医用物理学课后习题答案

合集下载

13医用物理学(习题课1)PDF

13医用物理学(习题课1)PDF

23
24
4
二、计算题
2.一个球形肥皂泡在P0大气压中半径为R1,问将这肥 皂泡等温移至怎样的气压下,才能使其半径增大一倍? (α已知)
p' =
1 8
p0


2 R1
二、计算题
3.n摩尔理想气体经过如图所示的循环过程,其中I→Ⅱ是 等容过程,Ⅱ→Ⅲ是绝热过程,Ⅲ→I是等压过程,分别求 各个过程中的内能变化,做功、吸收热量的情况。 (设 CV,m,Cp,m已知).
Q 4π ε0 R2
Q 4π ε0 r
接地后
Q 4πε0r 2
0 0
Q (1 − 1 ) 4πε0 r R1
0
0
r < R1
R1 < r < R2 r > R2
r < R1
R1 < r < R2 r > R2
29
5
一、选择题
答案:D
一、选择题
答案:C
h = 2α cos θ ρ gr
θ=0
h = 2α ρ gr
一、选择题
7.运用粘滞定律的条件是 A.理想液体作稳定流动 C.非牛顿液体作片流
B.牛顿液体作湍流 D.牛顿液体作片流
答案:D
7
8
一、选择题
答案:B
Ps=2α/R (单面) Ps=4α/R (双面)
25
26
Ⅰ至Ⅱ过程 等体
W= 0 Q = nCV ,m (T2 − T1) ΔU = nCV ,m (T2 − T1)
Ⅱ至Ⅲ过程 绝热
Ⅲ 至Ⅰ 过程 等压
− nCV ,m (T3 − T2 )
nR(T1 − T3 )

医用物理学习题册答案

医用物理学习题册答案

医用物理学习题册姓名班级学号包头医学院医学技术学院物理教研室成绩表1、书写整洁,字迹清楚,不得涂改。

2、独立完成,不得抄袭。

第1章力学基本规律教学内容:1、牛顿运动定律、功和能、能量守恒、动量守恒定律2、转动定律(1)角速度与角加速度。

角量与线量的关系。

•(2)刚体的定轴转动。

转动惯性。

转动惯量。

刚体绕定轴转动的动能。

力矩。

转动定律。

力矩作功。

(3)角动量守恒定律。

3、应力与应变:物体的应力与应变。

弹性模量:弹性与范性。

应力—应变曲线。

弹性模量。

一、填空题1. 刚体角速度是表示整个刚体转动快慢的物理量,其方向由右手螺旋定则确定。

2. 一个定轴转动的刚体上各点的角速度相同,所以各点线速度与它们离轴的距离r成正比,离轴越远,线速度越大。

3. 在刚体定轴转动中,角速度ω的方向由右手螺旋定则来确定,角加速度β的方向与角速度增量的方向一致。

4.质量和转动惯量它们之间重要的区别:同一物体在运动中质量是不变的;同一刚体在转动中, 对于不同的转轴, 转动惯量不同。

5. 刚体的转动惯量与刚体的总质量、刚体的质量的分布、转轴的位置有关。

6. 动量守恒的条件是合外力为0 ,角动量守恒的条件是合外力矩为0 .7. 跳水运动员在空中旋转时常常抱紧身体,其目的减小转动惯量,增加角速度。

8、角动量守恒的条件是合外力矩恒等于零。

9. 弹性模量的单位是 Pa ,应力的单位是 Pa 。

10.骨是弹性材料,在正比极限范围之内,它的应力和应变成正比关系。

二、选择题1. 下列说法正确的是[ C ](A)作用在定轴转动刚体上的合力越大,刚体转动的角加速度越大(B)作用在定轴转动刚体上的合力矩越大,刚体转动的角速度越大(C)作用在定轴转动刚体上的合力矩越大,刚体转动的角加速度越大(D)作用在定轴转动刚体上的合力矩为零,刚体转动的角速度为零2.两物体的转动惯量相等,当其转动角速度之比为2:1时,它们的转动动能之比为[ A ](A)4:1 (B)2:1 (C)1:4 (D)1:23.溜冰运动员旋转起来以后,想加快旋转速度总是把两手靠近身体,要停止转动时总是把手伸展开,其理论依据是[ A ](A )角动量守恒定律 (B)转动定律 (C)动量定理 (D)能量守恒定律4.一水平圆盘可绕固定的铅直中心轴转动,盘上站着一个人,初始时整个系统处于静止状态,忽略轴的摩擦,当此人在盘上随意走动时,此系统[ C ](A)动量守恒 (B)机械能守恒 (C)对中心轴的角动量守恒 (D)动量、机械能和角动量都守恒5. 求质量为m 、半径为R 的细圆环和圆盘绕通过中心并与圆面垂直的转轴的转动惯量分别是( C )。

