BP神经网络算法预测模型
基于改进的BP神经网络的预测模型

基于改进的BP神经网络的预测模型随着人工智能技术的发展,神经网络在各个领域得到了广泛的应用。
其中,BP 神经网络是最常用的神经网络之一,用于各种模式识别、回归和预测问题。
然而,BP神经网络仍然存在一些问题,例如收敛速度慢、易陷入局部极小值等。
因此,为了提高预测精度和速度,改进BP神经网络成为研究的重点。
改进的BP神经网络显著提高了预测精度和速度。
一种常见的方法是增加隐藏层的神经元数量。
更多的神经元可提供更多的信息和更强的学习能力。
通过增加神经元数量,可以从输入到输出层更准确地建立非线性映射。
然而,过多的神经元也会导致训练时间过长和过拟合问题。
这时,正则化技术可以使用,通过权重衰减来避免过拟合问题,从而提高预测精度。
除了增加神经元和正则化技术,优化神经网络算法也是提高BP神经网络的一种方法。
例如,引入动量项可以加快算法的收敛速度,提高预测的准确性。
动量项是前一次更新误差的线性组合和本次更新误差的线性组合的和。
这样做可以加速权重更新,使权重更新的方向不会轻易改变。
同时,也可以避免由于梯度变化而导致的震荡情况。
在BP神经网络中,选择适当的激活函数也是非常重要的。
常用的激活函数包括sigmoid函数、ReLU函数和tanh函数等。
sigmoid函数可以将任何输入压缩到0到1之间,但是,它的导数在输出与0或1的附近为0,这导致了训练过程中的梯度弥散问题。
ReLU和tanh函数可以解决这个问题。
ReLU函数直接将输出截断为0 ,因此没有出现梯度弥散问题。
但是,ReLU函数本身也存在一些问题,例如输出为0导致该神经元失活。
Tanh函数把输入压缩到-1到1之间,也能避免梯度弥散问题。
因此,在特定的问题中选择适当的激活函数是非常重要的。
总之,改进BP神经网络是提高预测精度和速度的关键。
增加隐藏层神经元数量、正则化技术、动量项、适当选择激活函数等方法都可以提高神经网络的性能。
这些改进方法的选用和经验的总结,是构建基于改进的BP神经网络预测模型的关键所在。
基于BP神经网络的负荷预测模型研究

基于BP神经网络的负荷预测模型研究第一章:引言负荷预测在电力系统运行和规划中扮演着重要的角色。
准确地预测负荷变化可以有效地优化电力系统的运行调度和资源分配,提高电力系统的可靠性和经济性。
近年来,随着电力系统规模的不断扩大和发展,负荷预测变得越来越复杂。
传统的负荷预测方法,如统计方法和时间序列方法,在处理非线性和时变特性方面存在一定的局限性。
因此,基于人工智能的方法逐渐成为研究的热点。
第二章:BP神经网络的基本原理BP神经网络是一种常用的人工神经网络,其具有非线性映射能力和适应性优势。
BP神经网络由输入层、隐藏层和输出层组成,通过前向传播和反向传播算法来实现训练和预测的过程。
输入层接收负荷预测的相关特征,隐藏层进行特征转化和映射,输出层输出负荷预测结果。
第三章:负荷预测模型的构建在构建基于BP神经网络的负荷预测模型时,首先需要选择合适的输入变量。
常用的输入变量包括历史负荷数据、天气数据、节假日等。
接下来,需要对数据进行预处理,包括数据归一化、去除异常值等。
然后,将数据集划分为训练集和测试集,用于模型的训练和评估。
接着,选择适当的网络结构和参数,如隐藏层数、神经元个数和学习率等。
最后,通过对训练集的训练和优化,得到预测模型。
第四章:负荷预测模型的实验与分析本章将通过实验对基于BP神经网络的负荷预测模型进行验证和分析。
首先,采集真实的负荷数据和相关特征数据,构建实验数据集。
然后,将数据集按照一定的比例划分为训练集和测试集。
接着,使用BP神经网络模型对训练集进行训练,并对测试集进行预测。
最后,根据实验结果进行分析和评估。
第五章:模型性能评价指标为了评估基于BP神经网络的负荷预测模型的性能,需要引入合适的评价指标。
常用的评价指标包括平均绝对百分比误差(MAPE)、均方根误差(RMSE)和相关系数等。
通过对实验结果进行评价指标的计算和比较,可以对模型的预测精度进行客观的评估。
第六章:讨论与展望本章将对基于BP神经网络的负荷预测模型进行讨论和展望。
python实现BP神经网络回归预测模型

python实现BP神经⽹络回归预测模型神经⽹络模型⼀般⽤来做分类,回归预测模型不常见,本⽂基于⼀个⽤来分类的BP神经⽹络,对它进⾏修改,实现了⼀个回归模型,⽤来做室内定位。
模型主要变化是去掉了第三层的⾮线性转换,或者说把⾮线性激活函数Sigmoid换成f(x)=x函数。
这样做的主要原因是Sigmoid函数的输出范围太⼩,在0-1之间,⽽回归模型的输出范围较⼤。
