初中数学中的解方程

合集下载

(完整版)初中数学方程及方程的解知识点总结

(完整版)初中数学方程及方程的解知识点总结

知识点1:一元一次方程只含有一个未知数,并且未知数的次数是1,系数不等于0的整式方程,叫做一元一次方程.一元一次方程的标准形式是:ax+ b=0(其中x是未知数,a、b是已知数,并且a乒。

.一元一次方程的最简形式是:ax=b(a丰0)不定方程:一个代数方程,含有两个或两个以上未知数时,叫做不定方程,不定方程一般有无穷多解。

代数方程:代数方程通常指整式方程。

有时也泛指方程两边都是代数式的情形,因而也包括分式方程和无理方程。

等式:用符号"=来表示相等关系的式子,叫做等式.在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边.性质:两边同加同减一个数或等式仍为等式;两边同乘同除一个数或等式(除数不能是0)仍为等式。

方程的根:只含有一个未知数的方程的解,也叫做方程的根。

解一元一次方程的一般步骤:1.去分母:在方程两边都乘以各分母的最小公倍数;2. 去括号:先去小括号,再去中括号,最后去大括号;3. 移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;4. 合并同类项:把方程化成ax=b(a丰0)的形式;5. 系数化成1:在方程两边都除以未知数的系数a,得到方程的解。

矛盾方程:一个方程,如果不存在使其左边与右边的值相等的未知数的值,这样的方程叫矛盾方程.知识点2:二元一次方程有两个未知数并且未知项的次数是1,这样的方程,叫做二元一次方程.二元一次方程组:含有相同的两个未知数的两个一次方程所组成的方程组,叫做二元一次方程组.解:使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.二元一次方程组的两种解法:(1)代入消元法,简称代入法.①把方程组里的任何一个未知数化成用另一个未知数的代数式表示.②把这个代数式代入另一个方程里,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得一个未知数的值,然后再求另一个未知数的值.④把求得两个未知数的值写在一起,就是原方程组的解.2)加减消兀法,简称加减法.①把一个方程或两个方程的两边都乘以适当的数,使同一个未知数的系数的绝对值相等.②把所得的两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得一个未知数的值,然后再求另一个未知数的值.④把求得的两个未知数的值写在一起,就是原方程组的解.二元一次方程组解的情况:知识点3:一元一次不等式(组):不等号有〉、A、<、V或乒等等.用不等号表示不等关系的式子,叫做不等式.只含有一个未知数,并且未知数的次数是1,系数不等于0的不等式,叫做一元一次不等式.如ax<b 或ax>b(a 丰 0)几个一元一次不等式所组成的不等式组,叫做一元一次不等式组不等式基本性质:(1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变.(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变.一元一次不等式的解法步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)系数化成1(如果乘数和除数是负数,要把不等号改变方向)一元一次不等式组的解法步骤:(1)分别求出不等式组中所有一元一次不等式的解集.(2)在数轴上表示各个不等式的解集. (3 )写出不等式组的解集.知识点4一元二次方程基本概念:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程3x2+5x-2=0的常数项是-2 (任意).一次项系数为5 (任意),二次项是 3 (任意不为0)一元二次方程的求根公式:方程as' -F bs 4- c = M&W 0)2a一元二次方程的解法:1. 解一元二次方程的直接开平方法如果一元二次方程的一边是含有未知数的一次式的平方,另一边是一个非负数,则根据平方根的概念可以用直接开平方法来解.己知方程(HLX十Q)'二k(DQ尹(Xk〉。