医用物理学课后习题答案

医用物理学课后习题答案

医用物理学课后习题答案This model paper was revised by LINDA on December 15, 2012.习题三第三章流体的运动3-1 若两只船平行前进时靠得较近,为什么它们极易碰撞答:以船作为参考系,河道中的水可看作是稳定流动,两船之间的水所处的流管在两船之间截面积减小,则流速增加,从而压强减小,因此两船之间水的压强小于两船外侧水的压强,就使得两船容易相互靠拢碰撞。

3-6 水在截面不同的水平管中作稳定流动,出口处的截面积为管的最细处的3倍,若出口处的流速为2m·s-1,问最细处的压强为多少?若在此最细处开一小孔,水会不会流出来。

(85kPa)3-7 在水管的某一点,水的流速为2m·s-1,高出大气压的计示压强为104Pa,设水管的另一点的高度比第一点降低了1m,如果在第二点处水管的横截面积是第一点的1/2,求第二点处的计示压强。

(13.8kPa)3-8 一直立圆柱形容器,高,直径,顶部开启,底部有一面积为10-4m2的小孔,水以每秒×10-4m3的快慢由水管自上面放人容器中。

问容器内水面可上升的高度(0.1;11.2s.)3-9 试根据汾丘里流量计的测量原理,设计一种测气体流量的装置。

提示:在本章第三节图3-5中,把水平圆管上宽、狭两处的竖直管连接成U形管,设法测出宽、狭两处的压强差,根据假设的其他已知量,求出管中气体的流量。

解:该装置结构如图所示。

3-10 用皮托管插入流水中测水流速度,设两管中的水柱高度分别为5×10-3m和×10-2m,求水流速度。

·s-1)3-11 一条半径为3mm的小动脉被一硬斑部分阻塞,此狭窄段的有效半径为2mm,血流平均速度为50㎝·s-1,试求(1)未变窄处的血流平均速度。

·s—1)(2)会不会发生湍流。

(不发生湍流,因Re = 350)(3)狭窄处的血流动压强。

医用物理学课后练习题含答案

医用物理学课后练习题含答案

医用物理学课后练习题含答案
一、选择题
1.根据X射线照片的特征,下列哪项不是纤维样肺病的特点?
A. 肺门淋巴结增大
B. 双侧肺内网状磨玻璃影
C. 肺内斑片状高密度影
D. 胸腔积液或纤维化
答案:C
2.以下哪一项不属于CT扫描的基本步骤?
A. 选择适当的切面
B. 调节层厚
C. 选定切片
D. 光电转换
答案:D
3.下列哪项不是真空吸引原理的应用之一?
A. 针灸吸气
B. 饲喂牛奶
C. 飞机起重
D. 吸尘器清洁
答案:C
二、判断题
1.医用CT扫描仪的X射线灵敏度越高,获得的图像越清晰。

正确或错误?答案:错误
2.超声波在医学影像中的应用局限在脑部、肺部和心脏等重要脏器。

正确或错误?答案:错误
三、简答题
1.请简要描述核磁共振成像(MRI)的原理。

MRI成像是通过对人体进行高频电磁信号的照射,使人体内的原子产生共振吸收,产生电磁信号,接受信号后通过计算机循环分析,还原出高清晰度的图像。

MRI不仅可以观察软组织,对于脑、胸部和腹部等部位的对比度也非常好。

2.什么是加速器放射治疗?请谈一谈这种治疗方法的优势和不足。

加速器放射治疗是利用高能量的电子或X射线照射到肿瘤组织上面,对肿瘤细胞的DNA分子进行破坏而达到治疗的目的。

它的优点在于能够高度精确地定位到病变组织,从而减少对正常组织的影响,同时可控性也很高,能够精确调节剂量。

其不足之处在于,辐射剂量会对周围的正常细胞造成影响,从而引起其他症状和并发症,同时,这种治疗也需要高昂的费用支持,对于较为贫困的地区来说治疗难度较高。

(完整word版)医学物理学习题答案详解

(完整word版)医学物理学习题答案详解

第一章习题答案1-4解:对滑轮:由转动定律 (TT )rJ 1 mr 2122对 m: mg TmaTm ( g a )111111对 m :TKmgmaTm ( aK g )222222得T 1T 2ma 联立上式得 amgK mg又因为 ar122mm 1m2 2(1K)m2m则 Tmg ma2mg11 m mm1122(1K )mmKTmg m g12mgK222m 2m m1221-5.解: 以质心为转轴剖析 ,摩擦力矩为转动力矩。

