = ax^2 + bx + c。
2. 计算顶点:通过公式 (-b/(2a), -Δ/(4a)) 快速求出抛物线的顶点坐标。
3. 判断交点:通过代入 x 值或 y 值,可以求出抛物线与 x 轴或 y轴的交点。
4. 应用对称性:利用抛物线的对称性简化计算,特别是在求解与抛物线相关的最值问题时。
五、例题分析例1:已知抛物线 y = 2x^2 - 4x + 3,求其顶点坐标和对称轴方程。
解:首先计算判别式Δ = b^2 - 4ac = (-4)^2 - 4*2*3 = 16 - 24= -8。
由于Δ < 0,该抛物线与 x 轴无交点。
高中抛物线的基本知识点归纳总结

高中抛物线的基本知识点归纳总结嘿,咱今儿就来聊聊高中抛物线这档子事儿!抛物线啊,就像是天空中划过的一道美丽弧线。
它有自己独特的特点呢!首先就是那对称轴,就像一根定海神针,把抛物线分成了对称的两半。
你说神奇不神奇?它的顶点也是个关键地方,就好比是抛物线的“心脏”,决定了它的位置和形态。
还有那开口方向,向上或者向下,多有意思呀!开口向上的时候,就好像是个积极向上的笑脸;开口向下呢,就有点像是耷拉着脑袋。
说到抛物线的方程,那可是有好几种形式呢!什么一般式、顶点式、交点式,每种都有自己的用处。
一般式就像是个全能选手,啥都能表示;顶点式呢,直接就把顶点的信息告诉你了;交点式更是厉害,能让你一下子就知道抛物线和坐标轴的交点。
咱来举个例子哈,假如有个抛物线,它的方程是啥啥啥,那你就能根据这些知识点去分析它的各种特性。
比如它的对称轴在哪,顶点坐标是啥,开口朝哪儿。
这就像是给了你一把钥匙,能打开抛物线的秘密之门。
你想想,在数学的世界里,抛物线就像是一个小精灵,蹦蹦跳跳地出现在各种问题中。
有时候让你求它的最值,有时候让你找它和其他图形的交点,可好玩啦!学习抛物线可不能马虎,要像对待宝贝一样认真对待它。
每一个知识点都要搞清楚,弄明白,不然它可会给你使小绊子哦!而且啊,抛物线在生活中也有不少应用呢!你看那扔出去的球的轨迹,不就是个抛物线嘛!还有喷泉的水线,不也是抛物线的形状嘛。
总之呢,高中抛物线的这些基本知识点可得好好掌握,这可是打开数学大门的重要钥匙之一呀!别小瞧了它,它的用处大着呢!你要是能把它玩转了,那数学成绩肯定能更上一层楼啦!怎么样,是不是觉得抛物线挺有意思的?赶紧去好好研究研究吧!。
高三抛物线知识点归纳总结
高三抛物线知识点归纳总结抛物线是数学中的一种曲线,它在高三数学课程中占据着重要的地位。
掌握抛物线的相关知识,对于高三学生来说至关重要。
本文将对高三抛物线的知识点进行归纳总结,以帮助学生更好地理解和应用这一概念。
一、抛物线的基本定义和性质抛物线是一条平面曲线,其定义为到一个定点距离与到一条直线距离相等的点的轨迹。
抛物线具有以下基本性质:1. 对称性:抛物线关于其对称轴对称。
2. 定点和定线:抛物线上的每个点到焦点的距离与到直线(准线)的距离相等。
3. 焦距和准线:焦距是定点到准线的距离,准线是焦点垂直平分切线的直线。
4. 弧长和面积:抛物线的弧长和面积计算可以通过积分得到。
二、抛物线的标准方程和一般方程抛物线的标准方程是 y = ax^2 + bx + c,其中 a、b、c 是常数,a ≠ 0。
通过标准方程我们可以了解抛物线的开口方向、顶点坐标以及对称轴的方程。
一般方程是经过对标准方程的平移、旋转、伸缩等变换得到的,形式为 Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0。
通过一般方程可以确定抛物线的具体形状和位置。