初中数学方程与不等式的解法

初中数学方程与不等式的解法

初中数学方程与不等式的解法方程与不等式是初中数学中重要的概念之一,它们在实际生活中的应用广泛。

本文将介绍初中数学中常见的方程与不等式的解法,包括一元一次方程的解法、一元一次不等式的解法、一元二次方程的解法和一元二次不等式的解法。

一、一元一次方程的解法一元一次方程是形如ax + b = 0的方程,其中a、b为已知数,x为未知数。

解一元一次方程的基本思路是将方程转化为x的系数为1的方程。

具体步骤如下:1. 化简方程,消去方程中的常数项,使得系数x前的数字为1。

2. 通过逆运算,将x系数为1的方程转化为等式,得到x的解。

例如,解方程2x + 3 = 7,可以按照以下步骤进行:1. 化简方程:将方程中的常数项3移到等号右边,得到2x = 7 - 3,化简为2x = 4。

2. 转化为等式:将2x = 4转化为等式,得到x = 4 / 2,化简为x = 2。

因此,方程2x + 3 = 7的解为x = 2。

二、一元一次不等式的解法一元一次不等式是形如ax + b < c或ax + b > c的不等式,其中a、b、c为已知数,x为未知数。

解一元一次不等式的基本思路是根据不等式符号(<或>)找出合适的解集。

具体步骤如下:1. 化简不等式,消去方程中的常数项,使得系数x前的数字为1。

2. 根据不等式符号找出解集,如果是"<",找出大于等于解的最小值;如果是">",找出小于等于解的最大值。

例如,解不等式3x + 2 < 8,可以按照以下步骤进行:1. 化简不等式:将不等式中的常数项2移到不等号右边,得到3x < 8 - 2,化简为3x < 6。

2. 找出解集:由于是"<"不等式,解集为大于等于解的最小值。

将不等式除以3,得到x < 6 / 3,化简为x < 2。

因此,不等式3x + 2 < 8的解集为x < 2。

初中数学中的解方程

初中数学中的解方程

初中数学中的解⽅程基础知识点:⼀、⽅程有关概念1、⽅程:含有未知数的等式叫做⽅程。

2、⽅程的解:使⽅程左右两边的值相等的未知数的值叫⽅程的解,含有⼀个未知数的⽅程的解也叫做⽅程的根。

3、解⽅程:求⽅程的解或⽅判断⽅程⽆解的过程叫做解⽅程。

4、⽅程的增根:在⽅程变形时,产⽣的不适合原⽅程的根叫做原⽅程的增根。

⼆、⼀元⽅程1、⼀元⼀次⽅程(1)⼀元⼀次⽅程的标准形式:ax+b=0(其中x 是未知数,a 、b 是已知数,a ≠0)(2)⼀元⼀次⽅程的最简形式:ax=b (其中x 是未知数,a 、b 是已知数,a ≠0)(3)解⼀元⼀次⽅程的⼀般步骤:去分母、去括号、移项、合并同类项和系数化为1。

(4)⼀元⼀次⽅程有唯⼀的⼀个解。

例题:.解⽅程:(1) 3131=+-x x (2)x x x -=--+22132 (3)关于x 的⽅程mx+4=3x+5的解是x=1,则m= 。

2、⼀元⼆次⽅程(1)⼀般形式:()002≠=++a c bx ax(2)解法:直接开平⽅法、因式分解法、配⽅法、公式法、⼗字相乘法求根公式()002≠=++a c bx ax ()042422≥--±-=ac b a ac b b x 错误!未找到引⽤源。

、解下列⽅程:(1)x 2-2x =0;(2)45-x 2=0;(3)(1-3x )2=1;(4)(2x +3)2-25=0.(5)(t -2)(t +1)=0;(6)x 2+8x -2=0(7 )2x 2-6x -3=0;(8)3(x -5)2=2(5-x )(3)判别式△=b 2-4ac 的三种情况与根的关系当0>?时有两个不相等的实数根,当0=?时有两个相等的实数根当0当△≥0时有两个实数根1、解下列⽅程:(1)2)3(212=+x ;(2)1322=+x x ;(3)22)2(25)3(4-=+x x 2、解下列⽅程:(1))(0)23(2为未知数x b a x a x =+--;(2)08222=-+a ax x3.若关于x 的⽅程x 2+2x +k =0有两个相等的实数根,则k 满⾜ ( ) A.k >1 B.k ≥1 C.k =1 D.k <14.关于x 的⼀元⼆次⽅程01)12(2=-+++k x k x 根的情况是()(A )有两个不相等实数根(B )有两个相等实数根(C )没有实数根(D )根的情况⽆法判定5.已知关于x 的⽅程:032)1(2=+++-p px x p 有两个相等的实数根,求p 的值。

