冻结工程冻结法原理与设计原则
哈尔滨地铁2号线博工区间联络通道冷冻法施工技术

哈尔滨地铁2号线博工区间联络通道冷冻法施工技术(中国水利水电第四工程局有限公司轨道交通工程公司湖北武汉430000)内容提要文章介绍了哈尔滨地铁2号线博工区间联络通道冷冻法施工技术,包括该方法的冻结施工参数计算、工序划分及施工方法,分析总结了地铁联络通道冷冻法的关键技术,可为类似高寒地带工程施工提供参考。
1工程概况I.1区间概况哈尔滨地铁2号线博物馆站~工人文化宫站区间设置一处联络通道兼泵房,联络通道处线间距II.100m,拱顶覆土厚度约9.8m,底板埋深约17.6m,采用矿山法施工。
联络通道及泵站范围内有一根100给水管,埋深2.0m;—根燃气©219,埋深1.7m;排水<|>400,埋深2.4m;电力管,埋深1.3m。
1.2工程及水文地质状况博物馆站~工人文化宫站区间所处地貌为岗阜状平原,根据钻孔揭露和室内土工试验结果,该场地勘察深度内揭露的地层为第四纪地层。
表层由杂填土组成,上部地基主要由粉质黏土组成,下部主要由中粗砂厚薄不均黏性土组成。
根据勘探揭示的地层结构,勘探深度内场地地下水可分为上层滞水、孔隙承压水,该位置地下水位位于地下3.2m。
孔隙潜水初见水位埋深3.50~7.80m,地下水静止水位埋深为3.20~7.30m,标高115.33~117.58m(大连高程系)。
松花江阶地段孔隙承压转无压水初见水位埋深&80~11.50m,地下水静止水位埋深为8.5〜11.1m,标高11&54~119.84m (大连高程系),抗浮设防水位123.5m。
1.3工程难点及控制原则(1)对周围环境控制要求较高隧道的抗变形能力较差,且联络通道地表存在道路及管线,变形控制要求高。
施工过程必须严格控制钻孔、开挖及冻胀、融沉对地层的扰动。
(2)结构施工环境较差通道结构承受的水压大,抗渗要求高。
结构施工环境差,空间狭小,通道拱顶混凝土不易振捣密实,要保证结构不渗漏水难度较大。
2冻结加固方案2.1施工工法根据类似工程施工经验,联络通道施工拟采用“隧道内水平冻结加固土体,隧道内暗挖构筑”的全隧道内施工方案,即:在隧道内采用冻结法加固地层,然后在冻土帷幕中采用矿山法进行通道的开挖构筑施工。
冻结法地层加固在隧道施工中的应用(项目经理)

安全控制要点
施工案例
敢于创新,勇于奋斗
敢于创新,勇于奋斗
2
冻结法施工简介
敢于创新,勇于奋斗
认知冻结法
2.1 收集所需资料
施工简介
安全控制要点 施工案例
地质检 查孔地 质报告
人工冻 土物理 力学性 能试验 报告
构筑物 上下场 所地形 地貌特 征
构筑物 周围永 久、临 时设施 布置
构筑物 施工图
地区气 象资料
敢于创新,勇于奋斗
认知冻结法 施工简介
安全控制要点 施工案例
2.2 冻结壁设计
厚度
•冻结壁应按承载力要 求(设计提供)设计 冻结壁厚度。
内力计算
•冻结壁内力宜采用通 用结构力学计算方法 计算。冻结壁的力学 计算模型可按均质线 弹性体简化,其力学 特性参数宜取冻结壁 平均温度下的冻土力 学特性试验值。
ቤተ መጻሕፍቲ ባይዱ
敢于创新,勇于奋斗
敢于创新,勇于奋斗
认知冻结法
1.2 冻结法适用条件及特点
施工简介 安全控制要点
施工案例
含水量大于10%的土层、 岩层。
适用 条件
盐水冻结地下水流速 ≤5m/昼夜,超低温冻结 地下水流速≤40m/昼夜。
地下水含盐量实验结冰点 满足冻结要求。
敢于创新,勇于奋斗
认知冻结法
1.2 冻结法适用条件及特点
供电要求:
1)一般情况不得停 电,停电必须提前 至少2小时以上通知, 冻结壁交圈前停电 时间超过3小时,对 冻结影响较大。
孔密集布置时,内部冻结孔成孔控制 间距可取边孔的1.2倍~1.5倍左右。 • 冻结孔深度要考虑从冻结孔孔口到冻 结壁设计边界的距离、不能循环盐水 的冻结管端部长度和冻结管端部冻结 削弱影响深度。
联络通道冷冻法施工技术总结

