直角三角形斜边上的中线等于斜边的一半专题训练
直角三角形斜边中线练习(尖)

直角三角形斜边中线练习【尖】一.选择题(共8小题)1.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm2.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1.则其旋转中心一定是()A.点E B.点F C.点G D.点H3.如图,△ABC中,D为AB的中点,BE⊥AC,垂足为E.若DE=4,AE=6,则BE的长度是()A.10 B.2√5 C.8 D.2√74.如图,在△ABC中,∠ACB=90°,D在BC上,E是AB的中点,AD、CE相交于F,且AD=DB.若∠B=20°,则∠DFE等于()A.30°B.40°C.50°D.60°5.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF 的中点,那么CH的长是()A.2.5 B.√5C.32√2D.26.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()A.0.5km B.0.6km C.0.9km D.1.2km7.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34 B.26 C.8.5 D.6.58.如图,在△ABC中,CD⊥AB于点D,BE⊥AC于点E,F为BC的中点,DE=5,BC=8,则△DEF的周长是()A.21 B.18 C.13 D.15二.填空题(共2小题)9.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于度.10.如图,点P在第一象限,△ABP是边长为2的等边三角形,当点A在x轴的正半轴上运动时,点B随之在y轴的正半轴上运动,运动过程中,点P到原点的最大距离是;若将△ABP的PA边长改为2√2,另两边长度不变,则点P到原点的最大距离变为.三.解答题(共11小题)11.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C(1,2).(1)在平面直角坐标系中画出△ABC关于x轴对称的△A1B1C1;(2)把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2,点C2在AB上.①旋转角为多少度?②写出点B2的坐标.12.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB.(1)求点P与点P′之间的距离;(2)求∠APB的度数.13.如图,在△ABC 中,点D 在AB 上,且CD=CB ,点E 为BD 的中点,点F 为AC 的中点,连结EF 交CD 于点M ,连接AM .(1)求证:EF=12AC . (2)若∠BAC=45°,求线段AM 、DM 、BC 之间的数量关系.14.如图,△ABC 中,AB=AC ,点D 是BC 上一点,DE ⊥AB 于E ,FD⊥BC 于D ,G 是FC 的中点,连接GD .求证:GD ⊥DE .15.如图,△ABC中,AD是高,CE是中线,点G是CE的中点,DG⊥CE,点G 为垂足.(1)求证:DC=BE;(2)若∠AEC=66°,求∠BCE的度数.16.如图,△ABC中,BD、CE是△ABC的两条高,点F、M分别是DE、BC的中点.求证:FM⊥DE.17.如图,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点.求证:MN⊥BD.18.如图,△ABC中,CF⊥AB,垂足为F,M为BC的中点,E为AC上一点,且ME=MF.(1)求证:BE⊥AC;(2)若∠A=50°,求∠FME的度数.19.如图,直线a、b相交于点A,C、E分别是直线b、a上两点且BC⊥a,DE ⊥b,点M、N是EC、DB的中点.求证:MN⊥BD.20.如图,△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点.(1)求证:MN⊥DE;(2)连结DM,ME,猜想∠A与∠DME之间的关系,并写出推理过程;(3)若将锐角△ABC变为钝角△ABC,如图,上述(1)(2)中的结论是否都成立?若结论成立,直接回答,不需证明;若结论不成立,说明理由.21.已知:在△ABC中,∠ABC=90°,点E在直线AB上,ED与直线AC垂直,垂足为D,且点M为EC中点,连接BM,DM.(1)如图1,若点E在线段AB上,探究线段BM与DM及∠BMD与∠BCD所满足的数量关系,并直接写出你得到的结论;(2)如图2,若点E在BA延长线上,你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明;(3)若点E在AB延长线上,请你根据条件画出相应的图形,并直接写出线段BM与DM及∠BMD与∠BCD所满足的数量关系.直角三角形斜边中线练习参考答案与试题解析一.选择题(共8小题)1.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC即可得出答案.【解答】解:根据题意,将周长为16cm的△ABC沿BC向右平移2cm得到△DEF,∴AD=CF=2cm,BF=BC+CF=BC+2cm,DF=AC;又∵AB+BC+AC=16cm,∴四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=20cm.故选:C.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.2.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1.则其旋转中心一定是()A.点E B.点F C.点G D.点H【分析】根据“对应点到旋转中心的距离相等”,知旋转中心,即为对应点所连线段的垂直平分线的交点.【解答】解:根据旋转的性质,知:旋转中心,一定在对应点所连线段的垂直平分线上.则其旋转中心是NN1和PP1的垂直平分线的交点,即点G.故选:C.【点评】本题考查旋转的性质,要结合三角形的性质和网格特征解答.3.如图,△ABC中,D为AB的中点,BE⊥AC,垂足为E.若DE=4,AE=6,则BE的长度是()A.10 B.2√5 C.8 D.2√7【分析】根据直角三角形斜边上的中线等于斜边的一半可得AB=2DE,再利用勾股定理列式计算即可得解.【解答】解:∵BE⊥AC,D为AB中点,∴AB=2DE=2×4=8,在Rt△ABE中,BE=√AB2−AE2=√82−62=2√7,故选:D.【点评】本题考查了勾股定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记性质与定理是解题的关键.4.如图,在△ABC中,∠ACB=90°,D在BC上,E是AB的中点,AD、CE相交于F,且AD=DB.