各种熵变的计算
2.6熵变的计算(物理化学)

Q 2244.8 S环境= 7.48 JK 1 T 300
S孤立=S系统+S环境= 19.14-7.48= 11.66 JK1 0
f Hm V Hm
S气 S液 S固
四、可逆相变化过程中熵变的计算
例 1 mol冰在零度熔化成水,熔化热为6006.97 J/mol,求熵变。 解: 此过程是在等温等压条件下发生的正常相变。
S系统
Qr H 6006.97 21.99 JK 1 T T 273.2
终态混合气中各物质的分压 pA(终) p xA
S A nA R ln pA( 始) p A( 终 ) pD (终 ) p nA R ln p xA nA R ln p p xD
pD(终) p xD
Smix S A S D nA R ln x A nD R ln x D R ( nB ln x B )
Q 6006.97 S环境= 21.99 JK 1 T环境 237.2
S孤立=S系统+S环境=0
这是一个可逆过程。
五、理想气体混合过程的熵变计算
理想气体在等温等压混合
A(T,p) (nA, VA) D(T,p) (nD, VD)
U 0,W 0, Q 0
A+D(T,p) (nA,+nD ,VA+VD)
S
T2
Qr
T
T1
T2
T1
CV dT T2 CV ln T T1
(完整版)各种熵变的计算

热力学第二定律的经典表述
克劳休斯说法 :不可能把热由低温物体转 移到高温物体,而不留下其他变化。
开尔文说法:不可能从单一热源吸热使之完全变 为功,而不留下其他变化。
能否找到一个统一的判据来判断可能 发生的过程的方向和限度呢?
熵判据
1.10 熵
1. 定义
Q1 Q2 0 T1 T2
不可逆热机 可逆热机
p2 p1
C
p
,m
ln
V2 V1
)
定容
定压
练习1.
2molH2 由 300K , 100kPa 定 压 加 热 到 1200K , 求ΔS 已知Cp,m(H2) / (J•K-1 • mol-1 )=
28.83-0.84х10-3(T/K)+2.00×10-6(T/K)2
S δQp T 2 nCp, mdT
(2) 熵判据
隔离系统,Q= 0
ΔS隔≥0
不可逆过程 可逆过程
隔离系统,W= 0 所以,隔离系统的不可逆过程是自发过程
可逆过程是无限慢的变化,实际是平衡态
ΔS隔≥0
自发过程 平衡态
平衡的熵判据
(只能用于隔离系统!!!)
隔离系统 状态A
状态B
ΔS = 0 ΔS > 0 ΔS < 0
A 、B平衡态 自发从A 变到B的趋势 不可能发生
相平衡条件下发生的相变化是可逆过程,否 则是不可逆过程。
一般条件下发生的化学反应,都是不可逆过程。
(1) 单纯 p,V,T 变化过程熵变的计算
① 实际气体,液体或固体的 p,V,T 变化
(i) 定压变温
Qp= dH =nCp,mdT
S δQp T 2 nCp, mdT
3-4、5熵变计算

理想气体、恒温
物质(气体)之间的混合, 导致系统的熵增大.
物质之间的传热, 导致各物质的总熵增大.