一元一次解方程初中

一元一次解方程初中

一元一次解方程初中
一元一次方程是初中数学中的一个重要概念,它只含有一个未知数,并且未知数的次数是1。

解一元一次方程的基本步骤是:
去分母:如果方程中有分数,首先要去分母,使方程变为整式方程。

去括号:如果方程中有括号,需要去掉括号,将方程展开。

移项:将方程中的同类项合并,使未知数项和常数项分别位于等式的两侧。

合并同类项:将方程中的同类项合并,简化方程。

系数化为1:通过除以未知数的系数,使未知数的系数为1,从而得到未知数的解。

例如,解方程2x + 3 = 5:
去分母:方程已经是整式方程,无需去分母。

去括号:方程中没有括号,无需去括号。

移项:将方程中的同类项合并,得到2x = 5 - 3。

合并同类项:简化方程,得到2x = 2。

系数化为1:将方程两边都除以2,得到x = 1。

所以,方程2x + 3 = 5 的解是x = 1。

以上是一元一次方程的基本解法,通过熟练掌握这些步骤,可以解决各种一元一次方程问题。

初中数学解方程

初中数学解方程

初中数学解方程解方程是中学数学中的重要内容之一,也是初中数学学习的重点之一。

通过解方程,可以求出未知数的值,帮助我们解决实际生活和数学问题。

本文将介绍解一元一次方程、解一元二次方程和解一元一次不等式的方法和步骤。

一、解一元一次方程一元一次方程是形如ax + b = 0的方程,解方程的步骤如下:1. 将方程统一成ax + b = 0的形式;2. 通过逆运算的方式,将方程中的常数项b移到等号右边;3. 通过再次逆运算的方式,将未知数系数a的倍数移到等号右边;4. 将方程变为形如x = c的形式,即得到方程的解。

例如,解方程2x + 3 = 7的步骤如下:1. 该方程已经是ax + b = 0的形式;2. 将常数项3移到等号右边得到2x = 4;3. 将未知数系数2的倍数移到等号右边得到x = 2;4. 得到方程的解为x = 2。

二、解一元二次方程一元二次方程是形如ax² + bx + c = 0的方程,解方程的步骤如下:1. 将方程统一成ax² + bx + c = 0的形式;2. 利用配方法,将方程变形为(a⋅x + p)⋅(x + q) = 0的形式;3. 根据乘法因子的性质,方程等号左边的两项必须其中一项等于0;4. 解方程(a⋅x + p) = 0,得到第一个解;5. 解方程(x + q) = 0,得到第二个解。

例如,解方程x² + 4x + 3 = 0的步骤如下:1. 该方程已经是ax² + bx + c = 0的形式;2. 利用配方法将方程变形为(x + 1)⋅(x + 3) = 0的形式;3. 根据乘法因子的性质,方程等号左边的两项必须其中一项等于0;4. 解方程(x + 1) = 0,得到第一个解x = -1;5. 解方程(x + 3) = 0,得到第二个解x = -3。

