第三章-------热力学第二定律主要公式及其适用条件

合集下载

《物理化学》第三章 热力学第二定律PPT课件

《物理化学》第三章 热力学第二定律PPT课件

例一:理想气体自由膨胀
原过程:Q=0,W=0,U=0, H=0
p2,V2
体系从T1,p1,V1 T2, 气体
真空
复原过程:
复原体系,恒温可逆压缩
WR
RT1
ln
V2 ,m V1,m
环境对体系做功
保持U=0,体系给环境放热,而且 QR=-WR
表明当体系复原时,在环境中有W的功变为Q的热,因 此环境能否复原,即理想气体自由膨胀能否成为可逆 过程,取决于热能否全部转化为功,而不引起任何其 他变化。
它们的逆过程都不能自动进行。当借助外力,系统 恢复原状后,会给环境留下不可磨灭的影响。
•化学反应 Zn+H2SO4等?
如图是一个典型的自发过程
小球
小球能量的变化:
热能
重力势能转变为动能,动能转化为热能,热传递给地面和小球。
最后,小球失去势能, 静止地停留在地面。此过程是不可逆转的。 或逆转的几率几乎为零。
能量转化守恒定律(热力学第一定律)的提出,根本上宣布 第一类永动机是不能造出的,它只说明了能量的守恒与转化及 在转化过程中各种能量之间的相互关系, 但不违背热力学第一 定律的过程是否就能发生呢?(同学们可以举很多实例)
热力学第一定律(热化学)告诉我们,在一定温度 下,化学反应H2和O2变成H2O的过程的能量变化可用U(或H) 来表示。
热力学第二定律(the second law of thermodynamics)将解答:
化学变化及自然界发生的一切过程进行 的方向及其限度
第二定律是决定自然界发展方向的根本 规律
学习思路
基本路线与讨论热力学第一定律相似, 先从人们在大量实验中的经验得出热力学第 二定律,建立几个热力学函数S、G、A,再 用其改变量判断过程的方向与限度。

第三章 热力学第二定律

第三章 热力学第二定律

第三章热力学第二定律热力学第一定律过程的能量守恒热力学第二定律过程的方向和限度§3.1 热力学第二定律(1)过程的方向和限度自发过程:体系在没有外力作用下自动发生的变化过程,其有方向和限度。

例如:水位差、温度差、压力差等引起的变化过程。

自发过程,有做功能力方向:始态终态反自发过程,需消耗外力平衡状态限度:始态终态无做功能力自发过程的共同特征:不可逆性(2)热力学第二定律的表达式经典表述:人们不能制造一种机器(第二类永动机),这种机器能循环不断地工作,它仅仅从单一热源吸取热量均变为功,而没有任何其它变化。

一般表述:第二类永动机不能实现。

§3.2 卡诺循环1824年,法国工程师卡诺(Carnot)使一个理想热机在两个热源之间,通过一个特殊的可逆循环完成了热→功转换,给出了热机效率表达式。

这个循环称卡诺循环。

(1)卡诺循环过程设热源温度T1 > T2,工作物质为理想气体。

卡诺循环1. 恒温可逆膨胀(A → B ):0U 1=∆ 12111V V lnnRT W Q == 2. 绝热可逆膨胀(B → C ):0q =, )T T (nC U W 21V 22-=∆-=3. 恒温可逆压缩(C → D ):0U 3=∆, 342322V V lnnRT W q Q ==-= 4. 绝热可逆压缩(D → A ):0q =, )T T (nC U W 12V 44-=∆-=整个循环过程的总功为:34212112V 34221V 1214321V Vln nRT V V lnnRT )T T (nC V Vln nRT )T T (nC V V ln nRT W W W W W +=-++-+=+++= 热机循环一周有:0U =∆, W q Q Q Q Q 2121=-=+=热机效率:1213421211V V ln nRT V Vln nRT V V lnnRT Q W+==η对于绝热可逆膨胀:k12312V V T T -⎪⎪⎭⎫ ⎝⎛=对于绝热可逆压缩: k14121V V T T-⎪⎪⎭⎫ ⎝⎛=比较得:1423V V V V =或 4312V V V V = 则: 121121Q Q Q T T T +=-=η η— 卡诺热机效率(2) 卡诺定理卡诺定理:一切工作于高温热源T 1与低温热源T 2之间的热机效率,以可逆热机的效率为最大。