三、抛物线的性质和应用1. 高考重点:掌握抛物线的性质对于应对高考数学考试非常重要。
在高考中,抛物线相关的题目通常包括求焦点、顶点、对称轴、切线等问题,也可能涉及到与其他图形的求交点等问题。
2. 物理应用:抛物线在物理学中有广泛的应用,描述了自由落体、抛体运动等过程。
理解抛物线的性质和应用可以帮助我们更好地理解和解决与自由落体和抛体运动相关的物理问题。
3. 工程应用:抛物线的形状具有美学上的优点,因此在建筑和设计中经常被应用。
例如,拱桥的形状和抛物线非常相似,这是因为抛物线形状具有均匀分散应力的特点,是一种力学上最优的形状。
四、抛物线的图像绘制和计算1. 使用计算机软件绘制抛物线的图像可以辅助我们更好地理解抛物线的形式和变化规律。
常用软件如Geogebra、MATLAB等都可以绘制抛物线的图像。
超详细抛物线知识点归纳总结
引言概述:抛物线是高中数学中的重要内容,具有广泛的应用领域,包括物理、工程、经济等。
本文将对抛物线的相关知识进行归纳总结,从定义、性质、方程、焦点与准线、图形以及应用等多个方面进行详细的阐述。
正文内容:一、定义和性质1.抛物线的定义:抛物线是平面内一点到固定点和固定直线的距离之比等于常数的轨迹。
2.焦点与准线的关系:焦点是抛物线上所有点到准线的距离相等的点。
3.对称性:抛物线具有关于准线对称和关于纵轴对称的性质。
4.切线方程:抛物线上任意一点的切线方程为y=mx+c,其中m 是斜率,c是截距。
5.切线与法线的关系:切线与法线互为垂线且交于抛物线上的点。
二、方程和焦点、准线1.标准方程:抛物线的标准方程为y=ax^2+bx+c,其中a、b、c 是常数,a≠0。
2.顶点坐标:抛物线的顶点坐标为(b/2a,f(b/2a)),其中f(x)=ax^2+bx+c。
3.焦点坐标:抛物线的焦点坐标为(h,f(h+1/4a)),其中h=b/2a。
4.准线方程:抛物线的准线方程为y=f(h+1/4a)1/(4a)。
三、图形展示和性质分析1.抛物线的开口方向:a的正负决定抛物线的开口方向,a>0时开口向上,a<0时开口向下。
2.抛物线的焦点位置:焦点在抛物线的顶点上方,焦点的纵坐标为f(h+1/4a)+1/(4a)。
3.抛物线的对称轴:对称轴是通过抛物线的顶点和焦点的直线。
4.抛物线的顶点与焦点距离:顶点与焦点的距离等于抛物线的准线长。
四、应用领域1.物理学应用:抛物线可以描述自由落体运动、抛射运动等。
2.工程学应用:抛物线常用于建筑物的设计、桥梁的设计等。
3.经济学应用:抛物线可以用来表示成本、收入和利润的函数关系。
4.生物学应用:抛物线可用于描述某些生物体运动的轨迹。
5.计算机图像处理应用:抛物线可以用于图像处理算法中的平滑处理。
五、总结本文对抛物线的定义、性质、方程、焦点与准线、图形以及应用进行了详细的阐述。
高三抛物线知识点大全
高三抛物线知识点大全一、定义和性质抛物线是指平面上一个动点到一个固定点的距离和到一条固定直线的距离之差等于一个常数的轨迹图形。
具体而言,抛物线由一个焦点F和一条直线(直线称为准线,不过关于准线也可以成为直轴)组成。
二、基本方程抛物线的基本方程为:y² = 2px (p≠0)其中p为焦点到准线的距离(也称为焦距),p的绝对值表示抛物线开口的方向和大小。
三、焦点与准线之间的关系1. 焦点在抛物线的顶点上方并且与准线不相交。
2. 焦点与准线的距离等于顶点到准线的距离。
四、顶点的坐标抛物线的顶点坐标为(0,0)。
五、对称轴对称轴是指过抛物线顶点且垂直于准线的直线。