p1 T S nR ln p2 V T S nRln 2 n V1
以上熵增大过程伴随着微观分子无序热运动速率或空间 V↑ 的增大, 即物质状态的混乱程度、分散程度增大了. S↑
第一定律:U(总) = U(系统) + U (环境)= 0
第二定律: S(总) = S(系统) + S (环境)≥ 0
第一定律数学式:
第二定律数学式:
U = Q + W
S
δQ T
任意不可逆过程 任意可逆过程
熵变计算式
ΔS
δ Qr T
δ Qir Tex
dS (环)
δ Q(环) T (环)
T2 T1
Q 6025J S (环) 5649J / 22.1J/K 263K = 21.5J/K T (环) 273K S(总)= S(系统)+ S (环境) = 0.8 J/K
>0
∴是自发过程
不可逆相变过程
§3-6 熵变的计算
1. PVT 变化的熵变
2. 相变化的熵变 3. 环境熵变 熵判据
T1
T3
T3
T1 +dT
+dT
+dT
+dT
传热过程
(4) pVT同时改变的过程 V2 n (理想气体, pVT都变) V1 T nC
S V S T S
2
V S
Q p1 rT1 V1
p T2 V1
T S
第二章热力学第二定律-2系统熵变的计算

解:(1)等温可逆膨胀 △S系统 = nRln(V2/V1)=10.0mol×8.3145J·K-1·mol-1
× ln(2.00/1.00) =57.6J·K-1。 ΔS 环境= -Q实际/Tex= - nRln(V2/V1)
= -ΔS系统 =- 57.6 J·K-1。 ΔS 隔离 = 0 (可逆过程)
△mixS = -(0.041mol ×ln0.66 +0.021mol×ln0.34)×8.3145J.K-1.mol-1 =0.33 J.K-1.
23
理想气体等温等容进行混合求混合熵△mixS ? 理想气体等温等容进行混合,U=0,H=0,
实际上是绝热可逆过程,混合熵△mixS =0. 同种理想气体等温等容混合,mixS≠0,因
§2-6 热力学第三定律及规定熵
18
对A来说,发生的是在恒温下从体积VA可 逆膨胀到体积V的过程。
SA
nA Rln
VA VB VA
对B
SB
nB Rln
VA VB VB
19
m ix S
nA Rln
VA VB VA
nB Rln
VA VB VB
因为
VA VB VA
yA
, VB VA VB
yB
则 mixS =- ( nARlnyA+nBRlnyB) 因为 yA<1,yB<1, 所以
故 S = ( 2.81-22.1-1.41)JK-1 =-20.7JK-1
31
寻求可逆途径的依据: (i)途径中的每一步必须可逆; (ii)途径中每步S 的计算有相应的公式可利用; (iii)有相应于每步S 计算式所需的热数据。
32
因为 S系统 = -20.7JK-1,不能用来判 断过冷水结冰过程的自发与否。欲用熵判 据,还需要计算环境的熵变。
化学反应的熵变计算方法

化学反应的熵变计算方法熵变(ΔS)是描述化学反应中系统混乱程度的指标,它与反应的自发性密切相关。
在化学领域中,我们经常需要计算化学反应的熵变,以揭示反应的热力学性质和熵效应。
本文将介绍几种常用的化学反应熵变的计算方法。
一、标准熵变的计算方法标准熵变(ΔS°)是指在标准状态下,物质从纯单质状态转变成产物状态时的熵变。
标准熵变的计算方法为:ΔS° = ΣnS°(产物) - ΣmS°(反应物)其中,ΔS°表示标准熵变,n代表产物的摩尔数,S°代表物质的标准摩尔熵,m代表反应物的摩尔数。
二、非标准熵变的计算方法对于非标准状态下的化学反应,我们需要通过其他方法来计算熵变。
以下是几种常用的非标准熵变计算方法。
1. 熵差法(ΔS差法)熵差法是通过比较反应物和产物在不同温度下的熵值来计算熵变。
具体步骤如下:(1) 计算反应物和产物在不同温度下的熵值。
(2) 计算反应物和产物熵值的差值。
(3) 将差值代入以下公式计算熵变:ΔS = ΣnS(产物) - ΣmS(反应物)2. 统计热力学法统计热力学法基于分子动力学理论,可以通过统计物质中各个自由度的能量和熵来计算熵变。