第三章 热力学第二定律重要公式

第三章 热力学第二定律重要公式

第三章 热力学第二定律1. 卡诺定理卡诺热机效率hc h c h 11T T Q Q Q W−=+=−=η 卡诺定理:工作于高温热源T h 与低温热源T c 之间的热机,可逆热机效率最大。

卡诺定理推论:所有工作于高温热源T h 与低温热源T c 之间的可逆热机,其热机效率都相等,与热机的工作物质无关。

卡诺循环中,热温商之和等于零0cch h =+T Q T Q 任意可逆循环热温商之和也等于零,即0R=⎟⎟⎠⎞⎜⎜⎝⎛∑i iiT Q 或 0δR =⎟⎠⎞⎜⎝⎛∫T Q 2. 热力学第二定律的经典表述克劳休斯说法:不可能把热由低温物体传到高温物体, 而不引起其他变化。

开尔文说法:不可能从单一热源吸热使之完全转化为功, 而不发生其他变化。

热力学第二定律的各种说法的实质:断定一切实际过程都是不可逆的。

各种经典表述法是等价的。

3. 熵的定义TQ S revδd =或∫=ΔB ArevδTQ S熵是广度性质,其单位为。

系统状态变化时,要用可逆过程的热温商来衡量熵的变化值。

1K J −⋅4. 克劳修斯不等式T QS δd irrev ≥ 或 ∫≥ΔB A ir rev δT Q S 等号表示可逆,此时环境的温度T 等于系统的温度,为可逆过程中的热量;不等号表示不可逆,此时T 为环境的温度,为不可逆过程中的热量。

Q δQ δ5. 熵增原理0)d (irrev≥绝热S 或0)(irrev≥Δ绝热S 等号表示绝热可逆过程,不等号表示绝热不可逆过程。

在绝热条件下,不可能发生熵减少的过程。

0)d (irrev≥孤立S 或0)(irrev≥Δ孤立S 等号表示可逆过程或达到平衡态,不等号表示自发不可逆过程。

可以将与系统密切相关的环境部分包括在一起,作为一个隔离系统,则有:0irrev sur sys iso ≥Δ+Δ=ΔS S S6. 熵变计算的主要公式计算熵变的基本公式: ∫∫∫−=+=δ=−=Δ2 12 12 1rev12d d d d TpV H T V p UTQ S S S 上式适用于封闭系统,一切非体积功过程。

热力学第二定律

热力学第二定律
实 R
(“<” 表示实际热机为不可逆热机, “ =”表示 实际 热机为可逆热机) 或
Q1 Q2 不可逆 0 ( ) 可逆 T1 T2
dQ1 dQ2 0 T T2 1
(29)
对 无限小循环
3-1 热力学第二定律
3-1-3 Carnot 定理
2. Carnot定理推论: 在T1和T2两热源间工作的所有可逆热机, 其效率必相等,与工作物质及其变化种类无 关。
d Q实=0 不可逆 ΔS绝热≥0 ( ) 可逆 熵增原理:在绝热不可逆过程中系统的熵增加,直至系 统熵最大时,达到平衡。若变化在孤立系统中进行, 则 dQ实=0, dW=0 dQ实 式(32) 可写为 (32)’ ΔS 0

Δ S孤 Δ S系 Δ S环 0
Δ S孤
T环 0
不可逆 ( ) (33) 可逆
SB (T ) Δ S p (B) SB (T ) SB (0K)
* ( SB (0K) 0)
标准摩尔熵 Sm(B) —物质B在标准状态下的规定熵。
3-4-2 标准反应熵—化学反应的熵变 1 标准摩尔反应熵 ΔrSm: 有化学反应 aA+bB=lL+mM 当参加反应物质均处于某温度下的标准态时,发生 ξ=1mol 上述反应时的熵变称为标准摩尔反应熵。
3-2 熵函数的导出及热力
学第二定律的数学表达式
3-2-1 熵函数的导出及热力学第二定律的数学表达式
3 Clausius 不等式—热力学第二定律的数学表达式。 任意不可逆循环热温商之和小于零。 ( dQ ) 0(不可逆)