若∠B=20°,则∠DFE等于()A.30°B.40°C.50°D.60°【分析】根据直角三角形斜边上中线性质得出BE=CE,根据等腰三角形性质得出∠ECB=∠B=20°,∠DAB=∠B=20°,根据三角形外角性质求出∠ADC=∠B+∠DAB=40°,根据∠三角形外角性质得出DFE=∠ADC+∠ECB,代入求出即可.【解答】解:∵在△ABC中,∠ACB=90°,E是AB的中点,∴BE=CE,∵∠B=20°∴∠ECB=∠B=20°,∵AD=BD,∠B=20°,∴∠DAB=∠B=20°,∴∠ADC=∠B+∠DAB=20°+20°=40°,∴∠DFE=∠ADC+∠ECB=40°+20°=60°,故选:D.【点评】本题考查了等腰三角形的性质,三角形外角性质,直角三角形斜边上中线性质的应用,能求出∠ADC和∠ECB的度数是解此题的关键,注意:直角三角形斜边上的中线等于斜边的一半.5.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF 的中点,那么CH的长是()A.2.5 B.√5C.32√2D.2【分析】连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.【解答】解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=√2,CF=3√2,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF=√AC2+CF2=√√22+(3√2)2=2√5,∵H是AF的中点,∴CH=12AF=12×2√5=√5.故选:B.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.6.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()A.0.5km B.0.6km C.0.9km D.1.2km【分析】根据直角三角形斜边上的中线等于斜边的一半,可得MC=AM=1.2km.【解答】解:∵在Rt △ABC 中,∠ACB=90°,M 为AB 的中点,∴MC=12AB=AM=1.2km . 故选:D .【点评】本题考查了直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.理解题意,将实际问题转化为数学问题是解题的关键.7.直角三角形中,两直角边分别是12和5,则斜边上的中线长是( )A .34B .26C .8.5D .6.5【分析】利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:由勾股定理得,斜边=√122+52=13,所以,斜边上的中线长=12×13=6.5. 故选:D .【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.8.如图,在△ABC 中,CD ⊥AB 于点D ,BE ⊥AC 于点E ,F 为BC 的中点,DE=5,BC=8,则△DEF 的周长是( )A .21B .18C .13D .15【分析】根据直角三角形斜边上的中线等于斜边的一半求出DF 、EF ,再根据三角形的周长的定义解答.【解答】解:∵CD ⊥AB ,F 为BC 的中点,∴DF=12BC=12×8=4, ∵BE ⊥AC ,F 为BC 的中点,∴EF=12BC=12×8=4,∴△DEF的周长=DE+EF+DF=5+4+4=13.故选:C.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,是基础题,熟记性质并准确识图是解题的关键.二.填空题(共2小题)9.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于30度.【分析】根据直角三角形斜边上的中线等于斜边的一半可得到EC=AE,从而得到∠A=∠ACE,再由折叠的性质及三角形的外角性质得到∠B=2∠A,从而不难求得∠A的度数.【解答】解:∵在Rt△ABC中,CE是斜边AB的中线,∴AE=CE,∴∠A=∠ACE,∵△CED是由△CBD折叠而成,∴∠B=∠CED,∵∠CEB=∠A+∠ACE=2∠A,∴∠B=2∠A,∵∠A+∠B=90°,∴∠A=30°.故答案为:30.【点评】此题主要考查:(1)在直角三角形中,斜边上的中线等于斜边的一半;(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.10.如图,点P在第一象限,△ABP是边长为2的等边三角形,当点A在x轴的正半轴上运动时,点B随之在y轴的正半轴上运动,运动过程中,点P到原点的最大距离是1+√3;若将△ABP的PA边长改为2√2,另两边长度不变,则点P到原点的最大距离变为1+√5.【分析】根据当O到AB的距离最大时,OP的值最大,得到O到AB的最大值是12AB=1,此时在斜边的中点M上,由勾股定理求出PM,即可求出答案;将△ABP 的PA边长改为2√2,另两边长度不变,根据22+22=(2√2)2,得到∠PBA=90°,由勾股定理求出PM即可【解答】解:取AB的中点M,连OM,PM,在Rt△ABO中,OM=AB2=1,在等边三角形ABP中,PM=√3,无论△ABP如何运动,OM和PM的大小不变,当OM,PM在一直线上时,P距O最远,∵O到AB的最大值是12AB=1,此时在斜边的中点M上,由勾股定理得:PM=√22−12=√3,∴OP=1+√3,将△AOP的PA边长改为2√2,另两边长度不变,∵22+22=(2√2)2,∴∠PBA=90°,由勾股定理得:PM=√12+22=√5,∴此时OP=OM+PM=1+√5.故答案为:1+√3,1+√5.【点评】本题主要考查对直角三角形斜边上的中线性质,坐标与图形性质,三角形的三边关系,勾股定理的逆定理等边三角形的性质等知识点的理解和掌握,能根据理解题意求出PO的值是解此题的关键.三.解答题(共11小题)11.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C(1,2).(1)在平面直角坐标系中画出△ABC关于x轴对称的△A1B1C1;(2)把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2,点C2在AB上.①旋转角为多少度?②写出点B2的坐标.【分析】(1)分别得到点A、B、C关于x轴的对称点,连接点A1,B1,C1,即可解答;(2)①根据点A,B,C的坐标分别求出AC,BC,AC的长度,根据勾股定理逆定理得到∠CAB=90°,即可得到旋转角;②根据旋转的性质可知AB=AB2=3,所以CB2=AC+AB2=5,所以B2的坐标为(6,2).【解答】解:(1)A(3,2)、B(3,5)、C(1,2)关于x轴的对称点分别为A1(3,﹣2),B1(3,﹣5),C1(1,﹣2),如图所示,(2)①∵A(3,2)、B(3,5)、C(1,2),∴AB=3,AC=2,BC=√(3−1)2+(5−2)2=√13,∵AB2+AC2=13,BC2=(√13)2=13,∴AB2+AC2=BC2,∴∠CAB=90°,∵AC与AC2的夹角为∠CAC2,∴旋转角为90°;②∵AB=AB2=3,∴CB2=AC+AB2=5,∴B2的坐标为(6,2).