因 A 、B 、C 的质量和半径相同, 故支持力 F N相同。

由摩擦力F f = μ,摩擦力矩 M =F f· R 可知,三者的摩擦力矩也相同。

F N圆盘 A 的转动惯量 J A = 1 m r 2;实心球 B 的转动惯量 J B =2 m r 2 ; 圆环 C 的转动惯量 J C =25m r 2 .由 M =J α可知B>A>C ,所以 B 先抵达 ,C 最后抵达 .1-6.解 :地球自转角速度=24 2 ,转动惯量 J= 2mR 2 ,则角动量 L J,转动动能60 60512E k = J1-7.解: EF/S = l 0F,将各已知量代入即可求解ll/l 0 S l第二章习题答案2-1.①.②. 皮球在上涨和下降阶段均受恒力(重力 ),因此皮球上下运动不是简谐振动.小球在半径很大的圆滑凹球面的底部摇动时,所受的力是指向均衡地点的答复力,且因为是小幅度摇动,答复力的大小和位移成正比(近似于单摆的小幅度摇动)。

所以此状况下小球小幅度摇动是简谐振动。

第四章习题答案4-1.答:射流在静止气体中发射时,射流双侧的一部分气体随射流流动,进而在射流双侧形成局部低压区。

远处的气压未变,所以远处气体不停流向低压区,以增补被卷吸带走的气体,进而形成了射流的卷吸作用。

4-2.答:关于必定的管子,在流量必定的状况下,管子越粗流速越小;在管子两头压强差必定的状况下,管子越粗流速越快。

医用物理学第 章 课后习题解答

医用物理学第 章 课后习题解答

第十一章 几何光学通过复习后,应该:1.掌握单球面折射成像、共轴球面系统、薄透镜成像、薄透镜的组合、放大镜和显微镜;2.理解共轴球面系统的三对基点、眼的分辨本领和视力、近视眼、远视眼、散光眼的矫正;3.了解透镜像差、眼的结构和性质、色盲、检眼镜、光导纤维内窥镜。

11-1 一球形透明体置于空气中,能将无穷远处的近轴光线束会聚于第二个折射面的顶点上,求此透明体的折射率。

习题11-1附图(原11-2附图)解: 无穷远处的光线入射球形透明体,相当于物距u 为∞,经第一折射面折射,会聚于第二折射面的顶点,则v=2r(r 为球的半径),已知n 1 =1.0,设n 2 =n(即透明体的折射率),代入单球面折射成像公式,得rn r n 1.0-20.1=+∞ 解得n =2.0,即球形透明体的折射率。

11-2 在3m 深的水池底部有一小石块,人在上方垂直向下观察,此石块被观察者看到的深度是多少?(水的折射率n =1.33)习题11-2附图(原11-3附图)解: 这时水池面为一平面的折射面,相当于r 为∞,已知u =3m,n 1 =1.33,n 2 =1.0,观察者看到的是石块所成的像,设其像距为v ,应用单球面折射成像公式,得∞=+ 1.33-.010.1m 333.1v 解得v =-2.25m,这表明石块在水平面下2.25m 处成一虚像,即观察者看到的“深度”。

11-3 圆柱形玻璃棒(n =1.5)放于空气中,其一端是半径为2.0cm 的凸球面,在棒的轴线上离棒端8.0cm 处放一点物,求其成像位置。

如将此棒放在某液体中(n =1.6),点物离棒端仍为8.0cm,问像又在何处?是实像还是虚像?习题11-3附图 (a)【原11-5附图(a)】解: ①如本题附图(a)所示,已知n 1 =1.0,n 2 =1.5,u =8.0cm,r =2.0cm,代入单球面折射成像公式,得cm0.2 1.0-.515.1cm 0.80.1=+v得v =12cm,在玻璃棒中离顶点12cm 处成一实像。

