软土地区深基坑变形控制技术应用
软土地质条件下高压旋喷锚索应用实例

软土地质条件下高压旋喷锚索应用实例摘要:桩锚支护结构在基坑支护工程中的应用十分广泛,但对于软弱土地质条件下的深基坑工程,常规锚索在施工时易出现塌孔、缩颈等不良情况,且软土侧阻力小,锚索得不到足够的锚固力,极易因土体流变而产生锚固力损失,造成基坑变形,危害支护结构安全。
近年来,高压旋喷锚索在深基坑支护体系中取得了良好的应用效果,本文分析了高压旋喷锚索在软土地质条件下的工程应用实例特征。
关键词:深基坑软土地质高压旋喷锚索1、高压旋喷锚索特点分析高压旋喷锚索是一种将大直径水泥土搅拌桩体与传统锚索相结合而成的新型锚索结构,它利用高压旋喷钻机按一定角度在土体中成孔,喷射水泥浆,充分搅拌形成桩体,同时利用多叶钻头及锚盘将加筋体(钢绞线)带入桩体,通过预应力张拉形成高压旋喷锚索,最终进行锁定。
高压旋喷锚索能有效降低锚索周围土体的水平应力,减小锚索塑性形变,控制支护结构位移和内力释放,对加固土体的变形产生有效约束作用。
且锚固体端部可通过复搅、增大浆体喷射压力等措施形成扩大头,克服软弱土质侧阻力小的缺点。
在施工过程中,成孔、喷浆、搅拌和加筋等工序能一次性完成,避免了常规锚索在软弱土质中塌孔、缩颈的问题,保证锚索施工质量。
2、高压旋喷锚索在软土地质工程中的应用实例2.1、工程情况简介昆明市西山区某大型住宅类项目,地属原滇池回填区,根据地勘报告显示,场地内土质情况复杂,土质松散多呈软塑-流塑状态,且土层内分布大量泥炭质土,含水率高,干强度低。
本工程设计基坑开挖深度7.7-8.0米,基坑支护体系包含三轴水泥土搅拌桩止水帷幕、长螺旋支护排桩、自然放坡网喷面层、高压旋喷土锚等组合形式。
支护形式复杂多样,其中高压旋喷锚索施工为确保深基坑支护结构稳定及影响施工进度的重难点。
2.2、高压旋喷锚索设计概况本工程基坑北侧直立支护段设置两道高压旋喷锚索,第一道φ500@1800,L=22.00m,内配4s15.2钢绞线,自由段长8.0m,锚固段长14.00m。
阐述软土地区深基坑工程阶段变形特点与控制

阐述软土地区深基坑工程阶段变形特点与控制1、软土地区深基坑工程的特点1.1基坑开挖面积和开挖深度发展迅速20世纪80年代深基坑的广泛出现,但由于技术上的限制,开完深度一般为10m。
随着城市的快速发展,越来越多的大面积、大深度的特大基坑工程不断涌现。
例如,由上海城建隧道公司承建的中原第一深基坑——郑州地铁紫荆山站2号线南端部分主体基坑开挖深度达30.85米,是目前中原地区最深的基坑,工程主体围护采用1.2米厚地下连续墙,墙深50.65米;天津火车站的交通枢纽基坑工程最大开挖深度达33.5m;武汉阳逻双塔单跨悬索的长江公路大桥,其南部深基坑开挖深度达45m,开挖直径70m。
1.2基坑开挖的周围环境更加复杂化,使深基坑工程进入变形控制设计的时代随着近几十年软土地区大型地下商场、地下轨道交通、人防工程及特高层建筑的大量涌现,基坑工程对周围的环境的影响是设计人员和施工人员需要面对的一大难题。
目前,大多数深基坑工程身处建筑物密集地区,基坑周边往往会有地下市政管线、重要的建筑物、地铁隧道、地下商场、桩基基础等。
然而,软土地区的基坑的开挖往往会出现连带效应,引发周边土体的应力场的变化,使周边土体发生较大的变形和位移,从而引发周边建筑设施的不均匀沉降,造成城市道路,市政地下管线等重要城市基础设施受到损坏,甚至会发生周围建筑的坍塌破坏,造成巨大的经济损失。
因此分析软土地区深基坑施工过程变形对周边环境的影响规律,归纳总结深基坑工程实践中采用的各种基坑变形控制方法和经验,对指导软土地区深基坑的设计具有十分重要的意义。