【点评】本题考查轴对称及旋转的性质,属于基础题,解答本题的关键是掌握两种几何变换的特点,根据题意找到各点的对应点.12.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB.(1)求点P与点P′之间的距离;(2)求∠APB的度数.【分析】(1)由已知△PAC 绕点A 逆时针旋转后,得到△P′AB ,可得△PAC ≌△P′AB ,PA=P′A ,旋转角∠P′AP=∠BAC=60°,所以△APP′为等边三角形,即可求得PP′;(2)由△APP′为等边三角形,得∠APP′=60°,在△PP′B 中,已知三边,用勾股定理逆定理证出直角三角形,得出∠P′PB=90°,可求∠APB 的度数.【解答】解:(1)连接PP′,由题意可知BP′=PC=10,AP′=AP ,∠PAC=∠P′AB ,而∠PAC +∠BAP=60°,所以∠PAP′=60度.故△APP′为等边三角形,所以PP′=AP=AP′=6;(2)利用勾股定理的逆定理可知:PP′2+BP 2=BP′2,所以△BPP′为直角三角形,且∠BPP′=90°可求∠APB=90°+60°=150°.【点评】本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.13.如图,在△ABC 中,点D 在AB 上,且CD=CB ,点E 为BD 的中点,点F 为AC 的中点,连结EF 交CD 于点M ,连接AM .(1)求证:EF=12AC . (2)若∠BAC=45°,求线段AM 、DM 、BC 之间的数量关系.【分析】(1)根据等腰三角形三线合一的性质可得CE⊥BD,再根据直角三角形斜边上的中线等于斜边的一半可得EF=12 AC;(2)判断出△AEC是等腰直角三角形,根据等腰直角三角形的性质可得EF垂直平分AC,再根据线段垂直平分线上的点到两端点的距离相等可得AM=CM,然后求出CD=AM+DM,再等量代换即可得解.【解答】(1)证明:∵CD=CB,点E为BD的中点,∴CE⊥BD,∵点F为AC的中点,∴EF=12 AC;(2)解:∵∠BAC=45°,CE⊥BD,∴△AEC是等腰直角三角形,∵点F为AC的中点,∴EF垂直平分AC,∴AM=CM,∵CD=CM+DM=AM+DM,CD=CB,∴BC=AM+DM.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形的性质等腰直角三角形的判定与性质,难点在于(2)判断出EF垂直平分AC.14.如图,△ABC中,AB=AC,点D是BC上一点,DE⊥AB于E,FD⊥BC于D,G是FC的中点,连接GD.求证:GD⊥DE.【分析】由∠1+∠EDF=90°可知,只要证明∠1=∠3,∠2=∠3,推出∠1=∠2即可解决问题.【解答】证明:∵AB=AC,∴∠B=∠C,∵DE⊥AB,FD⊥BC,∴∠BED=∠FDC=90°,∴∠1+∠B=90°,∠3+∠C=90°,∴∠1=∠3,∵G是直角三角形FDC的斜边中点,∴GD=GF,∴∠2=∠3,∴∠1=∠2,∵∠FDC=∠2+∠4=90°,∴∠1+∠4=90°,∴∠2+∠FDE=90°,∴GD⊥DE.【点评】本题考查等腰三角形的性质、直角三角形斜边中线性质、等角的余角相等等知识,解题的关键是灵活应用这些知识解决问题,属于基础题,中考常考题型.15.如图,△ABC中,AD是高,CE是中线,点G是CE的中点,DG⊥CE,点G为垂足.(1)求证:DC=BE ;(2)若∠AEC=66°,求∠BCE 的度数.【分析】(1)由G 是CE 的中点,DG ⊥CE 得到DG 是CE 的垂直平分线,根据线段垂直平分线的性质得到DE=DC ,由DE 是Rt △ADB 的斜边AB 上的中线,根据直角三角形斜边上的中线等于斜边的一半得到DE=BE=12AB ,即可得到DC=BE ; (2)由DE=DC 得到∠DEC=∠BCE ,由DE=BE 得到∠B=∠EDB ,根据三角形外角性质得到∠EDB=∠DEC +∠BCE=2∠BCE ,则∠B=2∠BCE ,由此根据外角的性质来求∠BCE 的度数.【解答】解:(1)如图,∵G 是CE 的中点,DG ⊥CE ,∴DG 是CE 的垂直平分线,∴DE=DC ,∵AD 是高,CE 是中线,∴DE 是Rt △ADB 的斜边AB 上的中线,∴DE=BE=12AB , ∴DC=BE ;(2)∵DE=DC ,∴∠DEC=∠BCE ,∴∠EDB=∠DEC +∠BCE=2∠BCE ,∵DE=BE ,∴∠B=∠EDB ,∴∠B=2∠BCE ,∴∠AEC=3∠BCE=66°,则∠BCE=22°.【点评】本题考查了线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等.也考查了直角三角形斜边上的中线性质.16.如图,△ABC 中,BD 、CE 是△ABC 的两条高,点F 、M 分别是DE 、BC 的中点.求证:FM ⊥DE .【分析】连接MD 、ME ,根据直角三角形斜边上的中线等于斜边的一半可得MD=12BC=ME ,再根据等腰三角形三线合一的性质即可证得结论. 【解答】证明:连接MD 、ME .∵BD 是△ABC 的高,M 为BC 的中点,∴在Rt △CBD 中,MD=12BC ,(直角三角形斜边上那的中线等于斜边的一半) 同理可得ME=12BC , ∴MD=ME ,∵F 是DE 的中点,(等腰三角形三线合一)∴FM ⊥DE .【点评】此题主要考查等腰三角形的性质及直角三角形斜边上的中线的性质的综合运用.17.如图,∠ABC=∠ADC=90°,M 、N 分别是AC 、BD 的中点.求证:MN ⊥BD .【分析】连接BM 、DM ,根据直角三角形斜边上的中线等于斜边的一半可得BM=DM=12AC ,再根据等腰三角形三线合一的性质证明即可. 【解答】证明:如图,连接BM 、DM ,∵∠ABC=∠ADC=90°,M 是AC 的中点,∴BM=DM=12AC , ∵点N 是BD 的中点,∴MN ⊥BD .【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记各性质并作辅助线构造出等腰三角形是解题的关键.18.如图,△ABC 中,CF ⊥AB ,垂足为F ,M 为BC 的中点,E 为AC 上一点,且ME=MF .(1)求证:BE ⊥AC ;(2)若∠A=50°,求∠FME 的度数.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得MF=BM=CM=12BC ,再求出ME=BM=CM=12BC ,再根据直角三角形斜边上的中线等于斜边的一半证明; (2)根据三角形的内角和定理求出∠ABC +∠ACB ,再根据等腰三角形两底角相等求出∠BMF +∠CME ,然后根据平角等于180°列式计算即可得解.