TL494脉宽调制操控电路图

合集下载

芯片494

芯片494

本系统中采用了德州仪器公司(Texas Instrument)生产的PWM发生器TL494,它是典型的固定频率脉宽调制控制集成电路,它包含了控制开关电源所需的全部功能,可作为单端正激双管式、半桥式、全桥式开关电源的控制系统,其基本电路单元如图1所示。

图1 TL494内部功能方框图与基本单元电路①引脚说明。

的1、2和16、15脚分别为两个误差放大器的同相向和反相输进端,两个误差放大器可构成电压反馈调节器和电流反馈调节器,分别控制输出电压的稳定和输出过流的保护。

3脚为两个放大器公共输出端,也称补偿端。

的8、11、12为电源端,7脚为地,14脚为参考电平,正常工作时,输出标准的+5V电压。

13脚为输出方式控制端,当该脚为高电平时,形成双路输出方式,若为低电平时,则为同步工作方式。

②工作方式。

输出脉冲的宽度调制,是通过电容器C上的正极性锯齿波电压与其他两个控制信号电压进行比较来实现的。

激励输出管Q1和Q2的或非门工作状态,是只有在双稳态触发器的时钟输进为低电平时才选通,这种情形只有在锯齿被电压大于控制信号时出现。

因此,控制信号幅度的增大,将相应地使输出脉冲的宽度线性减小。

控制信号由IC外部输进,一路选到死区时间比较器控制端,一路送到两误差放大器输进端,又称PWM比较器输进端。

死区时间控制比较用具有120mV有效输进补偿电压,它限制最小输出死区时间近似即是锯齿波周期时间的4%。

在输出控制接地时,将使最大占空系数为己知输出的96%;而在输出接参考电平时,占空比则是给定输出的48%。

当把死区时间控制输进端设置在一个固定的电压值时(范围在0~3.3V之间),就能在输出脉冲上产生附加的死区时间。

脉宽调制比较器为误差放大器调节输出脉冲宽度提供了一条途径:例如当反馈电压从0.5V变到3.5V时,则输出脉宽从被死区时间控制输进端确定的最大导通时间里下降到0。

若TL494片内的两个误差放大器的反相输进端(2脚或15脚)的参考电位一定,当它们的同相输进端电平升高时,则可使片内的两个驱动三极管输出的脉宽调制控制脉冲的宽度变窄;反之,可使脉冲宽度变宽。

正激变换器拓扑附TL494组成的推挽脉宽调制电路图原理

正激变换器拓扑附TL494组成的推挽脉宽调制电路图原理

正激变换器拓扑附TL494组成的推挽脉宽调制电路图原理
⑤正激变换器拓扑
所谓正激变换,就是在开关管导通阶段,能量从变压器主边传输至副边。

如图3.37所示,当VT1导通时,初级线圈Np电流线性增加,根据变压器同名端分析,电流方向使得次级线圈整流二极管VD2、VD3、VD4导通,电感L3,电容C1、C2、C3充电,当VT1截止,各线圈感应电动势反向,此时只有回路N r→V dc→VD1呈导通状态,变压器剩余能量回馈至电源V dc,VD2、VD3、VD4反偏截止,VD5、VD6、VD7续流,L1、L2、L3释放能量给后级。

电压反馈通过电阻R4、R5分压,经过脉宽调制器控制占空比稳定电压。

正激变换拓扑的典型特点是变压器初次级同名端一致,而且次级回路有串联储能电感。

图3.38是典型的正激变换电路。

芯片LT3753的PWM输出端OUT输出开关信号给开关管,驱动变压器传输能量给后级电路,可以通过变压器同名端及后级的电感判断,此电路结构是明显的正激变换结构。

图3.36 TL494组成的推挽脉宽调制电路
图3.37 正激变换拓扑
【1】【2】【3】【4】【5】【6】【7】【8】【9】【10】【11】。

TL494充电器原理与维修

TL494充电器原理与维修

TL494充电器原理与维修电动自行车充电器多采用开关电源,型号虽多,但电路结构大同小异,主要区别在于所选的脉宽调制(PWM)芯片不同如(UC3845、UC3842、SG3524、TL494)。