医用物理学答案

医用物理学答案

医⽤物理学答案医⽤物理学习题集答案及简短解答说明:⿊体字母为⽮量练习⼀位移速度加速度⼀.选择题 C B A⼆.填空题1. 2.2. 6 t ; t+t33. -ω2r或-ω2 (A cosωt i+B sinωt j)x2/A2+y2/B2=1三.计算题1.取坐标如图,船的运动⽅程为x=[l2(t)-h2]1/2因⼈收绳(绳缩短)的速率为v0,即d l/d t=-v0.有u=d x/d t=(l d l/d t)/ (l2-h2)1/2=- v0 (x2+h2)1/2/xa= d v/d t=- v0[x (d x/d t)/ (x2+h2)1/2]/x-[(x2+h2)1/2/x2] (d x/d t)=- v0{-h2/[ x2 (x2+h2)1/2]}[ - v0 (x2+h2)1/2/x] =- v02h2/ x3负号表⽰指向岸边.2. 取坐标如图,⽯⼦落地坐标满⾜x=v0t cosθ=s cosαy=v0t sinθ-gt2/2=s sinα解得tanα= tanθ-gt/(2v0cosθ)=2v02sin(θ-α)cosθ/(g cos2α)当v0,α给定时,求s的极⼤值. 令d s/dθ=0,有0=d s/dθ=[2v02/(g cos2α)]··[cos(θ-α)cosθ- sin(θ-α)sinθ]=[2v02 cos(2θ-α)/(g cos2α)]cos(2θ-α)=02θ-α=π/2θ=π/4+α/2所以,当θ=π/4+α/2时, s有极⼤值,其值为s max=2v02sin(π/4-α/2)cos(π/4+α/2)/(g cos2α) = v02[sin(π/2)-sinα] /(g cos2α) = v02(1-sinα)/(g cos2α)练习⼆圆周运动相对运动⼀.选择题 B B D⼆.填空题1.79.5m.2.匀速率,直线, 匀速直线, 匀速圆周.3.4t i-πsinπt j, 4i-π2cosπt j,4m/s2,9.87m/s2.三.计算题1.M的速度就是r变化的速度,设CA=R.由r2=R2+l2-2Rl cosωtR/sinα=r/sinωt得2r d r/d t=2Rlωsinωt=2lωsinωt ·r sinα /sinωtv=d r/d t=lωsinα或v=d r/d t=lωR sinωt/r= lωR sinωt/( R2+l2-2Rl cosωt)1/22.取向下为X正向,⾓码0,1,2分别表⽰地,螺帽,升降机.依相对运动,有a12=a10-a20a12=g-(-2g)=3gv0=a20t0=-2gt0x=v0t+gt2=-2gt0t+gt2代⼊t0=2s, t=0.37s, 得x=-13.8m螺帽上升了s=13.8m练习三转动定律⾓动量守恒定律⼀.选择题 C D B⼆.填空题1. 20.2. 38kg ·m2.3. .mR2/4, 4M sinα/(mR), 16M2t2sinα/(mR)2.三.计算题1.切向⽅向受⼒分析如图,系m1= 20g的物体时动⼒学⽅程为mg-T=0Tr-Mµ=0所以摩擦阻⼒矩Mµ=mgr=3.92×10-2m·N 系m2=50g的物体时物体加速下降,由h=at2/2得a=2h/t2=8×10-3m/s2α=a/r=4×10-2s-2动⼒学⽅程为m2g-T=m2aTr-Mµ=Jα得绳系m2后的张⼒T= m2(g-a)=0.4896N 飞轮的转动惯量J =(Tr-Mµ)/α=1.468kg·m22.(1)受⼒分析如图.F(l1+l2)=Nl1N= F(l1+l2)/l1Mµ=rfµ=rµN=µrF(l1+l2)/l1-Mµ= Jα-µrF(l1+l2)/l1 =(mr2/2)αα=-2µF(l1+l2)/(l1mr)=-40/3=-13.3 rad/s2t=-ω0/α=7.07s由前⾯式⼦α=-2µF(l1+l2)/(l1mr)可得F'=-α'l1mr/[2µ(l1+l2)]= ω0l1mr/[4µ(l1+l2) t'] =177N练习四物体的弹性⾻的⼒学性质⼀.选择题 B B B⼆.填空题1. 1×10-102. 2.5×10-5三.计算题1. 