模型修改如下:代码如下:#coding: utf8''''author: Huangyuliang'''import jsonimport randomimport sysimport numpy as np#### Define the quadratic and cross-entropy cost functionsclass CrossEntropyCost(object):@staticmethoddef fn(a, y):return np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a)))@staticmethoddef delta(z, a, y):return (a-y)#### Main Network classclass Network(object):def __init__(self, sizes, cost=CrossEntropyCost):self.num_layers = len(sizes)self.sizes = sizesself.default_weight_initializer()self.cost=costdef default_weight_initializer(self):self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]]self.weights = [np.random.randn(y, x)/np.sqrt(x)for x, y in zip(self.sizes[:-1], self.sizes[1:])]def large_weight_initializer(self):self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]]self.weights = [np.random.randn(y, x)for x, y in zip(self.sizes[:-1], self.sizes[1:])]def feedforward(self, a):"""Return the output of the network if ``a`` is input."""for b, w in zip(self.biases[:-1], self.weights[:-1]): # 前n-1层a = sigmoid(np.dot(w, a)+b)b = self.biases[-1] # 最后⼀层w = self.weights[-1]a = np.dot(w, a)+breturn adef SGD(self, training_data, epochs, mini_batch_size, eta,lmbda = 0.0,evaluation_data=None,monitor_evaluation_accuracy=False): # ⽤随机梯度下降算法进⾏训练n = len(training_data)for j in xrange(epochs):random.shuffle(training_data)mini_batches = [training_data[k:k+mini_batch_size] for k in xrange(0, n, mini_batch_size)]for mini_batch in mini_batches:self.update_mini_batch(mini_batch, eta, lmbda, len(training_data))print ("Epoch %s training complete" % j)if monitor_evaluation_accuracy:print ("Accuracy on evaluation data: {} / {}".format(self.accuracy(evaluation_data), j)) def update_mini_batch(self, mini_batch, eta, lmbda, n):"""Update the network's weights and biases by applying gradientdescent using backpropagation to a single mini batch. The``mini_batch`` is a list of tuples ``(x, y)``, ``eta`` is thelearning rate, ``lmbda`` is the regularization parameter, and``n`` is the total size of the training data set."""nabla_b = [np.zeros(b.shape) for b in self.biases]nabla_w = [np.zeros(w.shape) for w in self.weights]for x, y in mini_batch:delta_nabla_b, delta_nabla_w = self.backprop(x, y)nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]self.weights = [(1-eta*(lmbda/n))*w-(eta/len(mini_batch))*nwfor w, nw in zip(self.weights, nabla_w)]self.biases = [b-(eta/len(mini_batch))*nbfor