2.软土地区基坑开挖过程变形2.1围护结构变形Clough和O’Rourke[1]通过对内支撑和拉锚支护的深基坑开挖引发的围护结构变形的长期试验研究,得出软土地区基坑围护结构的变形分为三种形式(图1):①悬臂梁变形形式:在土体开挖初期,施工采用先基坑开挖后安装首道支撑方法,或在下部土体开挖的过程中上部支撑刚度不足或未及时提供支撑力,此时围护机构的变形与悬臂梁受力变形较为相似,基坑边缘沉降最大,并以抛物线形式向周围扩散沉降;②鱼腹梁变形形式:随着开挖深度的进一步加深,上部支撑的刚度和支撑力有所增加,具有一定的抵抗能力,限制了围护结构的上部向坑内的位移,使围护结构的变形转变为底层支护结构的向内凸起,变形形状接近于鱼腹梁形状,此时地面沉降的最大位置由围护墙墙边位置转移至距基坑边一定的距离的某一点;③组合变形形式:此变形形式为上述两种变形的组合,坑外地面的沉降亦为上述两种情况的组合。
软土地区深基坑变形控制技术应用

软土地区深基坑变形控制技术应用随着城市建设的不断发展,越来越多的高楼大厦在软土地区兴建。
然而,在软土地区进行深基坑开挖时,往往会遇到一系列地质和土壤条件带来的挑战,例如地基沉降、土体变形等问题,给工程施工和结构安全带来了严重影响。
因此,如何在软土地区进行深基坑的变形控制成为了一个重要的研究和应用课题。
本文将从软土地区的特点、深基坑变形控制技术的原理和应用等方面展开论述。
一、软土地区的特点软土是指在地表以下较浅层的土体,由于其含水量高、孔隙比大、孔隙水压力较高,导致其强度和稳定性较差,易发生沉降、塌陷等问题。
软土地区的地基条件复杂,地质构造不均匀,土壤性质不稳定,加上地下水位变化大等因素,使得在软土地区进行深基坑开挖面临着诸多挑战。
(一)高地下水位软土地区地下水位通常较高,地下水对土体的影响很大,易引起土体流失、沉降等问题。
(二)土壤变形软土地区的土壤较为松软,容易受外界力的作用而发生变形,尤其是深基坑开挖过程中,土体变形更加严重。
(三)地质分层不均匀软土地区的地质构造复杂,地质分层不均匀,不同土层之间的承载能力差异大,对基坑的稳定性构成了严重威胁。
二、深基坑变形控制技术的原理深基坑变形控制技术是通过一系列手段来减缓和控制土体的变形,保证基坑周围环境和结构的安全。
其主要原理包括:加固支护、降低地下水位、地基处理和监测预警。
(一)加固支护在软土地区进行深基坑开挖时,对基坑周围进行加固支护是十分必要的。
采用钢支撑、混凝土搅拌桩等方式来加固周边土体,增加土体的稳定性。
(二)降低地下水位通过降低地下水位的方法,来减缓土体的流失和沉降,保证基坑周围土体的稳定性。
可以采用抽水井、井点排水等方式来降低地下水位。
(三)地基处理通过地基处理来提高土体的承载能力,减缓土体的变形。
可以采用土体加固、土体固化等方式来进行地基处理。
(四)监测预警通过对基坑周围环境和土体变形的监测预警,及时发现问题并采取相应的措施。
可以采用位移监测、应力监测等手段来进行监测预警。
《2024年软土地区深基坑施工引起的变形及控制研究》范文

《软土地区深基坑施工引起的变形及控制研究》篇一一、引言随着城市化进程的加速,高层建筑、地铁等大型基础设施的建设日益增多,深基坑施工在软土地区的应用也愈发普遍。
然而,软土地区地质条件复杂,深基坑施工容易引起周边环境的变形,进而影响建筑物的稳定性和安全性。
因此,对软土地区深基坑施工引起的变形及控制进行研究,对于保障工程质量和安全具有重要意义。
二、软土地区深基坑施工变形机理1. 软土特性软土地区土质疏松、含水量高、压缩性大、强度低等特点,使得深基坑施工过程中容易发生变形。
在施工前,必须对地质条件进行详细的勘察和了解。