该方法较为复杂,需要使用计算机软件进行模拟和计算。
3. 混合熵法混合熵法是利用熔解、溶解、混合等过程的熵变来计算反应的熵变。
具体步骤如下:(1) 计算反应物和产物在纯物质状态下的熵值。
(2) 计算混合过程中的熵变。
(3) 将两部分熵变相加得到反应的熵变。
三、例题分析为了更好地理解这些计算方法,我们来看一个简单的例子:氢气和氧气反应生成水的熵变计算。
2H2(g) + O2(g) → 2H2O(l)我们知道水是液体状态,而氢气和氧气都是气体状态,因此我们需要先计算气体到液体的ΔS,并且考虑到反应物和产物的摩尔数比为1:2,故有:ΔS = 2×S(2H2O(l)) - [2×S(H2(g)) + S(O2(g))]根据参考资料,我们可以找到相应的标准摩尔熵值,然后代入计算即可得到氢气和氧气反应生成水的熵变值。
各种熵变的计算范文

各种熵变的计算范文熵是一个重要的物理概念,用于描述系统的无序程度或混乱程度。
在物理学、信息论和热力学等领域,经常需要计算各种熵变。
1.熵的定义熵在热力学中的定义为:ΔS = S_final - S_initial其中,ΔS表示熵变,S_final表示系统的末态熵值,S_initial表示系统的初态熵值。
2.系统的微观熵变对于一个牛顿力学体系,它的微观熵变可以表示为:ΔS = k ln W其中,ΔS表示微观熵变,k是玻尔兹曼常数,W是系统的微观状态数。
3.统计熵变对于一个分子系统,如果它处于均匀平衡的状态,其统计熵变可以表示为:ΔS = k ln Ω其中,ΔS表示统计熵变,k是玻尔兹曼常数,Ω是系统的配分函数。
这个公式可以用于计算固态、液态和气态系统的熵变。
4.信息熵变在信息论中,熵被用来描述信息的不确定性。
对于一个离散随机变量X,其信息熵可以表示为:H(X) = -ΣP(x) log P(x)其中,H(X)表示信息熵,P(x)表示随机变量X取一些值x的概率。
5.热力学熵变在热力学中,熵可以用来描述系统的热量转移和无序程度。
对于一个开放系统,其热力学熵变可以表示为:ΔS=∫(dQ/T)其中,ΔS表示热力学熵变,dQ表示系统吸收或释放的热量,T表示系统的温度。
这个公式可以用来计算系统在热平衡过程中的熵变。
总结:各种熵变的计算方法有微观熵变、统计熵变、信息熵变和热力学熵变等。
这些熵变的计算方法不同,适用于不同的物理系统和情况。
熵变的计算是物理学、信息论和热力学等领域的基础概念,对于深入理解系统的行为和性质非常重要。
第3章 熵变的计算

等温,等压,可逆
1mol H 2 O g 373.15 K,p o
S SⅠ SⅡ SⅢ 373.15 40.60 103 298.15 33 ln 298.15 373.15 373.15 118 J K 1 75 ln
等压 可逆
1mol H 2 O l 373.15 K,p o
S
理想气体混合物 A(g) + B(g) + C(g) + …
* * * U UA UB UC * * * H HA HB HC
S B nB R ln
p nB R ln xB n xB R ln xB nR xB ln xB pB
思考:因为 S > 0,该过程为自发过程;此推理正确吗?
3. 环境熵变的计算
环 境 系 统
环境通常由不发生相变及化学变化的物质 组成,即使环境与系统有功与热的交换,其 温度、压力并没有发生可觉察的变化。所以 认为 环境内部过程都是可逆过程
Samb
Qamb Tamb
Qsys Tamb
Qsys 为系统实际从环境得到的热; Qamb为环境实际由系统得到的热 两者绝对值相等,符号相反
O
3. 先恒压后恒容
V p S nC p ,m ln 2 nCV ,m ln 2 V1 p1
前提:设定理想气体的 CV,m和 Cp,m 均为常数
V1
V2
V
(4) 混合或传热过程 (理想气体/凝聚态物质)
混合过程:种类很多,都不可逆;所以,需要设计可逆过程; 总的原则:分别计算各个组分的熵变,然后加和
(1) 可逆相变 (恒温恒压可逆相变)
24熵变的计算.