现以佳腾牌充电器为例,介绍其原理和故障检修方法。

一、电路原理根据实物测绘的佳腾牌充电器电路原理如图1所示。

整机可分为PWM产生和推动电路、功率开关变换电路、充电状态指示电路和交流输入电路四个部分。

1.PWM产生和推动电路PWM产生电路由IC1TL494和外围元件构成。

TL494是PWM开关电源集成电路。

引脚功能和内部框图如图2所示。

IC1的第5、6脚外接的C10、R19是定时元件,决定锯齿波振荡器的振荡频率,F=1.1/RC,按图中数值为50KHz。

第14脚是+5V基准电压输出端,除芯片内部使用外,还直接或分压后供第2、4、13脚和IC2使用。

第13脚为输出方式控制端,该脚接低电平时为单端输出方式,图中接第14脚+5V高电平,为双端输出方式。

第4脚为死区电压控制端,该脚电压决定死区时间。

电位升高,死区时间延长,输出脉宽变窄,当电压大于锯齿波电压时,输出脉宽将变得很窄,甚至停振。

凡输出端采用全桥或半桥式的开关电路,都要正确设置死区时间,以免两个开关管同时导通,发生电源短路的危险。

图中该脚电位由基准电压经R24和R20分压取得,实测电压为0.46V。

第1 、2脚和第16、15脚是IC1内部的两个电压比较器的正、反相输入端,分别用作充电电压取样和充电电流取样。

+44V充电电压经R28、R27和R26 分压反馈至第1脚。

C15是软启动电容。

第2脚电位由基准电压经R23和R3分压取得,实测为3.2V。

第1脚电压越高,输出脉宽越窄,充电电压越低;反之脉宽增宽,充电电压升高。

从而实现+44V充电电压的目的。

Ra是充电电压调试电阻,Ra和R26并联值越小,充电电压越高。

R29是脚充电电流取样电阻,由该电阻上取得的电压变化,经R13送入IC1的第15脚。

TL494中文资料

TL494中文资料

TL494脉宽调制控制电路TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。

TL494有SO-16和PDIP-16两种封装形式,以适应不同场合的要求。

其主要特性如下:主要特征集成了全部的脉宽调制电路。

片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。

内置误差放大器。

内止5V参考基准电压源。

可调整死区时间。

内置功率晶体管可提供500mA的驱动能力。

推或拉两种输出方式。

工作原理简述TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下:上的正极性锯齿波电压与另外两个控输出脉冲的宽度是通过电容CT制信号进行比较来实现。

功率输出管Q1和Q2受控于或非门。

当双稳触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号期间才会被选通。

当控制信号增大,输出脉冲的宽度将减小。

参见图2。

控制信号由集成电路外部输入,一路送至死区时间比较器,一路送往误差放大器的输入端。

死区时间比较器具有120mV的输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%,当输出端接地,最大输出占空比为96%,而输出端接参考电平时,占空比为48%。

当把死区时间控制输入端接上固定的电压(范围在0—3.3V之间)即能在输出脉冲上产生附加的死区时间。

脉冲宽度调制比较器为误差放大器调节输出脉宽提供了一个手段:当反馈电压从0.5V变化到3.5时,输出的脉冲宽度从被死区确定的最大导通百分比时间中下降到零。

两个误差放大器具有从-0.3V到(Vcc-2.0)的共模输入范围,这可能从电源的输出电压和电流察觉得到。

误差放大器的输出端常处于高电平,它与脉冲宽度调制器的反相输入端进行“或”运算,正是这种电路结构,放大器只需最小的输出即可支配控制回路。

放电,一个正脉冲出现在死区比较器的输出端,受脉冲约束的当比较器CT双稳触发器进行计时,同时停止输出管Q1和Q2的工作。

TL494工作原理图解

TL494工作原理图解

TL494⼯作原理图解TL494⼯作原理图解(引脚功能_内部结构_参数及开关电源电路)⼀、TL494介绍TL494是⼀种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,⼴泛应⽤于单端正激双管式、半桥式、全桥式开关电源。