2. 变形机理深基坑施工过程中,由于土方开挖、支撑结构施工等因素,使得基坑周围土体发生应力重分布,进而导致土体位移、隆起、坍塌等变形现象。
这些变形现象不仅影响基坑本身的稳定性,还可能对周边建筑物、道路、管线等造成损害。
三、深基坑施工变形控制措施1. 合理设计支护结构支护结构是控制深基坑变形的重要措施。
设计时需根据地质条件、基坑深度、周边环境等因素,选择合适的支护结构类型和参数。
同时,应确保支护结构具有足够的强度和刚度,以承受土方开挖和支撑结构施工过程中的荷载。
2. 优化施工工艺施工过程中应采取分步开挖、及时支撑等措施,以减小土体应力重分布的范围和速度。
同时,应控制每步开挖的深度和宽度,避免过大过快的开挖导致土体失稳。
在支撑结构施工时,应确保支撑结构的施工质量,使其能够及时有效地承受荷载。
3. 监测与反馈在深基坑施工过程中,应进行实时监测,包括基坑变形监测、支护结构受力监测、周边环境变化监测等。
通过监测数据及时反馈施工过程中的问题,以便采取相应的措施进行调整和优化。
同时,应建立完善的预警机制,一旦发现变形超过允许范围,应立即停止施工并采取紧急措施。
四、实例分析以某软土地区深基坑工程为例,通过采用合理的支护结构设计、优化施工工艺以及实施严格的监测与反馈措施,成功地控制了深基坑施工过程中的变形。
《2024年软土地区深基坑施工引起的变形及控制研究》范文

《软土地区深基坑施工引起的变形及控制研究》篇一一、引言随着城市化进程的推进,建筑工程的深度和复杂性日益增加,特别是在软土地区,深基坑施工成为了建筑行业面临的重要问题。
软土地区的地质条件复杂,深基坑施工往往伴随着土体变形,这对周边环境及建筑物安全构成威胁。
因此,研究软土地区深基坑施工引起的变形及控制措施,对于保障施工安全、提高工程质量具有重要意义。
二、软土地区深基坑施工变形分析1. 变形类型及原因在软土地区进行深基坑施工时,常见的变形类型包括基坑隆起、周边地面沉降及相邻建筑物变形等。
这些变形主要由以下几个因素引起:(1)土体应力重分布:施工过程中,土体应力重新分布,导致土体发生位移和变形。
(2)地下水位变化:基坑开挖导致地下水位上升或下降,引起土体固结或松动。
(3)支护结构位移:支护结构的不稳定或设计不合理,导致结构位移,进而引发土体变形。
2. 变形影响分析深基坑施工引起的变形对周边环境及建筑物安全具有较大影响。
一方面,地面沉降可能导致周边道路、管线等设施损坏;另一方面,基坑隆起及建筑物变形可能影响相邻建筑物的稳定性及使用安全。
此外,变形还可能引发环境问题,如地面开裂、地下水污染等。
三、深基坑施工变形控制措施为有效控制深基坑施工引起的变形,需采取一系列措施。
这些措施主要包括以下几个方面:1. 合理设计支护结构:根据地质条件、基坑深度及周边环境等因素,设计合理的支护结构,确保结构稳定,防止土体位移和变形。
2. 优化施工工艺:采用先进的施工工艺和技术,减少对土体的扰动和破坏,降低变形发生的可能性。
3. 地下水控制:采取有效的地下水控制措施,如设置止水帷幕、合理降低地下水位等,以减少地下水位变化对土体的影响。
4. 监测与反馈:对深基坑施工过程进行实时监测,包括土体位移、支护结构位移、地下水位等,根据监测结果及时调整施工参数和措施,确保施工安全。
5. 应急预案:制定针对可能发生的变形的应急预案,包括预警机制、应急救援队伍、救援设备等,以便在发生变形时能够迅速、有效地应对。
软土地区深基坑变形控制技术应用

软土地区深基坑变形控制技术应用一、引言软土地区指的是土壤属于软质土层地区,这种土质结构松软、容易塌陷,常常被称为“软蛋壳”土地。