4.9×108 N·m-22. 1.5×108 N·m-23×108 N·m-2练习五理想流体的稳定流动⼀.选择题 A A C⼆.填空题1. 352. 0.75m/s,3m/s3. 10cm三.计算题1. 解:由222212112121ghVPρ+ + = + + 2 2 1 1 S V S V=) ( 104 1 pa P P+ = m h h1 2 1 = -s m V/ 2S S= s m V V/ 4 2 1 2 = =∴) ( ) ( 2 1 2 1 2 2 2 1 1 2 h h g-+=∴ρρpa510151.1?=paPP421038.1?=-即第⼆点处的压强⾼出⼤⽓压强pa 41038.1?23322221211212121gh V P gh V P gh V P ρρρρρρ++=++=++ 01P P = 01=V 03P P = 3322S V S V =sm h h g V /3.13)(2313=-=∴s m V V /65.62132==∴paV h h g P P 42221121006.1021)(?=--+=∴ρρs m S V Q /266.002.03.13333=?==练习六⾎液的层流⼀.选择题 D C A ⼆.填空题 1. 2.78×10-3 Pa 2. 163. 减⼩,增加三. 计算题1.解:由v=[(P 1-P 2)/4ηL ](R 2-r 2) 令r=0得 P 1-P 2=v ·4ηL/R2=2301.0210005.141.0-=8.0N/m22.解:根据泊肃叶公式l P P r Q η8)(214-π=⽽t m Q ??=ρ1 gh P P ρ=-12 tm l gh r ??=6242=--π= 0.0395 Pa ·s练习七简谐振动⼀.选择题 A C B⼆.填空题1. 2.0.2.A cos(2πt /T -π/2);A cos(2πt /T +π/3). 3. 见图.三.计算题1.解:A=0.1m ν=10 Hz ω=20π rad/s T=0.1s ф=(π/4+20πt) x(t =2s)=0.071m υ(t =2s)=-4.43m/sa(t =2s)=-278m/ s 2 2.解:(1)π(2)π/2(3)-π/3 (4)π/4练习⼋简谐振动的叠加、分解及振动的分类⼀.选择题 B E C ⼆.填空题1. x 2 = 0.02cos ( 4 π t -2π/3 ) (SI).2. 2π2mA 2/T 2.3. 5.5Hz ,1.三.计算题1.(1)平衡时,重⼒矩与弹⼒矩等值反向,设此时弹簧伸长为?x 0,有mgl /2-k ?x 0l '= mgl /2-k ?x 0l /3=0 设某时刻杆转过⾓度为θ, 因⾓度⼩,弹簧再伸长近似为θ l '=θ l/3,杆受弹⼒矩为 M k =-l 'F k =- (l/3)[(?x 0+θ l/3)k ]=-k (?x 0l /3+θ l 2/3)合⼒矩为 M G + M k= mgl /2-k (?x 0l /3+θ l 2/3)=-k θ l 2/3 依转动定律,有-k θ l 2/3=J α= (ml 2/3)d 2θ /d t 2 d 2θ /d t 2+ (k /m )θ=0即杆作简谐振动.(2) ω=m k T=2πk m (3) t=0时, θ=θ0, d θ /d t ?t=0=0,得振幅θA =θ0, 初位相?0=0,故杆的振动表达式为θ=θ0cos(m k t )2.因A 1=4×10-2m, A 2=3×10-2m ?20=π/4, ?10=π/2,有A =[A 12+A 22+2A 1A 2cos(?20-?10)]1/2=6.48?10-2mtg ?0=(A 1sin ?10+A 2sin ?20) /(A 1cos ?10+A 2cos ?20)=2.0610=64.11○ ?0=244.11○因 x 0=A cos ?0=x 10+x 20=A 1cos ?10+A 2cos ?20=5.83?10-2m>0 ?0在I 、IV 象限,故0=64.11○=1.12rad所以合振动⽅程为x =6.48?10-2cos(2πt +1.12) (SI)。

