不等式知识点
高中不等式全套知识点总结

高中不等式全套知识点总结一、不等式的基本概念1. 不等式定义不等式是指两个数量在大小上的关系,包含大于、小于、大于等于、小于等于四种关系。
一般用符号“>”表示大于,“<”表示小于,“≥”表示大于等于,“≤”表示小于等于。
2. 不等式的解不等式的解是指满足不等式关系的所有实数集合,解集可以是一个区间、一个集合或者一个无穷集合。
3. 不等式的性质(1)两个不等式如果左右两边分别相等,那么其关系也相等;(2)两个不等式如果相互交换左右两边,那么关系会相反;(3)不等式两边同时加或减同一个数,不等式关系不变;(4)不等式两边同时乘或除同一个正数,不等式关系不变;(5)不等式两边同时乘或除同一个负数,不等式关系反转。
二、一元一次不等式1. 线性不等式线性不等式的一般形式为 ax+b>c 或者ax+b≥c,其中a≠0。
2. 一次不等式的解法(1)基本不等式直接解法:按照不等式的性质逐步解题;(2)图像法:将不等式转化为直线或者直线段的图像,然后通过图像解题;(3)分情况讨论法:根据不等式的取值范围分情况进行讨论,再分别求解。
3. 一次不等式的应用(1)生活中常见的线性不等式问题,比如买苹果不超过20元;(2)工程建设中的线性不等式问题,比如某公式里的参数要求取值范围。
三、一元二次不等式1. 二次不等式定义二次不等式的一般形式为 ax²+bx+c>0 或者ax²+bx+c≥0,其中a≠0。
2. 一元二次不等式解法(1)解法一:配方法、图像法;(2)解法二:利用一元二次不等式的图像特点;3. 一元二次不等式的应用(1)生活中常见的二次不等式问题,比如某项业务的收入和支出之间的关系;(2)工程建设中的二次不等式问题,比如求最大值、最小值。
四、多项式不等式1. 多项式不等式的定义多项式不等式是指由多项式构成的不等式,一般形式为 f(x)>0 或者f(x)≥0。
2. 多项式不等式的解法(1)概念法:直接按照多项式不等式的定义和性质进行解题;(2)函数法:将多项式在坐标系中的图像出发,进行解题。
不等式知识点

不等式知识点1.不等式的性质⑴(对称性或反身性)a b b a >⇔<;⑵(传递性)a b b c a c >>⇒>,;⑶(可加性)a b a c b c >+>+⇒,此法则又称为移项法则;(同向可相加)a b c d a c b d ⇒>>+>+,⑷(可乘性)0a b c ac bc ⇒>>>,; 0a b c ac bc ⇒><<,.(正数同向可相乘)00a b c d ac bd ⇒>>>>>,⑸(乘方法则)00n n a b n N a b >>∈⇔>>() ⑹(开方法则)0,20a b n N n >>∈⇔>>(≥) ⑺(倒数法则)110a b ab a b⇒>><, 掌握不等式的性质,应注意:条件与结论间的对应关系,是“⇒”符号还是“⇔”符号;运用不等式性质的关键是不等号方向的把握,条件与不等号方向是紧密相连的。
2. 重要不等式1.基本不等式:0,0a b >>,则2b a +≥ab (当且仅当a =b 时取“=”号) 注:该不等式可推出(不等式链):当a 、b 为正数时,222)11112a b ab a b a b a b++++其中,亦可写作? (当且仅当a = b 时取“=”号)即:平方平均数≥算术平均数≥几何平均数≥调和平均数推广:①()a b c ab bc ca a b R 222++≥++∈,,当且仅当时取等号。
a b c == ② 000a b m n >>>>,,,则1b b m a n a a a m b n b++<<<<++ ③ 基本不等式的推广:若0(1,2,,)i a i n >=L12n a a a n+++L 当且仅当12n a a a ===L 时取“=”号; ④ 若0t >,则12t t +≥;若0t <,则12t t +≤- ;⑤ 2(0,0)a b a b b a+≥>>,当且仅当a b =时取得等号。
不等式知识点大全

不等式知识点大全一、不等式的基本概念:1.不等式的定义:不等式是一个包含不等号(>,<,≥,≤)的数学语句。
2.不等式的解集:解集是满足不等式的所有实数的集合。
3.不等式的求解方法:解不等式的方法主要有代入法、分析法、图像法和区间法等。
二、一元一次不等式:1.一元一次不等式的定义:一元一次不等式是指只含有一个未知数的一次函数与一个实数的大小关系。
2.一元一次不等式的解集:一元一次不等式的解集可以用一个开区间或闭区间表示。
三、二次不等式:1.二次不等式的定义:二次不等式是指含有一个未知数的二次函数与一个实数的大小关系。
2.二次不等式的解集:二次不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
四、绝对值不等式:1.绝对值不等式的定义:绝对值不等式是指含有绝对值符号的不等式。
2.绝对值不等式的解集:绝对值不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