解题思路:
268K的液态苯变为 268K固态苯是一个非正常相变 过程,求此变化的熵变需要设计可逆过程来计算。
1 mol 苯(l) 不可逆过程
268 K
S
1 mol 苯(s) 268 K
S1 可逆
S3 可逆
1 mol 苯(l)
S2
278 K
可逆
1 mol 苯(s) 278 K
不可逆相变系统熵变的计算
S环境=
Q T
9812.3 268
36.61J
K -1
S孤立=S系统+S环境 = 35.30 36.61=1.31J K-1 0
该过程为自发过程。
不可逆相变系统熵变的计算
例 假设保温瓶内有20g25℃的水,再加入5g-5℃的冰。 (1)保温瓶最终平衡态; (2)计算系统的ΔS。
解题思路:(1)系统变化为绝热过程。Q=0,计算终态t:
pA(始) pA(终)
nAR ln
p p xA
SD
nD R ln
pD(始) pD(终)
nAR ln
p p xD
Smix SA SD
nAR ln xA nD R ln xD
R (nB ln xB ) B
xB为B物质的摩尔分数
理想气体混合过程的熵变计算
例 设在273K时,用一隔板将容器分割为两部分,一边装有 02 mol、100kPa的O2,另一边是08 mol、100kPa 的N2, 抽去隔板后,两气体混合均匀,试求混合熵,并判断过程 的可逆性。
环境熵变的计算
环境熵变的计算:
S环境=
- Q实际 T环境
与系统相比,环境很大,当系统发生变化时,吸收或放出的热 量不至于影响环境的温度和压力,环境的温度和压力均可看做 常数,实际过程的热即为可逆热.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习4
1mol 单 原 子 理 想 气 体 , 从 273.15K 、 1013.25kPa 的 始 态 , 对 抗 恒 外 压 为 101.325kPa , 绝 热 膨 胀 至 终 态 压 力 为 101.325kPa ,求ΔS
解: Q 0
U W
U
T2 T1
nCV
,m
(T
)dT
W psu (V2 V1)
推广到任意循环过程
δQ 0 Tsu
不可逆热机 可逆热机
或
δQ
不可逆热机
0
Tsu
可逆热机
δQ 0 不可逆热机
Tsu
可逆热机
热温商
δQ Tsu
沿任意可逆循环闭积分等于零,
沿任意不可逆循环的闭积分总是小于零。
克劳休斯定理
δQr 0 Tsu
可逆循环
δ Qir 0 Tsu
不可逆循环
δQr T
0
可逆循环
积分定理:若封闭曲线闭积分等于零,则被积变 量应为某状态函数的全微分
δQr 是某状态函数的全微分 T
令该状态函数以S 表示,称为熵
dS δQr T
熵的定义式
dS δQr T
S S2 S1
2 δQr 1T
熵 是状态函数 是广度性质 SI单位 J·K-1
熵的物理意义 〈待讨论〉
2. 热力学第二定律的数学表达式
S nRln V2 nR ln p1
V1
p2
2 8.314 ln 1103 J • K1 114 .86J • K1 1
Байду номын сангаас
练习3
1mol 单 原 子 理 想 气 体 , 从 273.15K 、 1013.25kPa的始态,经绝热可逆膨胀至终态 压力为101.325kPa ,求ΔS
S 0
不可逆循环过程:
δ Qir 0 Tsu
B
ir
A
r
Bδ Qir A δ Qr 0
A Tsu
BT
A δQr B δQr
BT
AT
可逆过程的特点:系统和环境能够由终态,沿着原
来的途径从B相δQ反ir 方 向B δ步Q步r 回复S,直到都恢复原来的
状态
A Tsu
AT
即
S B δQir A Tsu
S B δQr AT
合并表示
S B δQ 不可逆过程 A Tsu 可逆过程 δQ 不可逆过程 dS
Tsu 可逆过程
热力学第二定律数学表达式
3. 熵增原理和熵判据
(1) 熵增原理
B δQ
S A Tsu
绝热过程
不可逆过程 可逆过程
ΔS≥0
不可逆过程 可逆过程
熵增原理数学表示式
系统经绝热过程由一个状态达到另一个状态,熵值 不减少 — 熵增原理
〈本课程不讨论〉
② 理想气体的 p,V,T 变化
W′=0
dS δ Qr dU pdV
T
T
dU=nCV,mdT,则 dS nCV ,mdT nRdV
T
V
若 CV,m为常数,
S
n(CV ,mln
T2 T1
Rln
V2 V1
)
(T1,V1
p1,V1,T1
T2,V2)
p2,V2,T2
定容
定温
p',V1,T2
(2) 熵判据
隔离系统,Q= 0
ΔS隔≥0
不可逆过程 可逆过程
隔离系统,W= 0 所以,隔离系统的不可逆过程是自发过程
可逆过程是无限慢的变化,实际是平衡态
ΔS隔≥0
自发过程 平衡态
平衡的熵判据
(只能用于隔离系统!!!)