【解答】(1)证明:∵CF ⊥AB ,垂足为F ,M 为BC 的中点,∴MF=BM=CM=12BC , ∵ME=MF ,∴ME=BM=CM=12BC , ∴BE ⊥AC ;(2)解:∵∠A=50°,∴∠ABC +∠ACB=180°﹣50°=130°,∵ME=MF=BM=CM ,∴∠BMF +∠CME=(180°﹣2∠ABC )+(180°﹣2∠ACB )=360°﹣2(∠ABC +∠ACB )=360°﹣2×130°=100°,在△MEF 中,∠FME=180°﹣100°=80°.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形的判定与性质,熟记性质是解题的关键,难点在于(2)中整体思想的利用.19.如图,直线a 、b 相交于点A ,C 、E 分别是直线b 、a 上两点且BC ⊥a ,DE ⊥b ,点M 、N 是EC 、DB 的中点.求证:MN ⊥BD .【分析】根据直角三角形斜边上的中线等于斜边的一半可得DM=12EC ,BM=12EC ,从而得到DM=BM ,再根据等腰三角形三线合一的性质证明.【解答】证明:∵BC ⊥a ,DE ⊥b ,点M 是EC 的中点,∴DM=12EC ,BM=12EC , ∴DM=BM ,∵点N 是BD 的中点,∴MN ⊥BD .【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.20.如图,△ABC 中,CD 、BE 分别是AB 、AC 边上的高,M 、N 分别是线段BC 、DE 的中点.(1)求证:MN ⊥DE ;(2)连结DM ,ME ,猜想∠A 与∠DME 之间的关系,并写出推理过程;(3)若将锐角△ABC 变为钝角△ABC ,如图,上述(1)(2)中的结论是否都成立?若结论成立,直接回答,不需证明;若结论不成立,说明理由.【分析】(1)连接DM 、ME ,根据直角三角形斜边上的中线等于斜边的一半可得DM=12BC ,ME=12BC ,从而得到DM=ME ,再根据等腰三角形三线合一的性质证明;(2)根据三角形的内角和定理可得∠ABC +∠ACB=180°﹣∠A ,再根据等腰三角形两底角相等表示出∠BMD +∠CME ,然后根据平角等于180°表示出∠DME ,整理即可得解;(3)根据三角形的内角和定理可得∠ABC +∠ACB=180°﹣∠A ,再根据等腰三角形两底角相等和三角形的一个外角等于与它不相邻的两个内角的和表示出∠BME +∠CME ,然后根据平角等于180°表示出∠DME ,整理即可得解.【解答】解:(1)如图,连接DM ,ME ,∵CD 、BE 分别是AB 、AC 边上的高,M 是BC 的中点,∴DM=12BC ,ME=12BC , ∴DM=ME又∵N 为DE 中点,∴MN ⊥DE ;(2)在△ABC 中,∠ABC +∠ACB=180°﹣∠A ,∵DM=ME=BM=MC ,∴∠BMD +∠CME=(180°﹣2∠ABC )+(180°﹣2∠ACB ),=360°﹣2(∠ABC +∠ACB ),=360°﹣2(180°﹣∠A ),=2∠A ,∴∠DME=180°﹣2∠A ;(3)结论(1)成立,结论(2)不成立,理由如下:在△ABC 中,∠ABC +∠ACB=180°﹣∠A ,∵DM=ME=BM=MC ,∴∠BME +∠CMD=2∠ACB +2∠ABC ,=2(180°﹣∠A ),=360°﹣2∠A ,∴∠DME=180°﹣(360°﹣2∠A ),=2∠A ﹣180°.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形两底角相等的性质,三角形的内角和定理,整体思想的利用是解题的关键.21.已知:在△ABC 中,∠ABC=90°,点E 在直线AB 上,ED 与直线AC 垂直,垂足为D ,且点M 为EC 中点,连接BM ,DM .(1)如图1,若点E 在线段AB 上,探究线段BM 与DM 及∠BMD 与∠BCD 所满足的数量关系,并直接写出你得到的结论;(2)如图2,若点E 在BA 延长线上,你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明;(3)若点E 在AB 延长线上,请你根据条件画出相应的图形,并直接写出线段BM 与DM 及∠BMD 与∠BCD 所满足的数量关系.【分析】(1)由于BM 、DM 分别是Rt △DEC 、Rt △EBC 的斜边上的中线,即可证得BM=DM=12CE ;易知BM=MC=DM ,结合三角形的外角性质可知∠EMB=2∠MCB ,∠DME=2∠DCM ,两式相加即可得到∠BMD=2∠BCD .(2)同(1)易证得DM=BM ;由于BM=MC=DM=EM ,结合三角形的外角性质可得:∠BME=2∠BCM ,∠DME=2∠MCD ,两式相减即可得到∠BMD=2∠BCD .(3)此题应分三种情况:①D 点在线段AC 上时,易证得BM=MD ,同(2)可证得∠BMD=2∠BCD ; ②D 、C 重合,此时BM=MD ,而∠BCD 不存在;③D 点在AC 的延长线上,同(2)可得到∠BMD=∠BME +∠EMD=2∠BCD ,所以钝角∠BMD=360°﹣2∠BCD .【解答】解:(1)结论:BM=DM ,∠BMD=2∠BCD .理由:∵BM 、DM 分别是Rt △DEC 、Rt △EBC 的斜边上的中线,∴BM=DM=12CE ; 又∵BM=MC ,∴∠MCB=∠MBC ,即∠BME=2∠BCM ;同理可得∠DME=2∠DCM ;∴∠BME +∠DME=2(∠BCM +∠DCM ),即∠BMD=2∠BCD .(2)在(1)中得到的结论仍然成立.即BM=DM ,∠BMD=2∠BCD证法一:∵点M 是Rt △BEC 的斜边EC 的中点,∴BM=12EC=MC , 又点M 是Rt △BEC 的斜边EC 的中点,∴DM=12EC=MC , ∴BM=DM ;∵BM=MC ,DM=MC ,∴∠CBM=∠BCM ,∠DCM=∠CDM ,∴∠BMD=∠EMB ﹣∠EMD=2∠BCM ﹣2∠DCM=2(∠BCM ﹣∠DCM )=2∠BCD ,即∠BMD=2∠BCD .证法二:∵点M 是Rt △BEC 的斜边EC 的中点,∴BM=12EC=ME ; 又点M 是Rt △DEC 的斜边EC 的中点,∴DM=12EC=MC ,∴BM=DM;∵BM=ME,DM=MC,∴∠BEC=∠EBM,∠MCD=∠MDC,∴∠BEM+∠MCD=∠BAC=90°﹣∠BCD,∴∠BMD=180°﹣(∠BMC+∠DME),=180°﹣2(∠BEM+∠MCD)=180°﹣2(90°﹣∠BCD)=2∠BCD,即∠BMD=2∠BCD.(3)所画图形如图所示:图1中有BM=DM,∠BMD=2∠BCD;图2中∠BCD不存在,有BM=DM;图3中有BM=DM,∠BMD=360°﹣2∠BCD.解法同(2).【点评】此题主要考查了直角三角形的性质以及三角形的外角性质,要注意(3)题中,点D的位置有三种,不要遗漏任何一种情况.。
直角三角形斜边上的中线(人教版)(含答案)

试卷简介:本套试卷继续训练直角三角形的性质:直角三角形两锐角互余,斜边长大于任意一条直角边长,30°所对的直角边等于斜边的一半,同时加上斜边中线等于斜边的一半,检测同学们见到什么想什么,以及有序梳理条件、对条件进行搭配和组合的能力.