五、分式不等式:1.分式不等式的定义:分式不等式是指含有一个未知数的分式与一个实数的大小关系。
2.分式不等式的解集:分式不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
六、三角不等式:1.三角不等式的定义:三角不等式是指三角函数与一个实数之间的大小关系。
2.三角不等式的解集:三角不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
七、复合不等式:1.复合不等式的定义:复合不等式是由两个或多个不等式通过与或或连接构成的不等式。
2.复合不等式的解集:复合不等式的解集是满足所有不等式的实数的交集或并集。
八、常用的不等式:1.平均不等式:包括算术平均不等式、几何平均不等式、加权平均不等式等。
2.布尔不等式:包括与或非不等式和限制条件不等式等。
3.等价不等式:等式两边取绝对值后变为不等式。
4.单调性不等式:利用函数单调性性质证明不等式。
5.导数不等式:利用函数的导数性质证明不等式。
6.积分不等式:利用积分性质及定积分的性质来推导不等式。
高中不等式知识点总结

高中不等式知识点总结摘要:一、不等式的基本概念1.不等式的定义2.不等式的符号表示二、不等式的基本性质1.对称性2.传递性3.可加性4.乘法原则三、常见不等式的解法1.作差比较法2.作商比较法3.韦达定理四、实际应用1.生活中的应用2.数学中的应用正文:一、不等式的基本概念不等式是数学中的一种基本概念,用于表示两个数的大小关系。
不等式的定义很简单,就是一个比较式,用符号">"或"<"来表示大小关系。
例如,x > y表示x大于y,x < y表示x小于y。
二、不等式的基本性质不等式有许多基本性质,这里我们介绍四个常见的性质。
1.对称性:如果x > y,则y < x。
这就是说,不等式两边同时改变符号,不等式的方向不会改变。
2.传递性:如果x > y,且y > z,则x > z。
这就是说,如果一个数大于另一个数,而另一个数又大于第三个数,那么第一个数一定大于第三个数。
3.可加性:如果x > y,且a > 0,则x + a > y + a。
这就是说,如果一个数大于另一个数,而加上的一个正数,那么第一个数一定大于第二个数。
4.乘法原则:如果x > y,且m > 0,则x * m > y * m。
这就是说,如果一个数大于另一个数,而乘上的一个正数,那么第一个数一定大于第二个数。
三、常见不等式的解法有许多方法可以解不等式,这里我们介绍三种常用的方法。
1.作差比较法:如果x > y,则x - y > 0。
我们可以通过作差来比较两个数的大小。
2.作商比较法:如果x > y,则x / y > 1。
我们可以通过作商来比较两个数的大小。
3.韦达定理:如果x > y,则(x + y) / 2 > (x - y) / 2。
我们可以通过韦达定理来比较两个数的大小。
初中数学不等式知识点大全

初中数学不等式知识点大全一、不等式的基本概念1.不等式的定义:不等式是数学中表示两个数的大小关系的一种数学符号表示法。
2.不等式符号的意义:"<"表示小于、">"表示大于、"<="表示小于等于、">="表示大于等于。
3.一元一次不等式、二元一次不等式和多变量不等式的定义和性质。
4.不等式的解集:表示满足不等式的全部解的集合,可以用数轴表示。
二、不等式的性质1.不等式的传递性:如果a<b,b<c,则a<c。
2.不等式两边加减同一个数,不影响不等关系的大小。
3.不等式两边乘除同一个正数,不影响不等关系的大小。
4.不等式两边乘除同一个负数,不等关系会发生改变。
5.不等式两边取倒数时,要注意变号问题。
6.乘以不等式时,要考虑所乘以的数的正负情况。
三、不等式的解法1.第一类不等式(一元一次不等式)的解法:根据不等式的性质,将不等式中的未知数移到一边,得到关于未知数的集合表示的解,进而求解交集、并集或全集。
2.第二类不等式(一元二次不等式)的解法:将不等式变形为一元二次函数的图像问题,通过观察函数图像,确定不等式的解集。
3.系统不等式的解法:将多个不等式作为一个整体进行考虑,得到多个不等式的交集或并集形式,再求解。
四、一些常见的数学不等式1.加减法不等式:例如2x+3>7,根据性质将未知数移到一边,得到解集x>22.乘除法不等式:例如3x/5>=6,根据性质将未知数移到一边,得到解集x>=10。
3.绝对值不等式:例如,3x+5,<7,根据绝对值的性质进行分段讨论,得到解集-4<x<24.开方不等式:例如√(x-1)>3,根据开方的定义和性质进行讨论,得到解集x>10。
5.取整不等式:例如[x]>2,根据整数函数的定义和性质进行讨论,得到解集x>3五、不等式的应用1.不等式在图像问题中的应用:例如求一元一次不等式的解集时,可以将不等式表示的区间在数轴上进行标注,直观地表示解集。
完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。