三、解一元一次不等式解一元一次不等式的方法和解一元一次方程类似,只是在最后得到解时,要根据不等式符号的不同,确定解的范围。

初中数学方程式解法

初中数学方程式解法

初中数学方程式解法数学方程式在初中阶段是一个重要的内容,掌握好方程式的解法对于学习数学和解决实际问题都具有重要意义。

下面将介绍几种常见的初中数学方程式解法。

一、一元一次方程的解法一元一次方程是一种最基本的方程,它的形式为ax + b = 0,其中a 和b为已知数,x为未知数。

解一元一次方程的常用方法有逆运算法、代入法和消元法。

(1)逆运算法逆运算法是一种常用的解一元一次方程的方法。

它的基本思想是根据方程中的运算符号(+或-),将方程两边的项移项,使得未知数的系数为1,然后根据等式性质得到方程的解。

(2)代入法代入法是另一种解一元一次方程的常用方法。

它的基本思想是将已知数代入方程,求出未知数的值。

通过代入已知数,可以简化方程的计算过程,得到方程的解。

(3)消元法消元法是一种结合逆运算法和代入法的解方程的方法。

它的基本思想是通过变换方程的形式,使得方程中某些项相互抵消,最终得到一个一元一次方程。

二、一元二次方程的解法一元二次方程是一种较为复杂的方程,它的形式为ax² + bx + c = 0,其中a、b和c为已知数,x为未知数。

解一元二次方程的常用方法有因式分解法、配方法和求根公式法。

(1)因式分解法因式分解法是一种解一元二次方程的常用方法。

它的基本思想是将方程进行因式分解,通过求出方程的因式和零点,得到方程的解。

(2)配方法配方法是另一种解一元二次方程的常用方法。

它的基本思想是通过将一元二次方程写成完全平方的形式,然后利用完全平方公式求解未知数的值。

(3)求根公式法求根公式法是解一元二次方程的一种常用方法。

它的基本思想是根据一元二次方程的系数,利用求根公式得到方程的根。

三、一元多项式方程的解法一元多项式方程是包含多个未知数的方程,解一元多项式方程的常用方法有分离变量法和待定系数法。

(1)分离变量法分离变量法是一种解一元多项式方程的常用方法。

它的基本思想是将方程中的未知数分离到等式两边,然后通过积分的方法求解出未知数的值。

初中数学解方程所有公式大全

初中数学解方程所有公式大全

初中数学解方程所有公式大全解一元一次方程:1. 标准形式:ax + b = 0。

解法:x = -b/a。

2. 一元一次方程的基本性质:若a ≠ 0,方程ax = b的解为x = b/a。

3. 移项:ax + b = c。

解法:x = (c - b)/a。

4.分式方程:a/(x+b)=c。

解法:x=a/c-b。

5.小数方程:0.3x-0.2=0.1、解法:x=(0.1+0.2)/0.36.左右两边乘同一个式子:0.1x=0.4、解法:x=0.4/0.17.括号消去:3(x+2)=12、解法:x=(12-2)/38.同时括号消去和移项:2(x+3)=3(2x-1)。

解法:x=(3-6)/(-4)。

解一元二次方程:1. 标准形式:ax² + bx + c = 0。

解法:x = (-b ± √(b² -4ac))/(2a)。

2.二次方程的基本性质:若a≠0,方程a(x-h)²+k=0的解为x=h±√(-k/a)。

3. 相等根条件:若b² - 4ac = 0,则二次方程ax² + bx + c = 0有相等的实根。

4.平方完成法:x²-2x-3=0。

解法:x=(-(-2)±√((-2)²-4(1)(-3)))/(2(1))。

5.移项与配方法结合:2x²+7x-3=0。

解法:x=(-7±√((7)²-4(2)(-3)))/(2(2))。

6.积零因数法:(x-1)(x+5)=0。

解法:x=1,-5解一元一次不等式:1.开区间:2x-3<5、解法:x<42.闭区间:3-2x≤7、解法:x≥-23.绝对值不等式:,2x-1,>3、解法:x<-1或x>24.一次不等式的综合运用:-4<5-2x<8、解法:-1<x<1.5解一元二次不等式:1.开区间:x²-2x-8>0。