一、单选题(共10道,每道10分)
1.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,点P是BD的中点.
③统计数据,检验,防止遗漏.
2.解题过程
3.易错点
未考虑C′D=AD,遗漏三角形ADC′是等腰三角形这一种情形.
试题难度:三颗星知识点:直角三角形斜边中线等于斜边一半
9.如图,在△ABC中,∠BAC=90°,点D在BC延长线上,且 .若∠D=50°,则∠B的度数为( )
A.25° B.30°
C.40° D.45°
∴∠1=∠B=20°
∴∠3=40°
∵E为AB的中点,∠ACB=90°
∴CE=BE=AE
∴∠2=∠B=20°
∴∠DFE=∠AFC=∠2+∠3=60°
故选C
试题难度:三颗星知识点:三角形的外角
8.如图,AD是直角三角形△ABC斜边上的中线,把△ADC沿AD对折,点C落在点C′处,
连接CC′,则图中共有等腰三角形( )个.
∵F为BD中点
∴EF⊥BD
故选A
试题难度:三颗星知识点:等腰三角形三线合一性质
7.如图,在△ABC中,∠C=90°,D在CB上,E为AB之中点,AD,CE相交于F,且AD=DB.
若∠B=20°,则∠DFE的度数是( )
A.40° B.50°
C.60° D.70°
答案:C
解题思路:
专题14 直角三角形斜边上的中线-2020-2021学年八年级数学下册常考题专练(人教版)(解析版)

专题14直角三角形斜边上的中线★知识归纳●直角三角形斜边上的中线的性质直角三角形斜边上的中线等于斜边的一半.要点梳理:(1)直角三角形斜边上的中线的性质是矩形性质的推论.性质的前提是直角三角形,对一般三角形不可使用.(2)学过的直角三角形主要性质有:①直角三角形两锐角互余;②直角三角形两直角边的平方和等于斜边的平方;③直角三角形中30°所对的直角边等于斜边的一半.(3)性质可以用来解决有关线段倍分的问题.★实操夯实一.选择题(共16小题)1.如图,在三角形ABC中,AB=AC,BC=6,三角形DEF的周长是7,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,则AF=()A.B.C.D.7【解答】解:∵AF⊥BC,BE⊥AC,D是AB的中点,∴DE=DF=AB,∵AB=AC,AF⊥BC,∴点F是BC的中点,∴BF=FC=3,∵BE⊥AC,∴EF=BC=3,∴△DEF的周长=DE+DF+EF=AB+3=7,∴AB=4,由勾股定理知AF==,故选:B.2.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AD=6,则CP的长为()A.3B.3.5C.4D.4.5【解答】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠CBD=∠DBA=30°,∴BD=AD,∵AD=6,∴BD=6,∵P点是BD的中点,∴CP=BD=3.故选:A.3.如图,一根木棍斜靠在与地面(OM)垂直的墙(ON)上,设木棍中点为P,若木棍A端沿墙下滑,且B沿地面向右滑行.在此滑动过程中,点P到点O的距离()A.不变B.变小C.变大D.无法判断【解答】解:不变.连接OP,在Rt△AOB中,OP是斜边AB上的中线,那么OP=AB,由于木棍的长度不变,所以不管木棍如何滑动,OP都是一个定值.故选:A.4.如图,∠ABC=∠ADC=Rt∠,E是AC的中点,则()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.∠1与∠2大小关系不能确定【解答】解:∵∠ABC=∠ADC=90°,E是AC的中点,∴DE=AC,BE=AC,∴DE=BE,∴∠1=∠2.故选:B.5.如图,在△ABC中,∠ACB=90°,AC=8,BC=6,点D为斜边AB上的中点,则CD为()A.10B.3C.5D.4【解答】解:在Rt△ABC中,AC=8,BC=6,∴AB===10,∵点D为斜边AB上的中点,∴CD=AB=×10=5,故选:C.6.已知直角三角形斜边上的中线长为3,则斜边长为()A.3B.6C.9D.12【解答】解:∵直角三角形斜边上的中线长为3,∴斜边长是6.故选:B.7.直角三角形的斜边长为6cm,则斜边上的中线长为()A.2cm B.2.5cm C.3cm D.4cm【解答】解:直角三角形的斜边长为6cm,则斜边上的中线长为3cm,故选:C.8.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=10,则CD=()A.2B.3C.4D.6【解答】解:在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=10,∴AE=CE=10,∵AD=2,∴DE=8,∵CD为AB边上的高,在Rt△CDE中,CD===6,故选:D.9.在Rt△ABC中,∠ACB=90°,AB=6cm,D为AB的中点,则CD等于()A.2cm B.2.5cm C.3cm D.4cm【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3cm.故选:C.10.如图,在△ABC中,∠BAC=90°,点D在BC延长线上,且AD=BC,若∠D=40°,则∠B=()A.10°B.20°C.30°D.40°【解答】解:取BC的中点E,连接AE,∵∠BAC=90°,点E是BC的中点,∴AE=BC=BE,∴∠B=∠EAB,∵AD=BC,∴AE=AD,∴∠AED=∠D=40°,∴∠B=20°,故选:B.11.如图,△ABC中,AB=AC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则DE的长为()A.10B.6C.8D.5【解答】解:∵AB=AC=10,AD平分∠BAC,∴AD⊥BC,∵E为AC的中点,∴DE=AC=×10=5,故选:D.12.