(2)钻孔施工 1.冷冻孔钻进施工按是否需要钻透对面管片可分为透孔施工与普 通冷冻孔施工两种。
透孔即需要钻透对面管片的冷冻孔。透孔的主要作用有:1、联 通隧道的对面冷冻排管,将冷冻排管回路与冷冻站管路相连。2、由 于透孔终将钻透对面管片,所以能够对地层影响钻孔施工并致使终孔 偏差的情况有直观地了解,并对下一步的钻孔施工做出指导。 2.冷冻孔钻进施工按是否需要二次成孔可分为单次成孔与二次成 孔两种施工方法。
在施工透孔时,应在另侧隧道标记终孔位置,检查并 记录透孔的偏离情况,为后续冷冻孔的钻进工作作出指示 。
3.1.1、1号联络通道孔位布置图
3.1.2、2号联络通道孔位布置图
3.2、钻孔施工 3.2.1、钻孔前的准备工作
冷冻孔钻进前需进行一系列的准备工作,主要包括: (1)管片第一次开孔 一般采用水钻施工,视冷冻管型号选用水钻大小(冷冻管φ 89,水钻钻 头φ 132),水钻基座安装时应特别注意孔位、角度的复合,必须保证严格按 照设计角度钻孔,管片第一次成孔钻进长度视管片厚度而定,但必须将最外 层钢筋切割掉,一般留下最外层四~五公分厚的钢筋保护层。
(4)成孔质量的检测 1.测斜与测深 冷冻管钻进完成后即可进行测斜、测深实验。测斜使用灯光测斜 仪;测深可使用软质的pvc管作探杆进行测量。测斜与测深完成后需 绘制每个冷冻孔的实际深度与偏斜图,以便直观的表现冷冻管的分布 情况。 2.打压测试 打压测试原理是利用高压清水泵向已经密封的冷冻管内注水,提 高冷冻管内的压力已测试是否存在漏水现象。打压初始压力为 0.8~1.0MPa,施压30分钟后压力下降不超过0.05MPa,再延续15分钟 后压力不变即为合格。试压合格后的冷冻管即可在冷冻管内安装好供 液管及焊接去、回羊角。 冷冻孔质量检查合格后,即可下供液管,供液管采用φ 45无缝钢 管。与89冷冻管之间采用月牙板封水。并焊接去、回路羊角。
冻结项目工程概述

将裂隙充水砾石中6.5%体积的水由+10℃冻结到8℃,需要约14000热量。
3.1 概述
§3.1.1 冻结法的实质与特点
✓ 冻结的作用
✓含水、松散土体冻结后抗压强度明显提高,类似混凝土。
3.1 概述
§3.1.2 冻结法的起源与发展 国内冻结施工情况 20世纪80年代,井筒穿过的冲积层最大厚度达到 358.5m(潘三东风井),冻结最大深度达到415m; 20世纪90年代初,井筒穿过的冲积层最大厚度达 374.5m(陈四楼副井),冻结最大深度达到435m。 程村矿主、副井:2003年4月和9月顺利穿过了冻结段 ,创出我国已建成冻结井中最早通过430m冲积层、 冻结深度达到485m的冻结井筒冻结管无断裂,井壁 无压坏和无漏水、井壁质量优良的优异成绩。
3.1 概述
§3.1.2 冻结法的起源与发展 国内冻结施工情况 安徽淮南矿业集团公司丁集矿井风井井筒冻结段所穿 过的地层为第四、第三系表土段及基岩风化带,厚度 为528.65m。冻结工程创造了从开机到停机仅365天的 最短时间,确保了井筒掘砌安全顺利通过了528.65m 的冲积层,冻结深度558m,且没有发生一根冻结管 断裂事故;井筒掘砌工程创造了从正式开工到井筒安 全通过528.65m的冲积层、550m冻结段井壁顺利落底 时间仅205天,且外层井壁没有发生任何开裂现象, 外壁掘砌平均速度达80.5月好成绩。
3.1 概述
§3.1.2 冻结法的起源与发展 国内冻结施工情况 我国于1955年在开滦林西风井首次采用冻结法施工第 一个井筒(直径5.0m,深度105m),揭开了我国在 表土不稳定含水地层建设井筒的序幕。 到现在已有近60年历史,共计施工了500多个立井井 筒,累计冻结总深度达80。 实践表明:冻结法凿井已成为我国解决深厚冲积层施 工困难的最主要特殊施工方法。随着国民经济的发展 和新矿区的开发,新建矿井穿过的冲积层厚度和冻结 深度呈跳跃式增长。
冻结法原理及其应用