初中数学解方程的方法与技巧

初中数学解方程的方法与技巧

初中数学解方程的方法与技巧大家好!今天我们来聊聊初中数学中的一个重要话题——解方程。

别担心,我会用简单易懂的语言把这些方法和技巧一一讲解清楚,让你也能像吃糖一样轻松搞定方程题。

1. 方程的基本概念1.1 什么是方程?方程其实就像是数学中的“等式游戏”。

简单来说,就是在等号两边放上两个数学表达式,让它们的值相等。

比如,2x + 3 = 7就是一个方程。

我们要做的,就是找出那个能让等式成立的“x”值。

1.2 方程的类型方程有很多种类,咱们主要关注两种:一次方程:形如ax + b = c的方程,其中x的最高次数是1。

这类方程比较简单,解起来也轻松。

二次方程:形如ax^2 + bx + c = 0的方程,其中x的最高次数是2。

解法稍微复杂一点,但也不难掌握。

2. 解一次方程的技巧2.1 移项法这个方法的关键是把未知数“x”移到方程的一边,常数移到另一边。

比如,我们有方程2x + 3 = 7。

第一步,将3从方程的左边移到右边,变成2x = 7 3,也就是2x = 4。

第二步,求出x的值,只需将4除以2,得到x = 2。

这样,方程就解出来啦!2.2 合并同类项有时候方程里会出现类似的项,咱们可以把它们合并在一起。

比如方程3x + 4x 7= 10。

我们先把3x和4x合并成7x,方程就变成了7x 7 = 10。

接着,再通过移项法解这个方程就行啦!3. 解二次方程的技巧3.1 因式分解法这种方法就像是在玩拼图,把方程拆解成两个简单的因式,然后找出x的值。

例如,方程x^2 5x + 6 = 0。

我们可以把它分解成(x 2)(x 3) = 0。

然后通过零积法则,知道x 2 = 0或者x 3 = 0,解出x = 2或者x = 3。

这种方法简单高效,就像把难题拆解成几个小问题一样。

3.2 求根公式如果方程的因式分解有点难,咱们还可以用求根公式来解。

公式是:x = [b ±√(b^2 4ac)] / 2a。

这听起来有点复杂,但只要按照步骤来,绝对能找到答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代数部分 第三章:方程与方程组基础知识点:一、方程有关概念1、方程:含有未知数的等式叫做方程。

2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。

3、解方程:求方程的解或方判断方程无解的过程叫做解方程。

4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。

二、一元方程 1、一元一次方程(1)一元一次方程的标准形式:ax+b=0(其中x 就是未知数,a 、b 就是已知数,a ≠0) (2)一元一次方程的最简形式:ax=b(其中x 就是未知数,a 、b 就是已知数,a ≠0)(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项与系数化为1。

(4)一元一次方程有唯一的一个解。

例题:、解方程: (1) 3131=+-x x (2)x x x -=--+22132 解: 解:(3)【05湘潭】 关于x 的方程mx+4=3x+5的解就是x=1,则m= 。

2、一元二次方程(1) 一般形式:()002≠=++a c bx ax(2) 解法:直接开平方法、因式分解法、配方法、公式法求根公式()002≠=++a c bx ax ()042422≥--±-=ac b aac b b x ①、解下列方程:(1)x 2-2x =0; (2)45-x 2=0;(3)(1-3x )2=1; (4)(2x +3)2-25=0、 (5)(t -2)(t +1)=0; (6)x 2+8x -2=0(7 )2x 2-6x -3=0; (8)3(x -5)2=2(5-x ) 解:② 填空:(1)x 2+6x +( )=(x + )2; (2)x 2-8x +( )=(x - )2;(3)x 2+23x +( )=(x + )2(3)判别式△=b ²-4ac 的三种情况与根的关系 当0>∆时有两个不相等的实数根 ,当0=∆时有两个相等的实数根当0<∆时没有实数根。