隔离系统 状态A
状态B
ΔS = 0 ΔS > 0 ΔS < 0
A 、B平衡态 自发从A 变到B的趋势 不可能发生
T
T1
T
T 2(a bT cT 2 )dT
n T1
T
n(a
ln
T2 T1
b(T2
T1 )
c 2
(T2
2
T12
)
练习2
2mol H2由300K,1.0MPa分别经下述三种不 同 径 途 变 到 300K , 1.0kPa 求 经 各 种 变 化 系 统
的ΔS。(1)自由膨胀;
(2)恒温可逆膨胀; (3)作最大功的50% 。
p2 p1
C
p
,m
ln
V2 V1
)
定容
定压
练习1.
2molH2 由 300K , 100kPa 定 压 加 热 到 1200K , 求ΔS 已知Cp,m(H2) / (J•K-1 • mol-1 )=
28.83-0.84х10-3(T/K)+2.00×10-6(T/K)2
S δQp T 2 nCp, mdT
1.11 熵变的计算之一 ——系统熵变的计算
牢牢掌握:
① S 2 δQr 1T ② S是状态函数;ΔS与变化途径无关 ③ 了解什么过程是可逆过程
可逆过程
p、V、T 变化除绝热过程外,均可沿可逆过
程变化也可沿不可逆过程; 从某一状态经绝热可逆过程变至某一终态,
则从同一始态经绝热不可逆过程变不到同一终态, 反之亦然。
nCV ,m (T2
T1)
psu
(
nRT2 p2
nRT1 ) p1
3 2
(T2
T1)
p2
(
T2 p2
T1 p1
)
T2 174 .8K
(T1, p1
T2, p2)
相平衡条件下发生的相变化是可逆过程,否 则是不可逆过程。
一般条件下发生的化学反应,都是不可逆过程。
(1) 单纯 p,V,T 变化过程熵变的计算
① 实际气体,液体或固体的 p,V,T 变化
(i) 定压变温
Qp= dH =nCp,mdT
S δQp T 2 nCp, mdT
T
T1
T
若Cp,m视为常数,则
S
n(CV
,mln
T2 T1
Rln
V2 V1
)
定容
定温
(T1, p1
p1,V1,T1
T2, p2)
p2,V2,T2
定压
定温
p1,V´,T2
S
n(C p,mln
T2 T1
Rln
p1 ) p2
定压 定温
(V1, p1
p1,V1,T1
定容
p2,V1,T´
V2, p2)
p2,V2,T2
定压
S
n(CV ,mln
重点回顾
热力学第二定律的经典表述
克劳休斯说法 :不可能把热由低温物体转 移到高温物体,而不留下其他变化。
开尔文说法:不可能从单一热源吸热使之完全变 为功,而不留下其他变化。
能否找到一个统一的判据来判断可能 发生的过程的方向和限度呢?
熵判据
1.10 熵
1. 定义
Q1 Q2 0 T1 T2
不可逆热机 可逆热机
S
nC p ,m ln
T2 T1
若Cp,m不为常数?
(ii) 定容变温
QV= dU =nCv,mdT
S δ QV T 2 nCV ,mdT
T
T1
T
若Cv,m视为常数,则
S
nCV ,mln
T2 T1
(iii) 液体或固体定温下 p,V 变化 定T,而p,V变化不大时,液、固体的熵变很小, S ≈0。 实际气体,定T,而p,V变化时,熵变较大