TL494有SO-16和PDIP-16两种封装形式,以适应不同场合的要求。

其主要特性如下:TL494主要特征:1.具有两个完整的脉宽调制控制电路,是PWM芯⽚。

2.两个误差放⼤器。

⼀个⽤于反馈控制,⼀个可以定义为过流保护等保护控制。

3.带5VDC基准电源。

4.死区时间可以调节。

5.输出级电流500mA。

6.输出控制可以⽤于推挽、半桥或单端控制。

7.具备⽋压封锁功能?主要特征具体分析:1.振荡器:提供开关电源必须的振荡控制信号,频率由外部RT、CT决定。

这两个元件接在对应端与地之间。

取值范围:RT:5-100k,CT:0.001-0.1uF。

形成的信号为锯齿波。

最⼤频率可以达到500kHz。

2.死区时间⽐较器:这⼀部分⽤于通过0-4VDC电压来调整占空⽐。

当4脚预加电压抬⾼时,与振荡锯齿波⽐较的结果,将使得D触发器CK端保持⾼电平的时间加宽。

该电平同时经过反相,使输出晶体管基极为低,锁死输出。

4脚电位越⾼,死区时间越宽,占空⽐越⼩。

由于预加了0.12VDC,所以,限制了死区时间最⼩不能⼩于4%,即单管⼯作时最⼤占空⽐96%,推挽输出时最⼤占空⽐为48%。

3.PWM⽐较器及其调节过程:由两个误差放⼤器输出及3脚(PWM ⽐较输⼊)控制。

当3端电压加到3.5VDC时,基本可以使占空⽐达到0,作⽤和4脚类似。

但此脚真正的作⽤是外接RC⽹络,⽤做误差放⼤器的相位补偿。

常规情况下,在误差放⼤器输出抬⾼时,增加死区时间,缩⼩占空⽐;反之,占空⽐增加。

作⽤过程和4脚的死区控制相同,从⽽实现反馈的PWM调节。

0.7VDC的电压垫⾼了锯齿波,使得PWM调节后的死区时间相对变窄。

如果把3脚⽐做4脚,则PWM⽐较器的作⽤波形和图4-9类似。

ATX电源用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解

ATX电源用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解

用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解本开头电源控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。494是双排16脚集成电路,工作电压7~40V。它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路ATX电源的控制电路见图1。控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。494是双排16脚集成电路,工作电压7~40V。它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路,振荡频率由{5}脚外接电容及{6}脚外接电阻来决定。{13}脚为高电平时,由{8}脚及{11}脚输出双路反相(即推挽工作方式)的脉宽调制信号。本例为此种工作方式,故将{13}脚与{14}脚相连接。比较器是一种运算放大器,符号用三角形表示,它有一个同相输入端“+”;一个反相输入端“-”和一个输出端。比较器同相端电平若高于反相端电平,则输出端输出高电平;反之输出低电平。494内的比较放大器有四个,为叙述方便,在图1中用小写字母a、b、c、d来表示。其中a是死区时间比较器。因两个作逆变工作的三极管串联后接到+310V的直流电源上,若两个三极管同时导通,就会形成对直流电源的短路。两个三极管同时导通可能发生在一个管子从截止转为导通,而另一个管子由导通转为截止的时候。因为管子在转换时有时间的延迟,截止的管子已经转为导通了,但导通的管子尚未完全转为截止,于是两个管子都呈导通状态而形成对直流电源的短路。为防止这样的事情发生,494设置了死区时间比较器a。从图1可以看出,在比较器a的反相输入端串联了一个“电源”,正极接反相端,负极接494的{4}脚。A比较器同相端输入的锯齿波信号,只有大于“电源”电压的部分才有输出,在三极管导通变为截止与截止转为导通期间,也就是死区时间,494没有脉冲输出,避免了对直流电源的短路。