如图在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,EF=3,BC=8,则△EFM的周长是()A.21B.15C.13D.11【解答】解:∵CF⊥AB,BE⊥AC,M为BC的中点,∴EM=FM=BC=×8=4,∴△EFM的周长=8+8+3=11.故选:D.13.如图,边长为2的等边三角形ABC,点A,B分别在y轴和x轴正半轴滑动,则原点O到C的最长距离()A.B.C.D.【解答】解:取AB的中点D,连接OD,CD,在△OCD中,OC<OD+CD,只有当O,D,C三点在一条线上时,OC=OD+CD,此时OC最大,如图所示,OC⊥AB,∵△AOB为等腰直角三角形,AB=2,∴OD=AB=1,在Rt△BCD中,BC=2,BD=1,根据勾股定理得:CD==,∴OC=+1.故选:D.14.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5B.C.D.2【解答】解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选:B.15.如图,△ABC中,∠A+∠B=90°,AD=DB,CD=3,则AB的长度为()A.3B.4C.5D.6【解答】解:∵△ABC中,∠A+∠B=90°,∴∠ACB=90°.∵AD=DB,∴CD是该直角三角形斜边AB上的中线,∴AB=2CD=6.故选:D.16.如图,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的周长是()A.3B.4C.5D.6【解答】解:∵在△ABC中,AB=AC=3,AE平分∠BAC,∴BE=CE=BC=2,又∵D是AB中点,∴BD=AB=,∴DE是△ABC的中位线,∴DE=AC=,∴△BDE的周长为BD+DE+BE=++2=5.故选:C.二.填空题(共7小题)17.如图,BE、CF分别是△ABC的高,M为BC的中点,EF=4,BC=10,则△EFM的周长是14.【解答】解:∵BE、CF分别是△ABC的高,M为BC的中点,BC=8,∴在Rt△BCE中,EM=BC=5,在Rt△BCF中,FM=BC=5,又∵EF=4,∴△EFM的周长=EM+FM+EF=5+5+4=14.故答案是:14.18.如图,已知△ABC中,AB=AC,AD平分∠BAC,E是AC的中点,若AB=6,则DE的长为3.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=AC=3.故答案为:3.19.如图所示,在△ABC中,∠C=2∠B,点D是BC上一点,AD=5,且AD⊥AB,点E是BD上的点,AE=BD,AC=6.5,则AB的长度为12.【解答】解:∵Rt△ABD中,AE=BD,∴AE=BE=DE;∴∠B=∠BAE,即∠AED=2∠B;∵∠C=2∠B,∴∠AEC=∠C,即AE=AC=6.5;∴BD=2AE=13;由勾股定理,得:AB==12.20.如图,△AEF是直角三角形,∠AEF=90°,B为AE上一点,BG⊥AE于点B,GF∥BE,且AD=BD=BF,∠BFG=60°,则∠AFG的度数是20°.【解答】解:∵四边形BEFG是长方形,∴FG∥BE,∴∠FBE=∠BFG=60°,∵AD=BD=BF,∴∠A=∠ABD,∠BDF=∠BFD,∵∠BDF=∠DFB=∠A+∠ABD=2∠A,∴∠EBF=∠A+∠AFB=3∠A=60°,∴∠A=20°,∵FG∥BE,∴∠AFG=∠A=20°,故答案为:20°.21.如图,在△ABC中,∠BAC=90°,点D是BC的中点,点E、F分别是AB、AC上的动点,∠EDF=90°,M、N分别是EF、AC的中点,连接AM、MN,若AC=6,AB=5,则AM﹣MN的最大值为.【解答】解:如图,连接DM,DN,由图可以得到M的轨迹是一条线段(AD的垂直平分线的一部分),M在AN上的时候最大(此时AM最大,MN最小),当M在AN上时,设AM=x,则MN=3﹣x,DM=AM=x,DN=AB=,在直角三角形DMN中,根据勾股定理,得DM2=DN2+MN2,∴x2=(3﹣x)2+2.52,解得x=,∴3﹣x=,此时AM﹣MN=﹣=.∴AM﹣MN的最大值为.故答案为:.22.如图,Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,F为CD上一点,且CF=CD,过点B 作BE∥DC交AF的延长线于点E,则BE的长为6.【解答】解:∵Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,∴CD=AB=4.5.∵CF=CD,∴DF=CD=×4.5=3.∵BE∥DC,∴DF是△ABE的中位线,∴BE=2DF=6.故答案为6.23.如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=50°,则∠ACB′=10°.【解答】解:∵∠ACB=90°,∠B=50°,∴∠A=40°,∵∠ACB=90°,CD是斜边上的中线,∴CD=BD,CD=AD,∴∠BCD=∠B=50°,∠DCA=∠A=40°,由翻折变换的性质可知,∠B′CD=∠BCD=50°,∴∠ACB′=∠B′CD﹣∠DCA=10°,故答案为:10°.三.解答题(共4小题)24.如图,在△ABC中,AD是BC边上的高线,CE是AB边上的中线,DG⊥CE于G,CD=AE.(1)求证:CG=EG.(2)已知BC=13,CD=5,连接ED,求△EDC的面积.【解答】(1)证明:连接DE,在Rt△ADB中,点E是AB的中点,∴DE=AB=AE,∵CD=AE,∴DE=DC,又DG⊥CE,∴CG=EG.(2)解:作EF⊥BC于F,∵BC=13,CD=5,∴BD=13﹣5=8,∵DE=BE,EF⊥BC,∴DF=BF=4,∴EF===3,∴△EDC的面积=×CD×EF=×5×3=7.5.25.