②传递性:a>b。
b>c则a>c。
③可加性:a>b等价于a+c>b+c,其中c为任意实数。
同向可加性:a>b,c>d,则a+c>b+d。
异向可减性:a>b,cb-d。
④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。
⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。
异向正数可除性:a>b>0,0bc。
a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。
⑧倒数法则:a>b>0,则1/a<1/b。
2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。
a^2+b^2>=2ab,当且仅当a=b时取等号。
a+b/2>=√ab,当且仅当a=b时取等号。
a+b+c/3>=∛abc,当且仅当a=b=c时取等号。
a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。
a+b+c>=3√abc,当且仅当a=b=c时取等号。
a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。
a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。
3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。
a+b)/2<=√(a^2+b^2),对任意实数a,b成立。
a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。
a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。
a+b)/2>=√ab,对任意正实数a,b成立。
不等式知识点总结
不等式知识点总结一、不等式的基本概念。
1. 不等式的定义。
- 用不等号(>、≥、<、≤、≠)表示不等关系的式子叫做不等式。
例如:3x + 2>5,x - 1≤slant2x等。
2. 不等式的解与解集。
- 不等式的解:使不等式成立的未知数的值叫做不等式的解。
例如对于不等式x+1 > 0,x = 1是它的一个解,因为1 + 1>0成立。
- 不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
例如不等式x - 2>0的解集是x>2,这表示所有大于2的数都是这个不等式的解。
3. 解不等式。
- 求不等式解集的过程叫做解不等式。
例如解不等式2x+3 < 7,通过移项可得2x<7 - 3,即2x<4,再两边同时除以2得到x < 2,这个过程就是解不等式。
二、不等式的基本性质。
1. 性质1(对称性)- 如果a>b,那么b < a;如果b < a,那么a>b。
例如5>3,那么3 < 5。
2. 性质2(传递性)- 如果a>b,b>c,那么a>c。
例如7>5,5>3,那么7>3。
3. 性质3(加法法则)- 如果a>b,那么a + c>b + c。
例如3>1,那么3+2>1 + 2,即5>3。
- 推论:如果a>b,c>d,那么a + c>b + d。
例如4>2,3>1,那么4 + 3>2+1,即7>3。
4. 性质4(乘法法则)- 如果a>b,c>0,那么ac>bc;如果a>b,c < 0,那么ac < bc。
例如2>1,当c = 3时,2×3>1×3,即6>3;当c=-1时,2×(-1)<1×(-1),即-2 < - 1。
高中不等式知识点总结
高中不等式知识点总结一、知识点1.不等式性质比较大小方法:(1)作差比较法(2)作商比较法不等式的基本性质①对称性:a > bb > a②传递性: a > b, b > ca > c③可加性: a > b a + c > b + c④可积性: a > b, c > 0ac > bc;a > b, c < 0ac < bc;⑤加法法则: a > b, c > d a + c > b + d⑥乘法法则:a > b > 0, c > d > 0 ac > bd⑦乘方法则:a > b > 0, an > bn (n∈N)⑧开方法则:a > b > 0,2.算术平均数与几何平均数定理:(1)如果a、b∈R,那么a2 + b2 ≥2ab(当且仅当a=b时等号)(2)如果a、b∈R+,那么(当且仅当a=b时等号)推广:如果为实数,则重要结论1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;(2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。
3.证明不等式的常用方法:比较法:比较法是最基本、最重要的方法。
当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。