医用物理学课后习题参考答案

医用物理学课后习题参考答案

医用物理学课后习题参考答案练习一 力学基本定律(一)1.j i 55+;j i 54+;i 42.2/8.4s m ;2/4.230s m ;rad 15.3 3.(2);4.(3) 5.(1)由⎩⎨⎧-==22192ty t x 得)0(21192≥-=x x y ,此乃轨道方程 (2)j i r 1142+=,j i r 1721+=,,s m v /33.6=(3)i t i dt rd v 42-==,j dt v d a 4-== st 2=时,j i v 82-=, 6.(1)a dt dv = 2/1kv dtdv-=∴有⎰⎰-=-⇒-=-vv tkt v vkdt dv v2/102/12/122 当0=v 时,有kv t 02=(2)由(1)有2021⎪⎭⎫ ⎝⎛-=kt v vkvkt v k vdt x tk v 3221322/3000/2300=⎪⎭⎫⎝⎛--==∆⎰练习二力 学基本定律(二)1.kg m 2222.j i 431+;j i 321+3.(4)4.(1)5..(1) (2)r mg W f πμ2⋅-=∴j i v 62-=∴j a 4-=2020208321221mv mv v m E W k f -=-⎪⎭⎫ ⎝⎛=∆=rgv πμ163 2=∴(3)34)210(20=∆-=k E mv N (圈) 6.设人抛球后的速度为V,则人球系统抛球过程水平方向动量守恒)() (V u m MV v m M o ++=+∴ mM muv V +-=0人对球施加的冲量mM mMumv V u m I +=-+=0)( 方向水平向前练习三 刚体的转动(一)1.2.20-s rad ;1.48-s rad 2.034ω;2021ωJ 3.(1);4.(5)5.ααR a MR TR maT mg ===-221 R M m mg )2/(+=α;2/M m mga +=;6.(1)由角动量守恒得: 02211=+ωωJ J0222=+⋅ωJ RvMR )(05.0122--=-=S J mRv ω (2)πωω2)]([21=--t (s) 55.02π=t (rad) 1122πωθ==t (3)(s) 422ππωπ===vRT (r a d ) 0.2 2πωθ==∴T 练习四 刚体的转动(二)1.gl 3 2.06.0ω3.(1);πω4504.(3);5.1111a m T g m =- 2222a m g m T =- α)(2121J J r T R T +=- αR a =1 αr a =2联立解得:22212121)(rm R m J J gr m R m +++-=α 222121211)(r m R m J J Rg r m R m a +++-=222121212)(r m R m J J rgr m R m a +++-= g m r m R m J J r R r m J J T 12221212211)(++++++=g m r m R m J J r R R m J J T 22221211212)(++++++=6.23121202lmg ml =⋅ω lg30=ω 2222022131213121mv ml ml +⋅=⋅ωω lmv ml ml +=ωω2023131 gl v 321=练习五 流体力学(一)1.h 、P 、v 2.P 、v 3.(3) 4.(4)5.(1)粗细两处的流速分别为1v 与2v ;则 2211v S v S Q ==12131175403000--⋅=⋅==s cm cms cm S Q v ;121322*********--⋅=⋅==s cm cm s cm S Q v (2)粗细两处的压强分别为1P 与2P2222112121v P v P ρρ+=+)(1022.4)75.03(102121213223212221Pa v v P P P ⨯=-⨯⨯=-=-=∆ρρ P h g ∆=∆⨯⋅-)(水水银ρρ;m h 034.0=∆6.(1)射程 vt s =gh v ρρ=221 gh v 2 =∴ 又 221gt h H =- g h H t )(2-=)(2)(22 h H h gh H gh vt s -=-⋅==∴tt =0.5st t =0s (2)设在离槽底面为x 处开一小孔,则同样有:)(2121x H g v -=ρρ )(21x H g v -= 又 2121gt x = gxt 21= )()(2 111h H h s x H x t v s -==-==∴ h x =∴则在离槽底为h 的地方开一小孔,射程与前面相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题三第三章流体的运动3-1 若两只船平行前进时靠得较近,为什么它们极易碰撞?答:以船作为参考系,河道中的水可看作是稳定流动,两船之间的水所处的流管在两船之间截面积减小,则流速增加,从而压强减小,因此两船之间水的压强小于两船外侧水的压强,就使得两船容易相互靠拢碰撞。

3-6 水在截面不同的水平管中作稳定流动,出口处的截面积为管的最细处的3倍,若出口处的流速为2m·s-1,问最细处的压强为多少?若在此最细处开一小孔,水会不会流出来。

(85kPa)3-7 在水管的某一点,水的流速为2m·s-1,高出大气压的计示压强为104Pa,设水管的另一点的高度比第一点降低了1m,如果在第二点处水管的横截面积是第一点的1/2,求第二点处的计示压强。

(13.8kPa)3-8 一直立圆柱形容器,高0.2m,直径0.1m,顶部开启,底部有一面积为10-4m2的小孔,水以每秒 1.4×10-4m3的快慢由水管自上面放人容器中。

问容器内水面可上升的高度? (0.1;11.2s.)3-9 试根据汾丘里流量计的测量原理,设计一种测气体流量的装置。

提示:在本章第三节图3-5中,把水平圆管上宽、狭两处的竖直管连接成U形管,设法测出宽、狭两处的压强差,根据假设的其他已知量,求出管中气体的流量。

解:该装置结构如图所示。

3-10 用皮托管插入流水中测水流速度,设两管中的水柱高度分别为5×10-3m和5.4×10-2m,求水流速度。

(0.98m·s-1)3-11 一条半径为3mm的小动脉被一硬斑部分阻塞,此狭窄段的有效半径为2mm,血流平均速度为50㎝·s-1,试求(1)未变窄处的血流平均速度。