A
不可逆 可逆
A dQ dQiR 数
3-5-1 Helmholtz函数与Gibbs函数

热力学公式总结

热力学公式总结

热⼒学公式总结第⼀章⽓体的pVT 关系主要公式及使⽤条件1. 理想⽓体状态⽅程式nRT RT M m pV ==)/(或 RT n V p pV ==)/(m式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。

m /V V n =称为⽓体的摩尔体积,其单位为m 3 · mol -1。

R =8.314510 J · mol -1 · K -1,称为摩尔⽓体常数。

此式适⽤于理想⽓体,近似地适⽤于低压的真实⽓体。

2. ⽓体混合物(1)组成摩尔分数 y B (或x B ) = ∑AA B /n n体积分数 /y B m,B B *=V ?∑*AVy Am ,A式中∑AA n 为混合⽓体总的物质的量。

Am,*V表⽰在⼀定T ,p 下纯⽓体A 的摩尔体积。

∑*AA m ,A V y 为在⼀定T ,p 下混合之前各纯组分体积的总和。

(2)摩尔质量∑∑∑===BBBB B BB mix //n M n m M y M式中 ∑=BB m m 为混合⽓体的总质量,∑=BB n n 为混合⽓体总的物质的量。

上述各式适⽤于任意的⽓体混合物。

(3) V V p p n n y ///B B B B *式中p B 为⽓体B ,在混合的T ,V 条件下,单独存在时所产⽣的压⼒,称为B 的分压⼒。

*B V 为B ⽓体在混合⽓体的T ,p 下,单独存在时所占的体积。

3. 道尔顿定律p B = y B p ,∑=BB p p上式适⽤于任意⽓体。

对于理想⽓体V RT n p /B B =4. 阿马加分体积定律*/B B V n RT p =此式只适⽤于理想⽓体。

第⼆章热⼒学第⼀定律主要公式及使⽤条件1. 热⼒学第⼀定律的数学表⽰式W Q U +=?或 'amb δδδd δdU Q W Q p V W =+=-+规定系统吸热为正,放热为负。

系统得功为正,对环境作功为负。

式中 p amb 为环境的压⼒,W ’为⾮体积功。

第三章 热力学第二定律

第三章 热力学第二定律

例2 N 2 ( g) 3 H2 ( g) 2 NH3 ( g) 反应不能最终进行到底
热力学第二定律任务:过程的方向与限度
自发过程
1. 自发过程
自发过程:在一定环境条件下,(环境)不作非体积功,系 统中自动发生的过程。 通常所说的“过程方向”即是指自发过程的方向。 非自发过程:自发过程的逆过程,不可逆 例:水流:水由高处往低处流; 传热: 热从高温物体传向低温物体; 扩散:NaCl溶液从高浓度向低浓度进行; 反应: Zn放在CuSO4溶液中
等容变温过程
QV dU nCV ,mdT dS
故有, S
T2 nCV ,m ln T1
CV ,m
例1、4mol单原子理想气体从始态750K,150KPa,先恒容 冷却使压力下降至50KPa,再恒温可逆压缩至100KPa。求 整个过程中的Q,W,U , H , S 4mol, 750K, 150KPa dV=0 4mol, dT=0 50KPa, T2 4mol, 100KPa, T2
(第二类永动机不可能)
热与功的转化

① W 无代价,全部
不可能无代价, 全部

Q 不等价,是长期实践的结果。
② 不是 Q W 不可能,而是热全部变 功必须 付出代价(系统和环境),若不付 代价只能部分变功
3.卡诺循环及卡诺定理
△U = Q1 + Q2 + W = 0
W Q1 Q2 η Q1 Q1
热机效率
1. 卡诺循环
Carnot从理论上证明了热机效率的极限 卡诺循环 : 恒温可逆膨胀:1 绝热可逆膨胀:2 恒温可逆压缩:3 2 3 4
绝热可逆压缩 :4
1
卡诺循环示意图