对称轴的方程为x = 0。
六、焦点的坐标焦点的坐标为(p,0)。
七、准线方程准线的方程为y = -p。
八、参数变换抛物线方程y² = 4ax可以通过参数变换的方式转化为y² = 2px 的形式。
其中参数变换公式如下:x = at²y = 2at九、焦距与顶点到准线的距离的关系焦距绝对值的平方等于抛物线顶点到准线的距离。
十、焦点和顶点到准线距离的关系焦点与顶点到准线的距离之比等于1:2。
十一、切线斜率抛物线上一点处的切线斜率等于该点的横坐标除以2p。
十二、离心率离心率是一个用于衡量抛物线形状的指标,定义为焦点到准线的距离与焦距之比,即e = √(1 + (1/p^2))。
十三、焦点和准线的位置关系焦点在准线之上时,抛物线开口朝上;焦点在准线之下时,抛物线开口朝下。
十四、抛物线与直线的关系1. 抛物线与x轴交点:若y = 0时,解方程y² = 2px,可求得两个交点。
2. 抛物线与y轴交点:若x = 0时,解方程y² = 2px,可求得一个交点。
十五、抛物线与直线的切点将直线方程代入抛物线方程,解方程组可以求得抛物线与直线的切点。
十六、抛物线的焦半径焦半径是指从焦点引出一个与抛物线相切的直线段。
高中抛物线知识点总结
高中抛物线知识点总结一、什么是抛物线?抛物线是一种拥有高度对称性、边缘平滑、具有开口方向的平面二次曲线。
其名称源于把一侧较高的水平面像把物体抛掷出去一样,掉落到另一侧更低的水平面上,掉落的过程恰好遵循该曲线的路径。
二、抛物线的基本形态在直角坐标系中,标准形式的抛物线方程为:y = ax² + bx + c其中 a、b、c 为常数,且 a 不为零。
该方程的图形为开口朝上的抛物线,其顶点坐标为 (-b/2a, c - b²/4a)。
如果 a > 0,则该曲线开口朝上;如果 a < 0,则该曲线开口朝下。
除此之外,还有两种常见的抛物线形态:1. 齐肯多夫抛物线齐肯多夫抛物线是由一个旋转的抛物面所形成的曲线,其方程为:y² = 2px其中 p 为焦距(负数表示开口朝左,正数表示开口朝右),(0,0) 为对称中心。
该曲线的端点无限靠近于(但不包括)焦点,因此被广泛地应用于卫星发射及其他长距离往返问题的设计与计算中。
2. 椭圆弧椭圆曲线是一种非均匀的抛物线,其形状与椭圆相似,其方程为:y = sqrt(2px - x²)或 y = -sqrt(2px - x²)其中 p 为焦距,(-p, 0)、(0, ±sqrt(2p)) 分别为焦点。
该曲线的性质与抛物线类似,但应用范围更为广泛,包括范畴涉及无线电、计算机密码学、以及量子密码学等领域。
三、抛物线的性质1. 对称性抛物线具有以其对称中心为轴的对称性,在图形上表现为抛物线两侧约为相等,且各点关于对称轴对称。
2. 焦点特性抛物线的一大特征是控制其形态与对称性的焦点,图形上表现为焦点与对称轴距离等于焦距(将焦点与对称轴按比例缩放便不会改变其形态,但不改变高度与焦距的比值)。
3. 弧长计算与其他曲线一样,抛物线的弧长可通过分段累加(逼近)或积分求解。
下面介绍积分方法:设 y = f(x) 为开口朝上的抛物线,x ∈ [a, b],其弧长公式为:L = ∫[a,b] sqrt(1 + [f'(x)]²) dx其中 sqrt 表示平方根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中化学的“抛物线”
绍兴一中分校吴文中
1、在一定温度下,冰醋酸加水稀释过程中,加水的质量与溶液的导电能力如图所示,溶液
的导电能力为什么先增大后减小?