(0.22m·s —1)(2)会不会发生湍流。

(不发生湍流,因Re = 350)(3)狭窄处的血流动压强。

(131Pa)3-12 20℃的水在半径为 1 ×10-2m的水平均匀圆管内流动,如果在管轴处的流速为0.1m·s-1,则由于粘滞性,水沿管子流动10m后,压强降落了多少? (40Pa)3-13 设某人的心输出量为0.83×10—4m3·s-1,体循环的总压强差为12.0kPa,试求此人体循环的总流阻(即总外周阻力)是多少N.S·m-5,?3-14 设橄榄油的粘度为0.18Pa·s,流过管长为0.5m、半径为1㎝的管子时两端压强差为2×104Pa,求其体积流量。

(8.7×10—4m3·s-1)3-15 假设排尿时,尿从计示压强为40mmHg的膀胱经过尿道后由尿道口排出,已知尿道长4㎝,体积流量为21㎝3· s-1,尿的粘度为6.9×10-4 Pa· s,求尿道的有效直径。

(1.4mm)3-16 设血液的粘度为水的5倍,如以72㎝·s-1的平均流速通过主动脉,试用临界雷诺数为1000来计算其产生湍流时的半径。

已知水的粘度为6.9×10-4Pa·s。

(4.6mm)3-17 一个红细胞可以近似的认为是一个半径为2.0×10-6m的小球,它的密度是1.09×103kg·m—3。

试计算它在重力作用下在37℃的血液中沉淀1㎝所需的时间。

假设血浆的粘度为1.2×10-3Pa·s,密度为1.04×103kg·m—3。

如果利用一台加速度(ω2r)为105g的超速离心机,问沉淀同样距离所需的时间又是多少? (2.8×104s;0.28s)习题四第四章振动4-1 什么是简谐振动?说明下列振动是否为简谐振动:(1)拍皮球时球的上下运动。

(2)一小球在半径很大的光滑凹球面底部的小幅度摆动。

4-2 简谐振动的速度与加速度的表达式中都有个负号,这是否意味着速度和加速度总是负值?是否意味着两者总是同方向?4-3 当一个弹簧振子的振幅增大到两倍时,试分析它的下列物理量将受到什么影响:振动的周期、最大速度、最大加速度和振动的能量。

4-4 轻弹簧的一端相接的小球沿x轴作简谐振动,振幅为A,位移与时间的关系可以用余弦函数表示。

若在t=o时,小球的运动状态分别为(1)x=-A。

(2)过平衡位置,向x轴正方向运动。

(3)过处,向x轴负方向运动。

(4)过处,向x轴正方向运动。

试确定上述各种状态的初相位。

4-5 任何一个实际的弹簧都是有质量的,如果考虑弹簧的质量,弹簧振子的振动周期将如何变化?4-6 一沿x轴作简谐振动的物体,振幅为5.0×10-2m,频率2.0Hz,在时间t=0时,振动物体经平衡位置处向x轴正方向运动,求振动表达式。

如该物体在t=o时,经平衡位置处向x轴负方向运动,求振动表达式。

[x=5.0×10—2cos(4πt—π/2)m;x=5.0×10-2cos(4πt+π/2)m]4-7 一个运动物体的位移与时间的关系为,x=0.10cos(2.5πt+π/3)m,试求:(1)周期、角频率、频率、振幅和初相位;(2) t=2s时物体的位移、速度和加速度。

[(1)0.80s;2.5π·s-1;1.25Hz;0.10m;π/3(2)-5×10-2m;0.68m/s;3.1m·s-2]4-8 两个同方向、同频率的简谐振动表达式为,x1=4cos(3πt+π/3)m和x2=3cos(3πt-π/6)m,试求它们的合振动表达式。

[x=5cos(3πt+0.128π)m]4-9 两个弹簧振子作同频率、同振幅的简谐振动。

第一个振子的振动表达式为x1=Acos(ωt+φ),当第一个振子从振动的正方向回到平衡位置时,第二个振子恰在正方向位移的端点。

求第二个振子的振动表达式和二者的相位差。

[x2= Acos(ωt +φ—π/2),Δφ= -π/2]4-10 由两个同方向的简谐振动:(式中x以m计,t以s计)x1=0.05cos(10t十3π/4),x2=0.06cos(10t -π/4)(1)求它们合成振动的振幅和初相位。