如图:BE、CF是锐角△ABC的两条高,M、N分别是BC、EF的中点,若EF=6,BC=24.(1)证明∠ABE=∠ACF;(2)判断EF与MN的位置关系,并证明你的结论;(3)求MN的长.【解答】解:(1)∵BE、CF是锐角△ABC的两条高,∴∠ABE+∠A=90°,∠ACF+∠A=90°,∴∠ABE=∠ACF;(2)MN垂直平分EF.证明:如图,连接EM、FM,∵BE、CF是锐角△ABC的两条高,M是BC的中点,∴EM=FM=BC,∵N是EF的中点,∴MN垂直平分EF;(3)∵EF=6,BC=24,∴EM=BC=×24=12,EN=EF=×6=3,由勾股定理得,MN===3.26.拓展:如图四边形ABCD中,∠ABC=∠ADC=90°,E是AC中点,EF平分∠BED交BD于点F.(1)猜想EF与BD具有怎样的关系?(2)试证明你的猜想.【解答】解:(1)EF垂直平分BD,(2)∵∠ABC=∠ADC=90°,E是AC中点,∴BE=AE=EC,ED=AE=EC,∴BE=DE,∵EF平分∠BED交BD于点F,∴EF⊥BD,BF=FD,即EF垂直平分BD.27.如图,在Rt△ABC中,∠ACB=90°,M是斜边AB的中点,AM=AN,∠N+∠CAN=180°.求证:MN=AC.【解答】证明:∵∠ACB=90°,M是斜边AB的中点,∴CM=AM,∴∠MCA=∠MAC,∵AM=AN,∴∠AMN=∠ANM,∵∠N+∠CAN=180°,∴AC∥MN,∴∠AMN=∠MAC,∴∠AMC=∠NAM,∴AN∥MC,又AC∥MN,∴四边形ACMN是平行四边形,∴MN=AC.。
直角三角形斜边上的中线性质练习

“直角三角形斜边上的中线”的性质及其应用“直角三角形斜边上的中线等于斜边的一半”是直角三角形的重要性质之一,而且斜边上的中线将直角三角形分割成两个顶角互补、底角互余的两个等腰三角形,如能善于把握图形特征,恰当地构造并借助直角三角形斜边上的中线,往往能帮助我们迅速打开解题思路,从而顺利地解决问题,下面举例说明.一、有直角、有中点,连线出中线,用性质例1.如图1,BD 、CE 是△ABC 的两条高,M 是BC 的中点, N 是DE 的中点.试问:MN 与DE 有什么关系?证明你的猜想.二、有直角、无中点,取中点,连线出中线,用性质 例2.如图2,在Rt △ABC 中,∠C=900,AD ∥BC ,∠CBE=12∠ABE ,请同学们试一试吧!1.如图5,△ABC 中,AB=AC ,∠ABD=∠CBD ,BD ⊥DE 于D ,DE 交BC 于E , 求证:CD=12BE .2.如图6,△ABC 中,∠B=2∠C ,AD ⊥BC 于D ,M 是BC 的 中点,求证:AB=2DM .直角三角形斜边上中线性质的应用直角三角形斜边上中线的性质是直角三角形的一个重要性质,同时也是常考的知识点.它为证明线段相等、角相等、线段的倍分等问题提供了很好的思路和理论依据。
下面谈谈直角三角形斜边上中线的图1BADCEF图2B图5ACBD M · 图6性质及应用。
一、直角三角形斜边上中线的性质1、性质:直角三角形斜边上的中线等于斜边的一半.如图1,在Rt △BAC 中,∠BAC=︒90,D 为BC 的中点,则BC 21AD =。
2、性质的拓展:如图1:因为D 为BC 中点,所以BC 21DC BD ==,所以AD=BD=DC=BC21,所以∠1=∠2,∠3=∠4, 因此∠ADB=2∠3=2∠4, ∠ADC=2∠1=2∠2。
因而可得如下几个结论:①直角三角形斜边上的中线将直角三角形分成两个等腰三角形;②分成的两个等腰三角形的腰相等,两个顶角互补、底角互余,并且其中一个等腰三角形的顶角等于另一个等腰三角形底角的2倍. 二、性质的应用 1、求值例1、(2004年江苏省苏州市中考)如图2,CD 是Rt △ABC 斜边AB 上的中线,若CD=4,则AB= .2、证明线段相等例2、(2004年上海市中考)如图4,在△ABC 中,∠BAC=90°,延长BA 到D 点,使AB 21AD =,点E 、F 分别为边BC 、AC 的中点。
直角三角形斜边上的中线

A
EN D
B
M
C
直角三角形斜边上的中线等于斜边的一半 B
数学语言表述为:
在Rt△ABC中
D
∵CD是斜边AB上的中线
∴CD=AD=BD=
1 2
AB
A战营
直角三角形斜边上的中线等于斜边的一半。
3、如图,已知AD⊥BD,AC⊥BC,E为AB的中点,试判 断 DE与CDE是否相等C,并说明理由。
A
E
B
说明两条线段相等,有时还可以通过第三条线段 进行等量代换。
挑战营
直角三角形斜边上的中线等于斜边的一半。
4、如图所示,BD、CE是三角形ABC的两条高,M、N分别 是BC、DE的中点,请判断MN和DE的关系并说明理由。
荔湾区四中聚贤中学 林丽珊老师
四个学生正在做投圈游戏,他们分别站在一 个矩形的四个顶点处,目标物放在对角线的交 点处,这样的队形对每个人公平吗?为什么?
AA
DD
O
BB 因为OA=OC=OB=OD,
CC
这个游戏是公平的。
直角三角形斜边上的中线等于斜边的一半。
推导
A┛
D
O
如图: 在矩形ABCD中
AO=CO=BO=DO=
1 2
AC=
1 2
B
BD
C
∵在Rt△ABD中,AO是斜边BD的中线
∴AO=
1
BD
2
训练营
直角三角形斜边上的中线等于斜边的一半。
1、已知Rt△ABC中,斜边AB=10cm,则斜边 上的中线的长为5_c_m____
2、如图,在Rt△ABC中,CD是斜边AB上的中 线,∠CDA=80°,则∠A=5__0_°__ ∠B=_4_0_°__
直角三角形斜边中线问题

x y 90
即∠ACB=90°
(1)证法:取AB中点D,证等边 (2)证法:倍长AC (3)证法:作△ABC外接圆 A
C
在一个三角形中,一边上的中线等于这边的一半 ,则它是直角三角形。 B 1 在△ABC中,若D为AB中点,且 AC AB 2 x 求证:∠ACB=90°.