b, nb in zip(self.biases, nabla_b)]def backprop(self, x, y):"""Return a tuple ``(nabla_b, nabla_w)`` representing thegradient for the cost function C_x. ``nabla_b`` and``nabla_w`` are layer-by-layer lists of numpy arrays, similarto ``self.biases`` and ``self.weights``."""nabla_b = [np.zeros(b.shape) for b in self.biases]nabla_w = [np.zeros(w.shape) for w in self.weights]# feedforwardactivation = xactivations = [x] # list to store all the activations, layer by layerzs = [] # list to store all the z vectors, layer by layerfor b, w in zip(self.biases[:-1], self.weights[:-1]): # 正向传播前n-1层z = np.dot(w, activation)+bzs.append(z)activation = sigmoid(z)activations.append(activation)# 最后⼀层,不⽤⾮线性b = self.biases[-1]w = self.weights[-1]z = np.dot(w, activation)+bzs.append(z)activation = zactivations.append(activation)# backward pass 反向传播delta = (self.cost).delta(zs[-1], activations[-1], y) # 误差 Tj - Ojnabla_b[-1] = deltanabla_w[-1] = np.dot(delta, activations[-2].transpose()) # (Tj - Oj) * O(j-1)for l in xrange(2, self.num_layers):z = zs[-l] # w*a + bsp = sigmoid_prime(z) # z * (1-z)delta = np.dot(self.weights[-l+1].transpose(), delta) * sp # z*(1-z)*(Err*w) 隐藏层误差 nabla_b[-l] = deltanabla_w[-l] = np.dot(delta, activations[-l-1].transpose()) # Errj * Oireturn (nabla_b, nabla_w)def accuracy(self, data):results = [(self.feedforward(x), y) for (x, y) in data]alist=[np.sqrt((x[0][0]-y[0])**2+(x[1][0]-y[1])**2) for (x,y) in results]return np.mean(alist)def save(self, filename):"""Save the neural network to the file ``filename``."""data = {"sizes": self.sizes,"weights": [w.tolist() for w in self.weights],"biases": [b.tolist() for b in self.biases],"cost": str(self.cost.__name__)}f = open(filename, "w")json.dump(data, f)f.close()#### Loading a Networkdef load(filename):"""Load a neural network from the file ``filename``. Returns aninstance of Network."""f = open(filename, "r")data = json.load(f)f.close()cost = getattr(sys.modules[__name__], data["cost"])net = Network(data["sizes"], cost=cost)net.weights = [np.array(w) for w in data["weights"]]net.biases = [np.array(b) for b in data["biases"]]return netdef sigmoid(z):"""The sigmoid function."""return 