死区时间还可由{4}脚外接的电平来控制,{4}脚的电平上升,死区时间变宽,494输出的脉冲就变窄了,若{4}脚的电平超过了锯齿波的峰值电压,494就进入了保护状态,{8}脚和{11}脚就不输出脉冲了。494内部还有3个二输入端与门(用1、2、3表示)、两个二输入端与非门、反相器、T触发器等电路。与门是这样一种电路,只有所有的输入端都是高电平,输出端才能输出高电平;若有一个输入端为低电平,则输出端输出低电平。反相器的作用是把输入信号隔离放大后反相输出。与非门则相当于一个与门和一个反相器的组合。T触发器的作用是:每输入一个脉冲,输出端的电平就变化一次。如输出端Q为低电平,输入一个脉冲后,Q变为高电平,再输入一个脉冲,Q又回到低电平。比较器、与门、反相器、T触发器以及锯齿波振荡器及{8}脚、{11}脚输出的波形见图2。339是四比较过流保护过压保护一、产生PW-OK信号PC主机要求各路电源稳定之后才工作,以保护各元器件不致因电压不稳而损坏,故设置了PW-OK信号(约的C比较器的输出端{14}脚为零电平。另外,339的{1}脚低电平信号因D34的钳位作用,也使{14}脚为低电平,经R50和R63使{11}脚亦为低电平。因此D比较器的输出端{13}脚为低电平,也就是PW-OK信号为低电平,主机不会工作。开启主机时,通过人工或遥控操作闭合了与PS-ON相关的开关,PS-ON呈低电平,经R37使339的反相端{6}脚为低电平,B比较器{1}脚输出高电平,D35、D36反偏截止,A比较器的输出电平则由{5}脚与{4}脚的电平决定。正常工作时,{5}脚电平低于{4}脚电平,{2}脚输出低电平,经R41送到494的{4}脚,使{4}脚的电平变为低电平,锯齿波振荡信号可以从死区时间比较器a输出脉冲信号,另一方面,振荡信号送到了PWM比较器b 的同相输入端,PWM比较器输出的脉冲信号的宽度,则是由494的{1}脚的电平(也就是负载的大小)与{16}脚的电平来决定。PWM比较器输出的脉冲信号,最后经缓冲放大器放大后,从{8}、{11}脚输出脉冲信号,ATX电源向主机输出±5V、±12V、+3.3V电源。此过程因C35的充电有数百毫秒的延时,但对主机开机并无影响。494的{1}脚从+5V、+12V经取样电阻R15、R16得到电压,其电平略高于{2}脚电平,{3}脚输出高电平,经R48使339的{9}脚得到高电平,其电平高于{8}脚电平,因而{14}脚输出高电平,此电平经R50与基准+5V电源经R64共同对C39充电,经数百毫秒后,{11}脚电平升到高于{10}脚电平时,D比较器{13}脚输出高电平,此电平经R49反馈至{11}脚,维持{11}脚处于高电平状态,故{13}脚输出稳定的高电平PW-OK信号,主机检测到此信号后即开始正常工作。关机时,主机内开关使PS-ON呈高电平,此时339的{6}脚电平高于{7}脚,{1}脚输出低电平,因二极管D34的钳位作用,{14}脚呈低电平,C39对C比较器及B比较器放电,很快{11}脚呈低电平,{13}脚输出低电平,即PW-OK信号呈低电平。在339的{1}脚为低电平时,经D36使{4}臆脚为低电平,{2}脚输出高电平,经R41传送到494的{4}脚,但因C35电位不能突变,经数百毫秒的放电后方使494的{4}脚转为高电平,从而封锁正负脉冲的输出,主机进入待机状态。上述的过程中,关机时C39和C35都要放电,但因放电时间常数不同,C39放电较快,故PW-OK信号先于各电源变成低电平,满足了主机关机的需要。此外,关机时因各路输出电源的电解电容放电需要时间,也使PW-OK信号先于各电源回到低电平。二、稳压494的{2}脚经R47与基准电压+5V相连,维持较好的稳定电压,而{1}脚则与取样电阻R15、R16与+5V、+12V相连接,正常的情况下,{1}脚电平与{2}脚电平相等或略高。当输出电压升高时(无论+5V或+12V),{1}脚电平高于{2}脚电平,c比较器输出误差电压与锯齿波振荡脉冲在PWM比较器b进行比较使输出脉冲宽度变窄,输出电压回落到标准值,反之则促使振荡脉冲宽度增加,输出电压回升。由于494内的放大器增益很高,故稳压精度很好。