证明: ∵ 2 x 2 y 180 D x A y y C
直角三角形斜边上的中线等于斜边的一半
直角三角形斜边上的中线等于斜边的一半
数学语言表述为: B
在Rt△ABC中,
∵CD是斜边AB上的中线 1 ∴CD=AD=BD= 2 AB (1)证法:倍长CD (2)证法:取BC(AC)中点 (3)证法:以D为圆心,AB为直径画圆 A D
C
在直角三角形中,30°所对的直角边等于斜边的一半。
数学语言表述为:
B
30°
在Rt△ABC中,
∵∠B=30° 1 ∴AC= 2 AB (1)证法:倍长AC (2)证法:在AB上截取AD=AC A (3)证法:作∠ACD=60°,证2次等腰 (4)证法:取AB中点D,证等边 (5来自证法:作△ABC的外接圆C
在直角三角形中,等于斜边长一半的直角边所对 的角为30°。 B 1 在Rt△ABC中,若AC AB 2 求证:∠B=30°.
直角三角形斜边上的高等于斜边的一半

ABDM ECABDF直角三角形斜边的中线等于斜边的一半已知直角三角形斜边中点,可以考虑构造斜边中线模型分析在直角三角形中,当遇见斜边中点时,经常会作斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,即12CD AB,来证明线段间的数量关系,而且可以得到两个等腰三角形:△ACD和△BCD,该模型经常会与中位线定理一起综合应用。
模型实例例1.如图,在△ABC中,BE、CF分别为AC、AB上的高,D为BC的中点, DM⊥EF于点M。
求证:FM=EM。
热搜精练1.如图,在△ABC中,∠B=2∠C,AD⊥BC于点D,M为BC的中点,AB=10。
求DM的长度。
CM EA B D3图ADBEM FC图2MADB E CF 1图E CABDF M2.已知,△ABD 和△ACE 都是直角三角形,且∠ABD=∠ACE=90°,连接DE ,M 为DE 的中点,连接MB 、MC 。
求证:MB=MC 。
3.问题1:如图①,△ABC 中,点D 是AB 边的中点,AE ⊥BC ,BF ⊥AC ,垂足分别为点E 、F ,AE 、BF 交于点M ,连接DE 、DF 。
若DE kDF ,则k 的值为 ;问题2:如图②,△ABC 中,CB=CA ,点D 是AB 边的中点,点M 在△ABC 内部,且∠MAC=∠MBC 。
过点M 分别作ME ⊥BC ,MF ⊥AC ,垂足分别为点E 、F ,连接DE 、DF 。
若DE=DF ;问题3:如图③,若将上面问题②中的条件“CB=CA ”变为“CB ≠CA ”,其它条件不变,试探究DE 与DF 之间的数量关系,并证明你的结论。
与等腰直角三角形相关的压轴题

与等腰直角三角形相关的压轴题知识储备:1、直角三角形斜边上的中线等于斜边的一半;2、勾股定理:直角三角形中,直角边的平方和等于斜边的平方;勾股定理逆定理:若一个三角形两条边的平方和等于第三边的平方,那么这个三角形是直角三角形。
3、等腰直角三角形中边角间的数量关系:4、等腰直角三角形中常见的图形背景:1°以斜边中点为顶点作90°角;2°以直角顶点为顶点作等腰直角三角形;以上两种背景都能产生旋转型的全等三角形;3°半角模型,即以直角顶点作45°半角,通过旋转构造全等三角形。
压轴题赏析:解法分析:本题的背景是等腰直角三角形以斜边中点为顶点作90°角。
通过联结CD,得到一组全等三角形。
不论E、F是否在边AC或BC上,总能通过面积的和差关系找到▲DEF、▲CEF和▲ABC之间的数量关系。
需要注意的是,不论点在线段或其延长线上,添线的方法和证明的思路是不变的。
本题的第一问除了可以设边长,用代数的方法计算以外,还可以联结CD,证明三角形全等,进行面积转化,其解法就同第二问了。
本题的第三问点E和点F运动到了延长线上,此时就要将面积和变为面积差了,但是解决问题的方法依旧是不变的。
解法分析:本题的背景是等腰直角三角形以斜边中点为顶点作90°角。
第一问同上一题证明全等的方法一致。
第二问是建立两条线段间的函数关系式,可以通过将两条线段放在直角三角形中,利用勾股定理建立函数关系。
本题的第三问是等腰三角形的存在性问题,需要分类讨论,值得注意的是∠FAG是定角45°,由此从角度切入,寻找边之间的数量关系。
本题的第二问可以选择不同的直角三角形运用勾股定理建立函数关系,只要这个直角三角形的三条线段都可以用含x或y的代数式表示即可。
解法分析:本题的背景是等腰直角三角与垂直平分线、角平分线的综合应用。
本题的第一问就是一组平行线下的X型全等三角形;第二问同上一题,将线段转化到一个直角三角形中,利用勾股定理建立数量关系;第三问是角平分线逆定理和30°-60°-90°三角形的综合应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直角三角形斜边上的中线等于斜边的一半
1、如图,在锐角三角形ABC 中,AD ⊥BC 于D,E 、F 、G 分别是AC 、AB 、BC 的中点。
求证:四边形OEFG 是等腰梯形。
2、如图所示,BD 、CE 是三角形ABC 的两条高,M 、N 分别是BC 、DE 的中点 求证:MN ⊥DE
3、已知梯形ABCD 中,∠B+∠C =90o ,EF 是两底中点的连线,试说明AB -AD =2EF
G D C B
M C
F
C B
4、如图,四边形ABCD 中,∠DAB=∠DCB=90o ,点M 、N 分别是BD 、AC 的中点。
MN 、AC 的位置关系如何?证明你的猜想。
5、过矩形ABCD 对对角线AC 的中点O 作EF ⊥AC 分别交AB 、DC 于E 、F ,点G 为AE 的中点,若∠AOG =30o
求证:3OG=DC 6、如图所示;过矩形ABCD 的顶点A 作一直线,交BC 的延长线于点E ,F 是AE 的中点,连接FC 、FD 。
求证:∠FDA=∠FCB
D B
A
A E C
B A。