综合法:以已知或已证明的不等式为基础,根据不等式的性质推导出待证明的不等式。
平均不等式常用于综合法的标度。
分析方法:不等式两边的关系不够清晰。
通过寻找不等式成立的充分条件,对待证明的不等式进行逐步转化,直到找到一个容易证明或已知成立的结论。
4.不等式的解法(1) 不等式的有关概念同解不等式:如果两个不等式有相同的解集,那么这两个不等式称为同解不等式。
同解变形:当一个不等式转化为另一个不等式时,如果这两个不等式是同解不等式,那么这种变形称为同解变形。
初中数学不等式知识点大全
初中数学不等式知识点大全知识点1:不等式不等式是用不等号(。
≥、<、≤、≠)表示不等关系的式子。
常用的表示不等关系的语言及符号有:1.大于、比……大、超过。
2.小于、比……小、低于。
<;3.不大于、不超过、至多:≥;4.不小于、不低于、至少。
≤;5.正数。
6.负数:<;7.非负数:≥;8.非正数:≤。
例1中是不等式的有-1>2,3x≥-1,3x-4<2y,3x-5=2x+2,a^2+2≥0,a^2+b^2≠c^2.例2中不能用不等式表示的是m+n等于。
练1中是不等式的有5>x,3a+4b>y,2a+3≤7,x^2+1≥8.练2中(1)的含义是x^2大于等于0,(2)的含义是-x小于等于0.知识点2:不等式的基本性质不等式有以下基本性质:1.不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
即如果a>b,那么a+c>b+c,a-c>b-c。
2.不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
即如果a>b,c>0,那么ac>bc,a/b>b/b。
3.不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
即如果a>b,c<0,那么ac<bc,a/b<b/a。
4.如果a>b,那么b<a。
5.如果a>b,b>c,那么a>c。
例1中由a-3<b+1可得到的结论是a<b+4.例2中如果a>b,那么下列变形错误的是2-2a>2-2b。
例3中正确的判断是若a<b,则a^2<b^2.例4中若a1,a+b<ab。
例1】解下列不等式组,结果正确的是()B.不等式组x7的解集是x 1解析:用数轴法解不等式组,先求出每一个不等式的解集,再找出它们的公共部分。
对于不等式组x7的解集是x 1x 1其解集为x7,x1,即x7.结果正确的是B.练1】嘉年华小区计划新建50个停车位,已知新建1个地上停车位和1个地下停车位需0.7万元,新建3个地上停车位和2个地下停车位需1.6万元。
初中数学不等式知识点
初中数学不等式知识点一、不等式的定义与性质1.不等关系:对于任意两个实数a和b,只有以下三种情况之一成立:a>b,a=b,a<b。
2.不等式:由不等关系得到的表达式称为不等式。
3.不等式的解:使得不等式成立的数字的范围。
4.不等式的性质:a)若a>b且b>c,则a>c。
b)若a>b,则a+c>b+c。
c) 若a>b且c>0,则ac>bc。
d) 若a>b且c<0,则ac<bc。
二、一元一次不等式1.解一元一次不等式的方法:a)变形法:根据不等式性质对不等式进行变形,以求得解的范围。
b)试值法:取不等式两边的中心值,带入不等式进行判断。
c)图解法:将不等式转化为数轴上的表示,并用图形确定解的范围。
2.一元一次不等式的特殊情况:a)严格不等式:不等号中的大于或小于号是有实际意义的,例如x>3b)非严格不等式:不等号中的大于等于或小于等于号是有实际意义的,例如x≥33.一元一次不等式的解集表示方法:a)区间表示法:解集用区间表示,如(3,+∞)表示大于3的所有实数。
b)不等式表示法:通过不等式的形式表示解集,如x>3三、一元二次不等式1.解一元二次不等式的方法:a)求解开头为正负的二次不等式:将二次不等式化为二次方程,再通过求解二次方程得到解的范围。
b)求解开头为非负的二次不等式:直接观察二次不等式的开头,确定解的范围。
2.一元二次不等式的特殊情况:a)严格不等式:不等号中的大于或小于号是有实际意义的,例如x^2>4b)非严格不等式:不等号中的大于等于或小于等于号是有实际意义的,例如x^2≥43.一元二次不等式的解集表示方法:a)区间表示法:解集用区间表示,如(-∞,-2)∪(2,+∞)表示不在(-2,2)范围内的所有实数。
b)不等式表示法:通过不等式的形式表示解集,如x<-2或x>2四、两个不等式的关系1. 不等式的加减乘除运算:若a>b且c>0,则有a+c>b+c、ac>bc (或ac<bc)、a/c>b/c(或a/c<b/c)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章:不等式
1、0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.