从稳压的原理,我们可以得到ATX电源输出电压偏高或偏低的维修方法。如果输出电压偏低,可在494的{1}脚对地并联电阻,或是把R47的电阻增大。要是电源的输出偏高,则可在{2}脚对地并联电阻,也可以用增大R33或取下R69、R35来降低输出电压。三、过流保护过流保护的原理是基于负载愈大,Q3、Q4集电极的脉冲电压也愈高,也即是R13(1.5kΩ)上的电压也愈高,从这里采样经D14整流和C36滤波,再经R54、R55并联电阻与R51、R56、R58等组成的分压电路送到494的{16}脚。随着负载的加重,{16}脚的电平也随之上升,当超过{15}脚的电平时,误差放大器输出的误差电压促使调制脉冲的宽度变窄从而使负载电流减小。另外,从R56、R58并联电阻获得的分压再经R52送到339的{5}脚,当{5}脚的电平超过{4}脚时,{2}脚即输出高电平送到494的{4}脚,494停止输出脉冲信号,终止±5V、±12V、+3.3V 电源的输出,达到过流及短路保护的目的。需要说明的是:494的{16}脚电平的高低只能改变输出脉冲的宽度,但不影响494的{4}脚电平状态,而339的{5}脚电平一旦超过{4}脚的电平,339的{2}脚就送出高电平去封锁449的脉冲输出,终止±5V、±12V、+3.3V电源的输出,同时{2}脚的高电平经R59和二极管D39反馈到{5}脚,维持{5}脚处于高电平状态,此时若过载或短路状态消失,494的{4}脚仍维持高电平,±5V与±12V、+3.3V电源仍不能输出,只有切断交流市电的输入,再重新接通交流电,方可再次开机。四、过压保护过电压保护由R17和稳压管Z02并联电路从+5V采样,经D37送到339的{5}脚。若+5V电源由于某种原因升高,339的{5}脚电平也会随之升高,当超过{4}脚电平时,{2}脚即送出高电平去494的{4}脚,封锁±5V、±12V、+3.3V电源的输出,达到过电压保护的目的。正常工作时,R17上的压降不大,Z02截止送到{5}脚的电压较低,若+5V电源的电压上升,使R17上的压降超过Z02的稳压值,Z02导通,+5V电源上升后的电压值全部加到339的{5}脚上,促使其快速封锁494脉冲的输出,以保护电源五、欠压保护欠压保护从-5V的D32及-12V处的R14取样,经R34和D37送到339的{5}脚。若因某种原因使输出电压过低时,-12V及-5V电压的负值也会随之减小,也就是电压值上升,经R34及D37送往339的{5}脚使电平上升,339的{2}脚送出高电平到494的{4}脚,从而封锁449脉冲的输出,实现欠压保护。二极管D32在导通时,其电压降与通过的电流基本无关,保持在0.6V~0.7V,于是-5V电压的减少量会全部传送到D32的负端,提高了欠压保护的灵敏度。六、电源保护电路故障的维修从上面的叙述中可以了解到,各种保护电路最终都是通过控制339的{5}脚电平来控制494的{4}脚电平实现的。正常工作时,339的{5}脚电平低于339的{4}脚电平,339的{2}脚输出低电平,使494的{4}脚呈低电平状态(约为0.25V)。若339的{5}脚电平高于339的{4}脚电平,339的{2}脚输出高电平,于是494的{4}脚变为高电平,电源就进入了保护状态,终止各路电源的输出。因此ATX电源出了故障,若电源的整流、滤波、逆变以及辅助电源均完好,则要检查339的{4}、{5}脚的电平。若是{5}脚电平高于{4}脚的电平,表示电源进入了保护状态。下一步则找出是什么原因使电源进入了保护状态。可检查与339的{5}脚相连各支路另一端的电压是不是比{5}脚电压高,高出{5}脚电压的支路就是故障所在的支路。另外,也可以用断开与{5}脚相连的一个个支路,若是断开某一条支路后{5}脚的电平正常了,那么故障就出在这一条支路上。再沿着这条支路往下查,很快就可以把故障排除。下面通过两个实例来加以说明。1.一台SLPS-250ATXC电源的输出电压偏低。空载下,+5V电源的电压只有+1.8V,其他各路电压也按比例同样下降。电源是采用TL494及LM339集成电路的典型ATX电路。检查494的{4}脚电压为+2.6V。电路似乎处于保护状态。但保护状态时各路输出的电压均应为零,而现在却是正常电压的三分之一,令人费解。