在软土地区进行深基坑开挖时,由于土壤本身的脆弱性,很容易造成地基沉降、开裂等问题,给工程施工和建筑物的稳定性带来风险。
因此,在软土地区进行深基坑变形控制技术的应用具有重要的意义。
二、软土地区深基坑变形控制技术1.地基处理技术地基处理是软土地区深基坑变形控制的关键。
在软土地区采用合适的地基处理技术,可以有效加固土壤的稳定性,降低基坑开挖对周边土壤的影响。
常见的地基处理技术包括土钉墙、搅拌桩、颗粒悬臂墙等,通过这些手段可以有效地加固地基,减少地基沉降和开裂的风险。
2.监测技术在基坑开挖施工过程中,监测技术是至关重要的。
通过对基坑周边土壤沉降、裂缝情况、地下水位等进行实时监测,可以及时发现问题并采取相应的措施应对,避免由于地基变形而导致的建筑物损坏和安全事故。
常见的监测技术包括测量仪器、遥感技术、地下水位监测系统等。
3.支护结构技术在软土地区进行深基坑开挖时,支护结构技术是不可或缺的。
支护结构包括支撑桩、钢梁、垂直支撑等。
通过合理设计和施工支护结构,可以有效地保护基坑周边的建筑物和地下管线,减少基坑变形对周边环境的影响。
4.地下水位控制技术软土地区通常地下水位较高,对于深基坑开挖有一定影响。
地下水位控制技术是软土地区深基坑变形控制的重要手段之一。
通过合理的排水系统、降低地下水位,可以减少地基沉降和开裂的风险,保证基坑周边地基的稳定性。
5.模拟分析技术在深基坑变形控制过程中,采用模拟分析技术可以帮助工程师进行合理的设计和施工方案,预测地基变形情况,评估工程的安全性。
通过有限元分析、数值模拟等技术手段,可以科学地评估基坑变形对周边环境的影响,有效地提高工程的安全性和稳定性。
三、软土地区深基坑变形控制技术的应用案例1.某软土地区深基坑开挖工程某软土地区进行深基坑开挖工程,在地基处理技术上采用了搅拌桩和土钉墙的加固手段,在支护结构上采用了梁板和桩墙结构。
软土地区深基坑工程存在的变形与稳定问题及其控制——基坑施工全过程可产生的变形

软土地区深基坑工程存在的变形与稳定问题及其控制——基坑施工全过程可产生的变形论文软土地区深基坑工程的变形和稳定问题一直是工程施工中的重要课题,尤其在深基坑施工时,由于周围地层的复杂性和不稳定性,变形和稳定问题更为突出。
因此,限制基坑建设过程可能导致的变形,控制基坑施工过程中可能存在的变形,以及提出符合实际工程要求的基本控制原则,成为一个重要且持久的工程研究课题。
在深基坑施工过程中,变形涉及到坑内支护结构变形、现浇、预制构件的变形,以及地表和基坑围护结构的变形,以及基坑土体水平变形和垂直变形等问题,影响施工安全和工期。
从深基坑施工安全出发,首先确定基坑施工过程可能引起的变形类型,包括施工序变形、自重变形、渗流变形、水磨变形、受压变形和稳定性变形等类型。
施工序变形是基坑施工中最常见的变形类型,主要生成原因是支护结构的施工变形,如支撑物的局部变形、支护结构的变形、支护结构的拆除变形等等,这也是变形类型中能够控制较好的,采取有效措施,施工序变形是可以控制的。
自重变形以施工组织方式对变形控制最为重要,一般以小施工单元施工为主,每个施工单元分开施工,然后逐级支护,以控制变形,工期紧张情况可以采用支护带明挖法,防止基坑底部变形过大产生稳定问题。
渗流变形由于基坑施工会改变地下水位和地下水流动方向,基坑施工过程中,渗流变形会在支护过程中,基坑施工过程中,基坑处于恒定的水压力状态下,往往会发生变形,为了防止变形,必须采取有效的水文控制措施,控制基坑的水位,使其保持在安全范围。
水磨变形是软土基坑施工中最易发生变形的一种现象,主要与基坑外地层渗透性密切相关,采取有效的支护工艺,使基坑减少水磨变形,有效地防止基坑变形,降低基坑支护风险。