1.0/(1.0+np.exp(-z))def sigmoid_prime(z):"""Derivative of the sigmoid function."""return sigmoid(z)*(1-sigmoid(z))调⽤神经⽹络进⾏训练并保存参数:#coding: utf8import my_datas_loader_1import network_0training_data,test_data = my_datas_loader_1.load_data_wrapper()#### 训练⽹络,保存训练好的参数net = network_work([14,100,2],cost = network_0.CrossEntropyCost)rge_weight_initializer()net.SGD(training_data,1000,316,0.005,lmbda =0.1,evaluation_data=test_data,monitor_evaluation_accuracy=True) filename=r'C:\Users\hyl\Desktop\Second_158\Regression_Model\parameters.txt'net.save(filename)第190-199轮训练结果如下:调⽤保存好的参数,进⾏定位预测:#coding: utf8import my_datas_loader_1import network_0import matplotlib.pyplot as plttest_data = my_datas_loader_1.load_test_data()#### 调⽤训练好的⽹络,⽤来进⾏预测filename=r'D:\Workspase\Nerual_networks\parameters.txt' ## ⽂件保存训练好的参数net = network_0.load(filename) ## 调⽤参数,形成⽹络fig=plt.figure(1)ax=fig.add_subplot(1,1,1)ax.axis("equal")# plt.grid(color='b' , linewidth='0.5' ,linestyle='-') # 添加⽹格x=[-0.3,-0.3,-17.1,-17.1,-0.3] ## 这是九楼地形的轮廓y=[-0.3,26.4,26.4,-0.3,-0.3]m=[1.5,1.5,-18.9,-18.9,1.5]n=[-2.1,28.2,28.2,-2.1,-2.1]ax.plot(x,y,m,n,c='k')for i in range(len(test_data)):pre = net.feedforward(test_data[i][0]) # pre 是预测出的坐标bx=pre[0]by=pre[1]ax.scatter(bx,by,s=4,lw=2,marker='.',alpha=1) #散点图plt.pause(0.001)plt.show()定位精度达到了1.5⽶左右。
BP神经网络模型在建筑沉降预测中的应用

翟 酵
玩
摹 ^ I ‘
f
时蚂厌 1
图3 D4点 的 预 测 结 果
用 7月 2日至 7月 5日4 d的观测值来预测 7 月 6日的 沉降量 , 以此类 推 , 得到 了如表 1 所示 的预测结果。表 1 对
= ¨
r ' 一 O e r ) ( 1 = O  ̄ k ) , 隐含层 : o = ¨ r 1 一 ( ) P
W ;
Bl
( 5 ) 权值修 正 : W ( t + 1 ) = a 6 p 0 +
=
, 阈值 修正 : O i ( t + 1 )
( £ ) + 1 3 磊 ;
2 - 2建模步骤
本 身及周边建筑 的使用安全。 本文以某高层建筑基坑开挖对 周 围已有建筑的影响为主体 , 建立 了 B P神经 网络预测模型 , 对周 围建筑 的沉降变形观测做 了预测 。
1 工程简介
为 防止 高层建筑 的建设 对周 围已有建 筑造成破坏性 的
影响 , 预防倾斜变形 的发展 , 有关部 门从 2 0 0 4年某高层建筑
5  ̄ n + 1 次 的预测结果 。
人工神经网络有多种类型,其中,以 R u m e l h a r t , M c C l e l l a n d 在1 9 8 5 年提出的B P 网络的误差反向后传 B P ( B a c k P mp a g a t i 0 “
习算法运用最为广泛 , 随着计算机应用技术 的不断提高 , 逐 渐
● 标 准 与 检 测
巍
2 0 1 3 生
B P神 经 络 抉 型 在 建 筑 沉 降 氓 捌 的 应 用
王 亮。 罗新 字 ( 兰州交通大学 土木工程 学院, 甘 肃 兰州 7 3 0 0 7 0 )
BP神经网络预测模型