第三章热力学第二定律

第三章热力学第二定律


自发过程的共同特征
a.自发过程单向的朝着平衡 b.自发过程都有做功本领 c.自发过程都是不可逆的
2.热、功转换
具有普遍意义的过程:热功转化的不等价性。
无代价,全部


不可能无代价,全部
热机效率
3.热力学第二定律的两种经典表述
不可能把热量从低温 热源传到高温热源, 而不引起其他变化。
克劳修斯
不可能从单一热源吸热 使之完全变为功,而不 留下其它变化。
12.2
V2 22.4 J K 1 S (O 2 ) nR ln 0.5 8.315ln 12.2 V1

相变化过程
(1)可逆相变
在相平衡压力p和温度T下
B()

T, p 可逆相变

B()
Qr H S T T
(2)不可逆相变
不在相平衡压力p和温度T下的相变 B( , T, p) S 1 T, p S 不可逆相变 B(, T, p) S3 2
S
T2
T1
(4)绝热可逆过程
(5)绝热不可逆过程
S ( p1,V1, T1 ) ( p2 ,V2 , T2 )
恒容 S1
( p ',V1 , T2 )
恒温 S2
S S1 S2 nCV ,m ln
T2 V nR ln 2 T1 V1
S ( p1,V1, T1 ) ( p2 ,V2 , T2 )
求各步骤及途径的Q,△S。 (1)恒温可逆膨胀: (2)先恒容泠却至使压力降至100kPa,再恒压加热至T2; (3)先绝热可逆膨胀到使压力降至100kPa,再恒压加热 至T2;
例:1 mol 理想气体T=300K下,从始态100 kPa 经下列各过程, 求Q,△S及△S i so。 (1)可逆膨胀到末态压力为50 kPa; (2)反抗恒定外压50 kPa 不可逆膨胀至平衡态; (3)向真空自由膨胀至原体积的两倍。

第三章 热力学第二定律

第三章 热力学第二定律

过程1: 过程2: 过程3: 过程4:
W4 U 4 nCV ,m (T1 T2 )
V2 U1 0 Q1 -W1 nRT ln 1 V1 W2 U 2 nCV ,m (T2 T1 ) V4 Q2 -W3 nRT2 ln U 3 0 V3
循环过程: Q Q1 Q2 (W W2 W3 W4 ) U 0 1 V2 V4 nRT ln nRT ln 1 2 V1 V3 根据绝热可逆 V V3 V2 V4 3 方程,有: V2 V1 即: V4 V1
§3-1卡诺循环
1.卡诺循环
高温热源T1
Q1 热机 W
p
p1 ,V1 , T1

Q1>0
Q2
p2 ,V2 , T1
低温热源T2

p4 ,V4 , T2 Q2<0
Ⅱ Ⅲ
p3 ,V3 , T2
V
卡诺循环示意图
(Ⅰ)恒温可逆膨胀:吸热Q2作 功,W(1→2); (Ⅱ)绝热可逆膨胀:系统膨胀 作功,Q=0; (Ⅲ)恒温可逆压缩:放热Q1,系 统得功, W(3→4); (Ⅳ)绝热可逆压缩:系统受压 得功,Q=0 .
V2 所以: Q1 Q2 nR(T2 T1 ) ln V1
2. 热机效率 2.2 热机效率的定义 2.1 热机 通过工质从高温热源吸热 一次循环系统对环境所 做总功 作功,然后向低温热源放热 一次循环系统从高温热 源所吸收之热 复原,如此循环操作,不断将 W Q1 Q2 即: 热转化为功的机器.
Q2
低温热源T2
2.4 说明
3.致冷效率
(1)卡诺热机是工作于T1和T2两 热源间的可逆机,高温T1热源的 热部分地转化为功,其余部分流 向低温T2热源. (2) η只与T1和T2有关,与工质 无关.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 热力学第二定律
主要公式及使用条件
1. 热机效率
1211211/)(/)(/T T T Q Q Q Q W -=+=-=η
式中1Q 和2Q 分别为工质在循环过程中从高温热源T 1吸收的热量和向低温热源T 2放出的热。