【解析】纯醋酸不电离,当加入水之后,在水分子作用下醋酸开始电离,溶液中氢离子浓度逐渐增加,此时醋酸的电离并没有达到平衡状态,当继续加水稀释时,促进电离,但当加水量增加到一定程度时,溶液中离子增加没有体积增加得多,氢离子浓度反而减小,所以溶液
的导电能力先增大后减小。
显然,b点以后都是醋酸电离平衡点。
2、将镁条投入到盛有盐酸的敞口容器中,产生氢气的速率如图所示,在t
时刻之前和
2
之后,影响反应速率的主要因素有何不同。
【解析】反应开始时,由于镁条和盐酸反应放出热量,使温度升高,速率加快,此时温度对化学反应速率的影响更大,化学反应速率增大;随着反应的进行,盐酸浓度越来越小,速率也就越来越小,t
时刻以后影响反应速率的主要因素是浓度的影响。
2
3、可逆反应A(g)+B(g)== C(g)+D(g);ΔH<0,反应从反应物开始,气体C 的百分含量随温度变化如图所示,为什么C的百分含量随温度升高先增大后减小?
【解析】t
时刻以前,反应尚未达到平衡,温度升高,反应速率加快,气体C的百分含量增
3
时刻达到平衡,由于该反应为放热反应,继续升大,此时该化学平衡并未达到平衡状态;t
3
高温度,平衡向逆反应方向移动,C的百分含量反而逐渐减小。
4、酶是蛋白质,具有蛋白质的特性,酶能催化很多化学反应。
该图可以表示为酶参加
的反应中,温度与反应速率的关系,试解释图中曲线变化的原因。
【解析】随温度升高,酶催化作用显著,加快反应速率;A点催化活性最好,但温度继续升
高,蛋白质受热变性,失去翠花活性,使反应速率下降。
即只有在某一温度范围内,酶才能发挥最大的催化活性。
5、反应条件对反应物和生成物总能量的变化。
【解析】在反应物点燃或者加热的条件下,反应物的能量增大,此时为了断开旧的化学键,之后,由于生成物的能量比较低,总化学反应为放热反应。
6、类似的问题
例题:在如下图所示的实验装置中,当A、B、C分别为以下不同组合的物质时,回答有关问题:
1、利用该装置可以制备某些气体并验证他们的性质:
(1)当A为盐酸、B为石灰石、C为澄清石灰水时,小试管中的现象是:___________.
(制备的是CO
2
,通入澄清石灰水先变浑浊后变澄清)
(2)当A是食盐水、B为电石、C为溴的CCl
4
溶液时,小试管中的现象是:________.
(制备的是C
2H
2
,能使溴的CCl
4
溶液褪色)
2.(1)若A为硫酸、B为Na
2SO
3
、C为品红溶液,实验时当小试管中出现现象时,
向烧杯中加入沸水,试管中的现象有何变化?
(2)若A为CH
3COOH、B为Na
2
CO
3
、C为C
6
H
5
ONa,实验时当小试管中出现现
象时,向烧杯中加入沸水,试管中的现象有何变化?
提示:小试管中开始析出苯酚,溶液变浑浊,加热后苯酚溶于水,溶液变澄清。
(3)若A为浓氨水、B为氧化钙、C为AgNO
3
和乙醛的混合溶液,实验时当小试管中出现沉淀又恰好溶解时,向烧杯中加入热水,试管中的现象有何变化?装置D的作用是?。