试着把494的第{4}脚接地,电源立即输出正常。{4}脚接地就正常工作,说明494并未损坏,问题可能出在339以及有关的电路。用万用表查339管脚的电压,当查到第{4}脚及{7}脚时,各路电源均正常了。甚至只用一条表笔去碰{7}脚或{4}脚,也可使电源恢复正常工作。这等于在{4}脚或{7}脚上加了一条“天线”,天线接收了外来信号电源就工作正常了!我试了试天线的长度,40厘米以下对电源不起作用,长度增加了,输出电压也随着增加,达到1米左右时,输出电压就正常了,494的{4}脚电压也恢复到0V。但电源要用“天线”才能工作,说明还有故障未找到。再检查339的{4}脚与{5}脚的电压,{5}脚电压为2.4V,{4}脚的电压为1.2V,输出端{2}脚的电压为2.9V。(这部分电路见图3)。但是339的{2}脚高电位,必须由{5}脚电位高于{4}脚的电位时才能产生,那{5}脚最初的高电位是怎么来的?把与{5}脚相连的各支路断开试一试。在断开c支路以后,电源就正常了。沿着D2往下找,最后在+3.3V电源处对地接一个1000μF的电容时,电源就正常了。再检查+3.3V电源原来的滤波电容,发现已经失效。更换电容后494的{4}脚电压恢复正常,用表笔去碰触339的{4}脚或{7}脚也不起作用,问题得到了解决。为什么+3.3V电源的滤波电容失效会造成输出电压偏低?+3.3V电源在没有电容滤波时,输出的直流电源中含有很强的由逆变功率管输出的脉冲成分,通过D3及D2送到LM339的{5}脚,使{5}脚的电平高于{4}脚的电平,电源进入了保护状态。从+20V 电源经R3、D1、R2和三个并联电阻到接地的支路中,三个电阻并联后的电阻值是2.43kΩ,再略去其他支路的影响,可以估算出{5}脚的电压大约是2.3V,因二极管D1的钳位作用,{2}脚输出电压只能在2.9V左右,经R1送到TL494的{4}脚,减去电阻R1的降压,494的{4}脚电压就是2.6V了。在此电压下,494会输出较窄的脉冲,于是在空载下,+5V电源有约1.8V的电压输出。解决的办法可在d支路中串联一个47kΩ的电阻,并把R2由3.9kΩ换成100kΩ就行了。经这样处理后,不论是正常工作或是保护状态,各路电源的输出电压和各管脚的电压均正常了。而R2电阻的改动,也不会影响电源的过载保护性能。至此,电源的故障才完全得到了解决(爱好者手中若有SLPS-250ATXC电源,可参考此例加一个47kΩ电阻以提高电源的保护性能)。为什么339的{4}脚加了天线会正常工作呢?这是{2}脚经D1反馈到{5}脚后,产生了轻微的高频寄生振荡。{4}脚或{7}脚接了天线以后,破坏了电路的振荡条件,使{4}脚的电压升高,当超过{5}脚的电压时,{2}脚送出0V的低电平信号到494的{4}脚,电源就工作正常了。同样,在D1支路中串联了47kΩ电阻后,增加了阻尼因数,破坏了电路的振荡条件,电源也就正常了。此时若取下+3.3V电源处新加的电解电容,通电后,电源会立即进入保护状态,各路电源都没有输出。2.一台新时代HY-ATX300电源,空载时输出电压正常,但不能带动负载。检查494各个管脚的电压,发现{12}脚的电压只有10V,这是造成不能带动负载的原因。在辅助电源逆变变压器T3的初级线圈1加上16.5V的高频电压,测得次级+5VSB挡线圈3的电压是0.9V,向494集成电路{12}脚供电线圈4的电压为1.5V,约是+5VSB挡线圈电压的 1.7倍。电源的+5VSB电源是直接从线圈3经整流和滤波后得到,+5VSB电源的稳压则是借助WD431稳压集成电路和光电耦合器反馈回逆变三极管得到的,如图4所示。由此可以算出线圈4的电压为5×1.7=8.5V,因负载较轻,经电容滤波后的电压就是10V左右了。由此说明T3脉冲变压器线圈4的匝数少了。拆开T3变压器,得到各绕组的匝数为:初级2×110匝;反馈绕组10匝;+5VSB绕组12匝;绕组4的匝数是8匝。重新绕制绕组4,把匝数由原来的8匝增加到20匝,其余绕组的匝数不变。绕好后上机实验,494集成电路{12}脚的电压上升到17V,电源的输入功率可达130W,故障排除。从故障现象看,可能是工厂生产时将变压器装错了。。