受压变形在深基坑施工中也是重要的变形类型,主要与地层的强度和施工支护厚度有关,因此,在采取有效的施工支护技术时,必须结合地层强度设计合理厚度,以控制变形,并考虑施工中支护结构和地层之间的应力平衡原理,确保基坑施工安全。
软土地铁深基坑施工变形控制技术论文

软土地铁深基坑施工变形控制技术研究【摘要】随着经济的飞速发展,地铁的修建在近几年已经成为城市建设的重点。
地铁施工过程中遇到软土地铁深基坑是很常见的,如何控制软土地铁深基坑施工过程中的变形已经成为地铁修建工程的重点和难点,本文分析了软土地铁深基坑工程介绍以及深基坑变形影响因素,最后总结了软土地铁深基坑施工的变形控制技术。
【关键词】软土地铁深基坑;深基坑施工变形;变形控制技术地铁工程一般位于城市中心,其深基坑工程相应也位于密布各种建筑物和道路管道等的环境中。
深基坑工程的施工环境非常复杂,施工变形技术理论和体系都不够成熟和完善,施工风险很大,一旦在进行基坑开挖时引起较大的基坑变形,就会出现安全事故,造成很大的伤亡。
因此,为了确保施工环境安全,必须采取有效措施来控制地铁深基坑工程的施工变形。
1.软土地铁深基坑工程概述软土地铁深基坑工程施工风险非常高,需要先进复杂的技术作为支撑,是一项综合性强、涉及各种学科的系统工程。
目前还没有成熟的技术和理论来控制深基坑的变形,保证深基坑工程的稳定性。
深基坑工程有多种形式的失稳问题,主要有两种表现形式:基坑稳定性破坏和基坑支护结构刚度不足引起的破坏。
基坑稳定性破坏主要包括基坑支护结构的倾覆破坏、基底隆起和整体失稳破坏等,主要原因是丧失了支护结构静力平衡条件;基坑支护结构刚度不足引起的破坏包括支撑压曲或支护结构变形过大等。
在深基坑工程施工的过程中不能只保证基坑的不塌不垮,即只保证基坑的稳定性是不够的,还要进行深基坑支护工程的设计和施工控制。
2.软土地铁深基坑施工变形影响因素软土地铁深基坑的施工过程对深基坑工程的变形有很大的影响,很多地铁深基坑施工工程实例证明,深基坑安全施工过程中出现的基坑倒塌事故只有少部分是由于设计因素等引起的,而大部分是施工原因引起的。
一般来说深基坑的施工方案,施工的质量好坏和施工过程是否按照设计标准进行都会影响深基坑的变形和稳定性。
主要总结为以下三个方面的因素:2.1深基坑过程中不同的挖撑次序的影响一般的深基坑施工过程挖撑次序有两种,先挖后撑和先撑后挖。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
软土地区深基坑变形控制技术应用
1、基坑变形机理分析
基坑开挖的过程,实质是载荷释放的过程,受载荷释放影响,导致坑底土体向上发生位移,与此同时导致围护墙受两边压力差影响,出现水平向位移及墙外侧位移。
导致周边地层发生位移的主要诱因是坑底的隆起和围护墙的位移。
另外,地层损失、漏水、漏砂等事故也会引发基坑变形。
影响开挖变形的主要因素:(1)围护结构:围护墙体厚度、插入深度、支撑体系的刚度等。
(2)地基加固:通过对基坑内侧、外侧施行地基加固。
实际工程中,往往进行坑内被动区的加固。
(3)施工措施:围护结构施工对地层的挠动;开挖土方的空间效应;施工期的长短的影响。
2、软土深基坑变形控制技术
2.1勘察设计过程控制
基坑事故的最大影响因素就是设计不完善。
体现在设计准备质量不充分,信息量不足、经验欠缺、解决问题措施不当等造成。
控制点主要包含以下几方面:
①实地勘察、岩土参数的准确性;
②基坑周围环境,如地下管网、建筑、保护对象(古建筑)。
③对变形控制计算,结构选型、变形计算等;
④对变形影响大的因素设计处理不当,如:集中应力,必须进行对基坑阳角进行加固、支撑系统强度需适当增加、桩间加固等。
2.2施工工艺与质量控制。