(2)若另有一简谐振动x3= 0.07cos (10t+φ),分别与上两个振动叠加,问φ为何值时,x1+x3的振幅为最大;φ为何值时,x1+x3的振幅为最小。

[(1)1.0×l0-2m,-π/4;(2)当φ=2nπ+3π/4,n=1,2,…时,x1+x3的振幅为最大,当φ=2nπ+3π/4,n=1,2,…时,x2+x3的振幅为最小]习题五第五章波动5-1 机械波在通过不同介质时,它的波长、频率和速度中哪些会发生变化?哪些不会改变?5-2 振动和波动有何区别和联系?5-3,波动表达式y= Acos[(ω(t-x/u)+ φ]中,x/u表示什么? φ表示什么?若把上式改写成y=Acos[(ωt—ωx/u)+ φ],则ωx/u表示什么?5-4 已知波函数为y=Acos(bt—cx),试求波的振幅、波速、频率和波长。

(A,b/c,b/2π,2π/c)5-5 有一列平面简谐波,坐标原点按y=Acos(ωt + φ)的规律振动。

已知A=0.10m,T=0.50s,λ=10m。

试求:(1)波函数表达式;(2)波线上相距2.5m的两点的相位差;(3)假如t=0时处于坐标原点的质点的振动位移为y。

= +0.050m,且向平衡位置运动,求初相位并写出波函数。

[(1)y=0.10cos [2π(2.0t-x/l0)+ φ]m,(2), π/2 ,(3)y=0.10cos[2π(2.0t-x /l0)+ π/3]m]5-6 P和Q是两个同方向、同频率、同相位、同振幅的波源所在处。

设它们在介质中产生的波的波长为λ,PQ之间的距离为1.5λ。

R是PQ连线上Q点外侧的任意一点。

试求:(1)PQ两点发出的波到达R时的相位差;(2)R点的振幅。

(3π;0)5-7 沿绳子行进的横波波函数为y=0.10cos(0.01πx—2πt)m。

试求(1)波的振幅、频率、传播速度和波长;(2)绳上某质点的最大横向振动速度。

[(1)0.10m;1.0Hz;200m·s-1;200m (2)0.63m·s-1]5-8 设y为球面波各质点振动的位移,r为离开波源的距离,A。

为距波源单位距离处波的振幅。

试利用波的强度的概念求出球面波的波函数表达式。

5-9 弦线上驻波相邻波节的距离为65cm,弦的振动频率为2.3x102Hz,求波的波长λ和传播速度u。

(1.3m;3.0×102m·s-1)5-10 人耳对1000Hz的声波产生听觉的最小声强约为1×10-12W,m-2,试求20℃时空气分子相应的振幅。

(1×10-11m)5-11 两种声音的声强级相差ldB,求它们的强度之比。

(1.26)5-12 用多普勒效应来测量心脏壁运动时,以5MHz的超声波直射心脏壁(即入射角为°),测出接收与发出的波频差为500Hz。

已知声波在软组织中的速度为1500m·s-1,求此时心壁的运动速度。

(7.5×10-2m·s-1)第七章习题七分子动理论7-14 吹一个直径为10cm的肥皂泡,设肥皂液的表面张力系数α=40×10-3N·m-1。

试求吹此肥皂泡所做的功,以及泡内外的压强差。

(8π×l0-4J;3.2N·m-2)7-15 一U形玻璃管的两竖直管的直径分别为lmm和3mm。

试求两管内水面的高度差。

(水的表面张力系数α=73×10-3N·m-1)。

(2cm)7-16 在内半径r=0.30mm的毛细管中注入水,在管的下端形成一半径R=3.0mm的水滴,求管中水柱的高度。

(5.5cm)7-17 有一毛细管长L=20cm,内直径d=1.5mm,水平地浸在水银中,其中空气全部留是多少?(设大气压强在管中,如果管子漫在深度h=10cm处,问管中空气柱的长度L1=76cmHg,已知水银表面张力系数α=0.49N·m-1,与玻璃的接触角θ=π)。

P(O.179m)习题九第九章静电场9-1 如图所示的闭合曲面S内有一点电荷q,P为S面上的任一点,在S面外有一电荷q/与q的符号相同。

若将q/从A点沿直线移到B点,则在移动过程中:(A)A.S面上的电通量不变;B.S面上的电通量改变,P点的场强不变;C.S面上的电通量改变,P点的场强改变;D.S面上的电通量不变,P点的场强也不变。

习题-1图9-2 在一橡皮球表面上均匀地分布着正电荷,在其被吹大的过程中,有始终处在球内的一点和始终处在球外的一点,它们的场强和电势将作如下的变化:(B)A.E内为零,E外减小,U内不变,U外增大;B.E内为零,E外不变,U内减小,U外不变;C.E内为零,E外增大,U内增大,U外减小;D.E内、E外,U内、U外均增大。

相关文档
最新文档