开关集成电路TL494引脚图

开关集成电路TL494引脚图

开关集成电路TL494引脚图TL494是美国德州仪器公司生产的一种电压驱动型脉宽调制控制集成电路,主要应用在各种开关电源中。

本文介绍它与相应的输入、输出电路等一起构成一个单回路控制器。

开关集成电路TL494内部原理图:1、TL494管脚配置及其功能TL494的内部电路由基准电压产生电路、振荡电路、间歇期调整电路、两个误差放大器、脉宽调制比较器以及输出电路等组成。

图1是它的管脚图,其中1、2脚是误差放大器I的同相和反相输入端;3脚是相位校正和增益控制;4脚为间歇期调理,其上加0~3.3V电压时可使截止时间从2%线怀变化到100%;5、6脚分别用于外接振荡电阻和振荡电容;7脚为接地端;8、9脚和11、10脚分别为TL494内部两个末级输出三极管集电极和发射极;12脚为电源供电端;13脚为输出控制端,该脚接地时为并联单端输出方式,接14脚时为推挽输出方式;14脚为5V基准电压输出端,最大输出电流10mA;15、16脚是误差放大器II的反相和同相输入端。

2、回路控制器工作原理回路控制器的方框图如图2所示。

被控制量(如压力、流量、温度等)通过传感器交换为0~5V的电信号,作为闭环回路的反馈信号,通过有源简单二阶低通滤波电路进行平滑、去除杂波干扰后送给TL494的误差放大器I的IN+同相输入端。

设定输入信号是由TL494的5V基准电压源经一精密多圈电位器分压,由电位器动端通过有源简单二阶低通滤波电路接入TL494的误差放大器I的IN-反相输入端。

反馈信号和设定信号通过TL494的误差放大器I进行比较放大,进而控制脉冲宽度,这个脉冲空度变化的输出又经过整流滤波电路及由集成运算放大器构成的隔离放大电路进行平滑和放大处理,输出一个与脉冲宽度成正比的、变化范围为0~10V的直流电压。

这个电压就是所需要的输出控制电压,用它去控制执行电路,及时调整被控制量,使被控制量始终与设定值保持一致,形成闭环单回路控制。

用TL494实现的单回路控制器的电路原理图如图3所示。

开关集成电路TL494内部原理图

开关集成电路TL494内部原理图

开关集成电路TL494内部原理图:TL494是美国德州仪器公司生产的一种电压驱动型脉宽调制控制集成电路,主要应用在各种开关电源中。

本文介绍它与相应的输入、输出电路等一起构成一个单回路控制器。

1、TL494管脚配置及其功能TL494的内部电路由基准电压产生电路、振荡电路、间歇期调整电路、两个误差放大器、脉宽调制比较器以及输出电路等组成。

图1是它的管脚图,其中1、2脚是误差放大器I的同相和反相输入端;3脚是相位校正和增益控制;4脚为间歇期调理,其上加0~3.3V电压时可使截止时间从2%线怀变化到100%;5、6脚分别用于外接振荡电阻和振荡电容;7脚为接地端;8、9脚和11、10脚分别为TL494内部两个末级输出三极管集电极和发射极;12脚为电源供电端;13脚为输出控制端,该脚接地时为并联单端输出方式,接14脚时为推挽输出方式;14脚为5V基准电压输出端,最大输出电流10mA;15、16脚是误差放大器II的反相和同相输入端。