BP 神经网络模型基本原理( 1) 神经网络的定义简介神经网络是由多个神经元组成的广泛互连的神经网络, 能够模拟生物神经系统真实世界及物体之间所做出的交互反应. 人工神经网络处理信息是通过信息样本对神经网络的训练, 使其具有人的大脑的记忆, 辨识能力, 完成名种信息处理功能. 它不需要任何先验公式, 就能从已有数据中自动地归纳规则, 获得这些数据的内在规律, 具有良好的自学习, 自适应, 联想记忆, 并行处理和非线性形转换的能力, 特别适合于因果关系复杂的非确定性推理, 判断, 识别和分类等问题. 对于任意一组随机的, 正态的数据, 都可以利用人工神经网络算法进行统计分析, 做出拟合和预测.基于误差反向传播(Back propagation)算法的多层前馈网络(Multiple-layer feedforward network, 简记为BP 网络), 是目前应用最成功和广泛的人工神经网络.( 2) BP 模型的基本原理[3]学习过程中由信号的正向传播与误差的逆向传播两个过程组成. 正向传播时, 模式作用于输入层, 经隐层处理后, 传入误差的逆向传播阶段, 将输出误差按某种子形式, 通过隐层向输入层逐层返回, 并“分摊”给各层的所有单元, 从而获得各层单元的参考误差或称误差信号, 以作为修改各单元权值的依据. 权值不断修改的过程, 也就是网络学习过程. 此过程一直进行到网络输出的误差准逐渐减少到可接受的程度或达到设定的学习次数为止. BP 网络模型包括其输入输出模型, 作用函数模型, 误差计算模型和自学习模型.BP 网络由输入层, 输出层以及一个或多个隐层节点互连而成的一种多层网, 这种结构使多层前馈网络可在输入和输出间建立合适的线性或非线性关系, 又不致使网络输出限制在-1和1之间. 见图( 1) .O 1 O 2 O i O m( 大于等于一层) W (1)…( 3) BP 神经网络的训练BP 算法通过“训练”这一事件来得到这种输入, 输出间合适的线性或非线性关系. “训练”的过程可以分为向前传输和向后传输两个阶段:输入层 输出层 隐含层图1 BP 网络模型[1]向前传输阶段:①从样本集中取一个样本,i j P Q , 将i P 输入网络;②计算出误差测度1E 和实际输出(1)(2)()21(...((())...))L i L iO F F F PW W W =; ③对权重值L W W W ,...,)2()1(各做一次调整, 重复这个循环, 直到i E ε<∑.[2]向后传播阶段——误差传播阶段:①计算实际输出p O 与理想输出i Q 的差;②用输出层的误差调整输出层权矩阵; ③211()2mi ij ij j E Q O ==-∑; ④用此误差估计输出层的直接前导层的误差, 再用输出层前导层误差估计更前一层的误差. 如此获得所有其他各层的误差估计;⑤并用这些估计实现对权矩阵的修改. 形成将输出端表现出的误差沿着与输出信号相反的方向逐级向输出端传递的过程.网络关于整个样本集的误差测度:i iE E =∑几点说明:一般地,BP 网络的输入变量即为待分析系统的内生变量(影响因子或自变量)数,一般根据专业知识确定。
基于BP神经网络的信用评估模型建立与预测

基于BP神经网络的信用评估模型建立与预测信用评估在金融领域中扮演着至关重要的角色。
随着金融市场的发展和信用管理的复杂性增加,建立准确可靠的信用评估模型变得越来越重要。
为了满足这一需求,研究者们借鉴人类大脑的运作机制,提出了基于BP神经网络的信用评估模型。
本文将详细探讨如何建立和预测这种信用评估模型。
在建立基于BP神经网络的信用评估模型之前,首先需要获取与信用相关的数据。
这些数据可以包括个人信息、财务状况、历史信用记录等。
获取完数据后,还需进行数据预处理。
这一步骤包括数据清洗、数据转换和特征选择。
数据清洗主要是处理缺失值、异常值和重复值等,确保数据的完整性和准确性。
数据转换则是将数据转化为适合神经网络处理的形式,例如将文本数据转化为数值型数据。
特征选择是从大量的数据特征中筛选出对信用评估有关联性的特征。
接下来,通过构建BP神经网络模型,实现信用评估功能。
BP 神经网络由输入层、隐含层和输出层组成。
输入层接受经过数据预处理的特征数据,隐含层是神经网络的核心部分,主要负责特征抽取和模式识别。
输出层返回信用评估结果,通常是一个连续值或者离散类别。
在BP神经网络模型中,各层之间的连接根据权重来确定,通过反向传播算法进行权重的调整和迭代更新,不断降低模型的误差。
在模型训练阶段,需要将数据集分为训练集和测试集。
训练集用于权重的初始化和模型参数的训练,测试集用于模型的评估和验证。
通过将训练集输入到BP神经网络中,利用反向传播算法不断调整权重,直到模型的拟合误差达到预定的要求。
然后,使用测试集进行模型的验证和评估,计算出预测结果的准确性和精度。
为了提高模型的预测能力,可以采用模型集成等技术。
模型集成通过结合多个BP神经网络模型的预测结果,来提高模型的鲁棒性和泛化能力。
常用的模型集成方法包括Bagging、Boosting和Stacking等。
在使用模型集成方法时,需要注意模型之间的差异性,以及模型之间的协同作用。
多元线性回归与BP神经网络预测模型对比与运用研究

多元线性回归与BP神经网络预测模型对比与运用研究一、本文概述本文旨在探讨多元线性回归模型与BP(反向传播)神经网络预测模型在数据分析与预测任务中的对比与运用。
我们将首先概述这两种模型的基本原理和特性,然后分析它们在处理不同数据集时的性能表现。