当△≥0时 有两个实数根例题.一、一元二次方程的解法例1、解下列方程: (1)2)3(212=+x ;(2)1322=+x x ;(3)22)2(25)3(4-=+x x 例2、解下列方程:(1))(0)23(2为未知数x b a x a x =+--;(2)08222=-+a ax x3.(无锡市)若关于x 的方程x 2+2x +k =0有两个相等的实数根,则k 满足 ( )A 、k >1B 、k ≥1C 、k =1D 、k <14、(常州市)关于x 的一元二次方程01)12(2=-+++k x k x 根的情况就是( )(A)有两个不相等实数根(B)有两个相等实数根(C)没有实数根(D)根的情况无法判定5.(浙江)已知方程022=++q px x 有两个不相等的实数根,则p 、q 满足的关系式( )A 、042>-q pB 、02>-q pC 、042≥-q p D 、02≥-q p6、根与系数的关系:x 1+x 2=ab-,x 1x 2=a c例题: (浙江富阳市)已知方程011232=-+x x 的两根分别为1x 、2x ,则2111x x + 的值就是( ) A 、112 B 、211 C 、112-D 、211-例3、求作一个一元二次方程,使它的两个根分别比方程052=--x x 的两个根小3 根的判别式及根与系数的关系例4、已知关于x 的方程:032)1(2=+++-p px x p 有两个相等的实数根,求p 的值。

例5、已知a 、b 就是方程0122=--x x 的两个根,求下列各式的值: (1)22b a +;(2)ba 11+ 分式方程的解法步骤:(1) 一般方法:选择最简公分母、去分母、解整式方程,检验 (2) 换元法例题:①、解方程:211442-=+-x x 的解为 065422=++-x x x 根为 ②、【北京市海淀区】当使用换元法解方程03)1(2)1(2=-+-+x x x x 时,若设1+=x x y ,则原方程可变形为( )A.y 2+2y +3=0 B.y 2-2y +3=0 C.y 2+2y -3=0 D.y 2-2y -3=0(3)、用换元法解方程433322=-+-xx x x 时,设x x y 32-=,则原方程可化为( ) (A)043=-+y y (B)043=+-y y (C)0431=-+y y (D)0431=++yy 例、解下列方程:(2)111122-+=-x x ;(2)526222=+++x x x x 6、应用:(1)分式方程(行程、工作问题、顺逆流问题)(2)一元二次方程(增长率、面积问题)(3)方程组实际中的运用例题:①轮船在顺水中航行80千米所需的时间与逆水航行60千米所需的时间相同、已知水流的速度就是3千米/时,求轮船在静水中的速度、(提示:顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度) 解:②乙两辆汽车同时分别从A 、B 两城沿同一条高速公路驶向C 城、已知A 、C 两城的距离为450千米,B 、C 两城的距离为400千米,甲车比乙车的速度快10 千米/时,结果两辆车同时到达C 城、求两车的速度 解③某药品经两次降价,零售价降为原来的一半、已知两次降价的百分率一样,求每次降价的百分率、(精确到0、1%) 解④【05绵阳】已知等式 (2A -7B ) x +(3A -8B )=8x +10对一切实数x 都成立,求A 、B 的值解⑤【05南通】某校初三(2)班40名同学为“希望工程”捐款,共捐款100元、捐款情况如下表:捐款(元) 1 2 3 4 人 数67表格中捐款2元与3元的人数不小心被墨水污染已瞧不清楚、若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组A 、272366x y x y +=⎧⎨+=⎩B 、2723100x y x y +=⎧⎨+=⎩C 、273266x y x y +=⎧⎨+=⎩D 、2732100x y x y +=⎧⎨+=⎩解⑥已知三个连续奇数的平方与就是371,求这三个奇数、⑦一块长与宽分别为60厘米与40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方米、求截去正方形的边长、解:四、方程组 4、 方程组:−−−−→−−−−→代入消元代入消元加减消元加减消元三元一次方程组二元一次方程组一元一次方程 二元(三元)一次方程组的解法:代入消元、加减消元例题:解方程组⎩⎨⎧=-=+.82,7y x y x20328x y x y -=⎧⎨+=⎩ 11233210x y x y +⎧-=⎪⎨⎪+=⎩ 例7、解下列方程组:(1)⎩⎨⎧=-=+52332y x y x ; (2)⎪⎩⎪⎨⎧=++=--=-+435212z y x z y x z y x 例8、解下列方程组:(1)⎩⎨⎧==+127xy y x ; (2)⎪⎩⎪⎨⎧=+=+---2543432222y x y x y xy x列方程(组)解应用题知识点:一、列方程(组)解应用题的一般步骤 1、审题: 2、设未知数;3、找出相等关系,列方程(组);4、解方程(组);5、检验,作答;二、列方程(组)解应用题常见类型题及其等量关系; 1、工程问题(1)基本工作量的关系:工作量=工作效率×工作时间(2)常见的等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量 (3)注意:工程问题常把总工程瞧作“1”,水池注水问题属于工程问题 2、行程问题(1)基本量之间的关系:路程=速度×时间 (2)常见等量关系:相遇问题:甲走的路程+乙走的路程=全路程 追及问题(设甲速度快):同时不同地:甲的时间=乙的时间;甲走的路程–乙走的路程=原来甲、乙相距路程 同地不同时:甲的时间=乙的时间–时间差;甲的路程=乙的路程 3、水中航行问题:顺流速度=船在静水中的速度+水流速度; 逆流速度=船在静水中的速度–水流速度 4、增长率问题:常见等量关系:增长后的量=原来的量+增长的量;增长的量=原来的量×(1+增长率); 5、数字问题:基本量之间的关系:三位数=个位上的数+十位上的数×10+百位上的数×100 三、列方程解应用题的常用方法1、译式法:就就是将题目中的关键性语言或数量及各数量间的关系译成代数式,然后根据代数之间的内在联系找出等量关系。