2、回路控制器工作原理回路控制器的方框图如图2所示。

被控制量(如压力、流量、温度等)通过传感器交换为0~5V的电信号,作为闭环回路的反馈信号,通过有源简单二阶低通滤波电路进行平滑、去除杂波干扰后送给TL494的误差放大器I的IN+同相输入端。

设定输入信号是由TL494的5V基准电压源经一精密多圈电位器分压,由电位器动端通过有源简单二阶低通滤波电路接入TL494的误差放大器I的IN-反相输入端。

反馈信号和设定信号通过TL494的误差放大器I进行比较放大,进而控制脉冲宽度,这个脉冲空度变化的输出又经过整流滤波电路及由集成运算放大器构成的隔离放大电路进行平滑和放大处理,输出一个与脉冲宽度成正比的、变化范围为0~10V的直流电压。

这个电压就是所需要的输出控制电压,用它去控制执行电路,及时调整被控制量,使被控制量始终与设定值保持一致,形成闭环单回路控制。

用TL494实现的单回路控制器的电路原理图如图3所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TL494脉宽调制操控电路图TL494脉宽调制操控电路图
TL494外形图TL494引脚图
作业原理简述
TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振动器,振动频率可经过外部的一个电阻和一个电容进行调度,其振动频率如下:
输出脉冲的宽度是经过电容CT上的正极性锯齿波电压与别的两个操控信号进行比照来完结。

功率输出管Q1和Q2受控于或非门。

当双稳触发器的时钟信号为低电往常才会被选通,即只需在锯齿波电压大于操控信号时期才会被选通。

当操控信号增大,输出脉冲的宽度将减小。

拜见图2。

TL494脉冲操控波形图
操控信号由集成电路外部输入,一路送至死区时间比照器,一路送往过失拓宽器的输入端。

死区时间比照用具有120mV的输入赔偿电压,它绑缚了最小输出死区时间约等于锯齿波周期的4%,当输出端接地,最大输出占空比为96%,而输出端接参阅电往常,占空比为48%。

当把死区时间操控输入端接上固定的电压(计划在0一;3.3V之间)即能在输出脉冲上发作附加的死区时间。

脉冲宽度调制比照器为过失拓宽器调度输出脉宽供给了一个办法:当反响电压从0.5V改动到3.5时,输出的脉冲宽度从被死区断定的最大导通百分比时间中降低到零。

两个过失拓宽用具有从-0.3V 到(Vcc-2.0)的共模输入计划,这或许从电源的输出电压和电流发觉得到。

过失拓宽器的输出端常处于高电平,它与脉冲宽度调制器的反相输入端进行或运算,恰是这种电路构造,拓宽器只需最小的输出即可分配操控回路。

当比照器CT放电,一个正脉冲呈如今死区比照器的输出端,受脉冲绑缚的双稳触发器进行计时,一同间断输出管Q1和Q2的作业。

若输出操控端联接到参阅电压源,那么调制脉冲替换输出至两个输出晶体管,输出频率等于脉冲振动器的一半。

假定作业于单端状况,且最大占空比小于50%时,输出驱动信号别离从晶体管Q1或Q2获得。

输出变压器一个反响绕组及二极管供给反响电压。

在单端作业办法下,当需求更高的驱动电流输出,亦可将Q1和Q2并联运用,这时,需将输出办法操控脚接地以封闭双稳触发器。

这种状况下,输出的脉冲频率将等于振动器的频率。

TL494内置一个5.0V的基准电压源,运用外置偏置电路时,可供给高达10mA的负载电流,在典型的0一;70℃温度计划50mV温漂条件下,该基准电压源能供给plusmn;5%的精确度。

TL494内部电路方框图
TL494的极限参数称谓代号极限值单位作业电压Vcc42V集电极输出电压Vc1,Vc242V集电极输出电流Ic1,Ic2500mA拓宽器输入电压计划VIR-0.3V一;+42V功耗PD1000mW热阻Rtheta;JA80℃/W作业结温TJ125℃作业环境温度
TL494B
TL494C
TL494I
NCV494BTA
-40一;+125
0一;+70
-40一;+85
-40一;+125℃额外环境温度TA40℃
TL494脉宽调制操控电路运用
单端联接输出和推、拉(电流)构造。

相关文档
最新文档