比较两个数的大小可以用相减法;相除法;平方法;开方法;倒数法等等。
2、不等式的性质: ①a b b a >⇔<;②,a b b c a c >>⇒>;③a b a c b c >⇒+>+;
④,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<;⑤,a b c d a c b d >>⇒+>+; ⑥0,0a b c d ac bd >>>>⇒>;⑦()0,1n
n
a b a b n n >>⇒>∈N >;
⑧)0,1a b n n >>⇒>∈N >.
3、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式.
4、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:
判别式24b ac ∆
=-
0∆> 0∆= 0∆<
二次函数
2
y ax bx c =++
()0a >的图象
一元二次方程2
0ax
bx c ++=
()0a >的根
有两个相异实数根
1,2x =
()12x x < 有两个相等实数根
122b x x a
==-
没有实数根
一元二次不等式的解集
20ax bx c ++>
()0a >
{}
1
2
x x x x x <>或
2b x x a ⎧⎫≠-⎨⎬⎩
⎭
R
20ax bx c ++<
()0a >
{}1
2x x
x x <<
∅
∅
5、二元一次不等式:含有两个未知数,并且未知数的次数是1的不等式.
6、二元一次不等式组:由几个二元一次不等式组成的不等式组.
7、二元一次不等式(组)的解集:满足二元一次不等式组的x 和y 的取值构成有序数对(),x y ,
所有这样的有序数对(),x y 构成的集合.
8、在平面直角坐标系中,已知直线0x y C A +B +=,坐标平面内的点()00,x y P .
①若0B >,000x y C A +B +>,则点()00,x y P 在直线0x y C A +B +=的上方. ②若0B >,000x y C A +B +<,则点()00,x y P 在直线0x y C A +B +=的下方.
9、在平面直角坐标系中,已知直线0x y C A +B +=.
①若0B >,则0x y C A +B +>表示直线0x y C A +B +=上方的区域;0x y C A +B +<表示直线0x y C A +B +=下方的区域.
②若0B <,则0x y C A +B +>表示直线0x y C A +B +=下方的区域;0x y C A +B +<表示直线0x y C A +B +=上方的区域.
10、线性约束条件:由x ,y 的不等式(或方程)组成的不等式组,是x ,y 的线性约束条件.
目标函数:欲达到最大值或最小值所涉及的变量x ,y 的解析式. 线性目标函数:目标函数为x ,y 的一次解析式.
线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题. 可行解:满足线性约束条件的解(),x y .
可行域:所有可行解组成的集合.
最优解:使目标函数取得最大值或最小值的可行解.
11、设a 、b 是两个正数,则2
a b
+称为正数a 、b
a 、
b 的几何平均数. 12、均值不等式定理: 若0a >,0b >
,则a b +≥
,即2
a b
+≥ 13、常用的基本不等式:
①()2
2
2,a b ab a b R +≥∈;
②()22
,2
a b ab a b R +≤∈;
③()20,02a b ab a b +⎛⎫
≤>> ⎪⎝⎭;④()2
22,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭
.
14、极值定理:设x 、y 都为正数,则有
⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值2
s .
⑵若xy
p
=(积为定值),则当x y =时,和x y +取得最小值。