2、线示法:就就是用同一直线上的线段表示应用题中的数量关系,然后根据线段长度的内在联系,找出等量关系。

3、列表法:就就是把已知条件与所求的未知量纳入表格,从而找出各种量之间的关系。

4、图示法:就就是利用图表示题中的数量关系,它可以使量与量之间的关系更为直观,这种方法能帮助我们更好地理解题意。

例题:例1、甲、乙两组工人合作完成一项工程,合作5天后,甲组另有任务,由乙组再单独工作1天就可完成,若单独完成这项工程乙组比甲组多用2天,求甲、乙两组单独完成这项工程各需几天?例2、某部队奉命派甲连跑步前往90千米外的A 地,1小时45分后,因任务需要,又增派乙连乘车前往支援,已知乙连比甲连每小时快28千米,恰好在全程的31处追上甲连。

求乙连的行进速度及追上甲连的时间例3、某工厂原计划在规定期限内生产通讯设备60台支援抗洪,由于改进了操作技术;每天生产的台数比原计划多50%,结果提前2天完成任务,求改进操作技术后每天生产通讯设备多少台?例4、某商厦今年一月份销售额为60万元,二月份由于种种原因,经营不善,销售额下降10%,以后经加强管理,又使月销售额上升,到四月份销售额增加到96万元,求三、四月份平均每月增长的百分率就是多少?例5、一年期定期储蓄年利率为2、25%,所得利息要交纳20%的利息税,例如存入一年期100元,到期储户纳税后所得到利息的计算公式为:税后利息=%)201%(25.2100%20%25.2100%25.2100-⨯=⨯⨯-⨯已知某储户存下一笔一年期定期储蓄到期纳税后得到利息就是450元,问该储户存入了多少本金?例6、某商场销售一批名牌衬衫,平均每天售出20件,每件盈利40元,为了扩大销售,增加盈利,减少库存,商场决定采取适当的降低成本措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

若商场平均每天要盈利1200元,每件衬衫应降价多少元?。

相关文档
最新文档