W 为在循环过程中热机中的工质对环境所作的功。

此式适用于在任意两个不同温度的热源之间一切可逆循环过程。

2. 卡诺定理的重要结论
2211//T Q T Q +⎩⎨⎧=<可逆循环不可逆循环,,00
任意可逆循环的热温商之和为零,不可逆循环的热温商之和必小于零。

3. 熵的定义
4. 克劳修斯不等式
d S {//Q T Q T =>δ, δ, 可逆不可逆
5. 熵判据
amb sy s iso S S S ∆+∆=∆{
0, 0, >=不可逆可逆 式中iso, sys 和amb 分别代表隔离系统、系统和环境。

在隔离系统中,不可逆过程即自发过程。

可逆,即系统内部及系统与环境之间皆处于平衡态。

在隔离系统中,一切自动进行的过程,都是向熵增大的方向进行,这称之为熵增原理。

此式只适用于隔离系统。

6. 环境的熵变
7. 熵变计算的主要公式
r d δ
/S Q T =amb
y s amb amb amb //S T Q T Q s -==∆
2
22r 111δd d d d Q U p V H V p S T T T
+-∆===⎰⎰⎰ 对于封闭系统,一切0=W δ的可逆过程的S ∆计算式,皆可由上式导出
(1)
,m 2121ln(/)ln(/)V S nC T T nR V V ∆=+
,m 2112ln(/)ln(/)p S nC T T nR p p ∆=+
,m 21,m 21ln(/)ln(/)V p S nC p p nC V V ∆=+
上式只适用于封闭系统、理想气体、,m V C 为常数,只有pVT 变化的一切过程
(2) T 2112ln(/)ln(/)S nR V V nR p p ∆==
此式使用于n 一定、理想气体、恒温过程或始末态温度相等的过程。

(3) ,m 21ln(/)p S nC T T ∆=
此式使用于n 一定、,m p C 为常数、任意物质的恒压过程或始末态压力相等的过程。

8. 相变过程的熵变
此式使用于物质的量n 一定,在α和β两相平衡时衡T ,p 下的可逆相变化。

9. 热力学第三定律
或 0)0K ,(m =*完美晶体S
上式中符号*代表纯物质。

上述两式只适用于完美晶体。

10. 标准摩尔反应熵
)
B (B m B m r ∑=∆θθνS S
2
r m 2r m 1r ,m 1()()(/)d p S T S T C T T θθ∆=∆+∆⎰
上式中r ,m p C ∆=B ,m B
(B)p C ν∑,适用于在标准状态下,反应进度为1 mol 时,任一化学反
应在任一温度下,标准摩尔反应熵的计算。

0)(lim m =*→完美晶体S T 0T
H S /βαβα∆=∆
11. 亥姆霍兹函数的定义
12. r d δ'T A W =
此式只适用n 一定的恒温恒容可逆过程。

13. 亥姆霍兹函数判据
V T A ,∆⎩⎨⎧=<平衡自发,0,0 只有在恒温恒容,且不做非体积功的条件下,才可用A ∆作为过程的判据。

14. 吉布斯函数的定义
15. ,r d δ'T P G W =
此式适用恒温恒压的可逆过程。

16. 吉布斯函数判据

⎨⎧=<平衡自发,,00 只有在恒温恒压,且不做非体积功的条件下,才可用G ∆作为过程的判据。

17. 热力学基本方程式
d d d d d d d d d d d d U T S p V
H T S V p A S T p V
G S T V p
=-=+=--=-+
热力学基本方程适用于封闭的热力学平衡系统所进行的一切可逆过程。

说的更详细些,它们不仅适用于一定量的单相纯物质,或组成恒定的多组分系统发生单纯p , V , T 变化的过程。

也可适用于相平衡或化学平衡的系统,由一平衡状态变为另一平衡态的过程。

18. 麦克斯韦关系式
TS
U A -=TS
H G -=,T p G ∆
(/)(/)(/)(/)(/)(/)(/)(/)S p
S V V T
p T
T p V S T V p S p T S V V T S p ∂∂=∂∂-∂∂=∂∂∂∂=∂∂-∂∂=∂∂
适用条件同热力学基本方程。

相关文档
最新文档