通过实例研究,我们将详细比较这两种模型在预测准确性、稳健性、模型可解释性以及计算效率等方面的优缺点。
多元线性回归模型是一种基于最小二乘法的统计模型,通过构建自变量与因变量之间的线性关系进行预测。
它假设数据之间的关系是线性的,并且误差项独立同分布。
这种模型易于理解和解释,但其预测能力受限于线性假设的合理性。
BP神经网络预测模型则是一种基于神经网络的非线性预测模型,它通过模拟人脑神经元的连接方式构建复杂的网络结构,从而能够处理非线性关系。
BP神经网络在数据拟合和预测方面具有强大的能力,但模型的结构和参数设置通常需要更多的经验和调整。
本文将通过实际数据集的应用,展示这两种模型在不同场景下的表现,并探讨如何结合它们各自的优势来提高预测精度和模型的实用性。
我们还将讨论这两种模型在实际应用中可能遇到的挑战,包括数据预处理、模型选择、超参数调整以及模型评估等问题。
通过本文的研究,我们期望为数据分析和预测领域的实践者提供有关多元线性回归和BP神经网络预测模型选择和应用的有益参考。
二、多元线性回归模型多元线性回归模型是一种经典的统计预测方法,它通过构建自变量与因变量之间的线性关系,来预测因变量的取值。
在多元线性回归模型中,自变量通常表示为多个特征,每个特征都对因变量有一定的影响。
多元线性回归模型的基本原理是,通过最小化预测值与真实值之间的误差平方和,来求解模型中的参数。
这些参数代表了各自变量对因变量的影响程度。
在求解过程中,通常使用最小二乘法进行参数估计,这种方法可以确保预测误差的平方和最小。
多元线性回归模型的优点在于其简单易懂,参数估计方法成熟稳定,且易于实现。
多元线性回归还可以提供自变量对因变量的影响方向和大小,具有一定的解释性。
基于灰色预测与BP神经网络的全球温度预测研究

基于灰色预测与BP神经网络的全球温度预测研究全球气候变化是当前全球关注的热点问题之一,预测全球温度变化趋势对于应对气候变化、制定相关政策具有重要意义。
本文将基于灰色预测和BP神经网络的方法,对全球温度进行预测研究。
介绍一下灰色预测模型。
灰色预测是一种非线性动态系统预测方法,该方法主要适用于时间序列较短、数据质量较差的情况。
灰色预测模型基于灰度关联度的原理,通过建立灰色微分方程,对非确定性的系统进行建模和预测。
灰色预测模型的关键是建立灰色微分方程。
灰色微分方程包括GM(1,1)模型和其它高阶模型。
其中GM(1,1)模型是最简单的一种,也是应用最广泛的一种。
GM(1,1)模型通过对原始数据进行累加生成累加生成数列,然后通过一次累加生成数列得到一次累加数列,通过两次累加生成数列得到两次累加数列,依此类推,直到累加生成数列的相关系数满足精度要求。
通过差分方程对一次累加数列进行逆向累加生成数列即可得到灰色模型的预测结果。
然后,介绍BP神经网络模型。
BP神经网络是一种基于反向传播算法的多层前馈网络,广泛应用于模式识别、数据建模、预测等领域。
BP神经网络模型通过调整网络的连接权值和偏置值,使得网络的输出与期望输出之间的误差最小化。
通过多次迭代训练,不断优化网络结构和参数,以提高模型的预测能力。
在本文的研究中,首先收集全球温度数据,建立时间序列。
然后,将数据分为训练集和测试集。
使用灰色预测模型和BP神经网络模型对训练集进行训练,并在测试集上进行预测。
对于灰色预测模型,将原始温度数据应用于GM(1,1)模型。
对原始数据进行累加生成数列,然后通过相关系数检验确定最优累加次数。
根据差分方程对数据进行逆向累加生成数列,得到预测结果。
对比灰色预测模型和BP神经网络模型的预测结果,并评估两种模型的预测能力。
通过对比分析,选择较为准确的预测模型,并对全球温度的未来变化趋势进行预测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BP神经网络算法预测模型
BP神经网络(Back Propagation Neural Network,BPNN)是一种常
用的人工神经网络,它是1986年由Rumelhart和McClelland首次提出的,主要用于处理有结构的或无结构的、离散的或连续的输入和输出的信息。
它属于多层前馈神经网络,各层之间存在权值关系,其中权值是由算法本
身计算出来的。
BP神经网络借助“反向传播”(Back Propagation)来
实现权值的更新,其核心思想是根据网络的输出,将错误信息以“反馈”
的方式传递到前面的每一层,通过现行的误差迭代传播至输入层,用来更
新每一层的权值,以达到错误最小的网络。
BP神经网络的框架,可以有输入层、隐含层和输出层等组成。
其中
输入层的节点数即为输入数据的维数,输出层的节点个数就是可以输出的
维数,而隐含层的节点数可以由设计者自由设定。
每一层之间的权值是
BP神经网络算法预测模型中最重要的参数,它决定了神经网络的预测精度。
BP神经网络的训练步骤主要有以下几步:首先,规定模型的参数,
包括节点数,层数,权值,学习率等;其次,以训练数据为输入,初始化
权值,通过计算决定输出层的输出及误差;然后,使用反向传播算法,从
输出层向前,层层地将误差反馈到前一层。