1 概述
——冻结法设计与施工
(1) 根据工程、地质、水文和环境条件进行冻结设计:
——确定冻土结构形式 ——选择制冷方式 ——布置冻结系统 ——确定冻结温度 ——估算冻结时间,等。
(2) 待设计冻土结构形成后,在其保护下进行地下工程的掘进、 支护和设备安装等工作。
1.2 冻结法简史 国外
➢ l862年:英国,率先用冻结法成功进行深基坑开挖围护 ➢ l872年:德国,首先应用于矿井建设。鲁尔区冻结井深超过600m ➢ 1888年:美国,用于煤矿矿井开挖 ➢ l965年:加拿大,开挖l089米矿井,冻结深度684米 ➢ 1952至l98l年间:北美,用冻结法凿井达29个 ➢ 迄今为止,各国冻结井最大冻结深度:英国930m,美国915m, 波兰860m,加拿大634m,比利时638m,前苏联620m,德国531m, 法国550m,中国702m
(3)干冰系统 制冷温度 :-20 ℃ ~-70 ℃ 土 层 :任何含水地层表面 地下水流速:不能有动水 冷量估算 : 600kg/ m3 制冷效率 :70% 冻土速度 :10cm/d
2.9 四种系统的适用范围,设备容量和主要 技术指标
(4)混合系统 制冷温度 :-40 ℃ ~-70 ℃ 土 层 :任何含水地层 地下水流速:少量动水
3 冻结法设计原则
(2)在工程条件方面 l 冻结壁功能,密封、承载或密封和承载 l 冻结壁形状与尺寸 l 地层特征、分层 l 地层初始温度及变化 l 土性,粒径、密度、塑限与液限、含水量、饱和度 l 土的热参数的获取,经验或试验 l 可能产生冻胀的土层,实验室试验
3 冻结法设计原则
l 地下水,水位、变化波动范围、流速、方向 l 地下水的含盐量 l 冻土的强度和变形性质
冻结法施工工法

冻结法施工工法特点冻结法适用于各类地层尤其适合在城市地下管线密布施工条件困难地段的施工,经过多年来国内外施工的实践经验证明冻结法施工有以下特点:1、可有效隔绝地下水,其抗渗透性能是其它任何方法不能相比的,对于含水量大于10%的任何含水、松散,不稳定地层均可采用冻结法施工技术;2、冻土帷幕的形状和强度可视施工现场条件,地质条件灵活布置和调整,冻土强度可达5-10Mpa,能有效提高工效;3、冻结法是一种环保型工法,对周围环境无污染,无异物进入土壤,噪音小,冻结结束后,冻土墙融化,不影响建筑物周围地下结构;4、冻结施工用于桩基施工或其它工艺平行作业,能有效缩短施工工期。
三、使用范围冻结法适用于各类地层,主要用于煤矿井筒开挖施工。
目前在地铁盾构隧道掘进施工、双线区间隧道旁通道和泵房井施工、顶管进出洞施工、地下工程堵漏抢救施工等方面也得到了广泛的应用。
四、工艺原理冻结法是利用人工制冷技术,使地层中的水结冰,将松散含水岩土变成冻土,增加其强度和稳定性,隔绝地下水,以便在冻结壁的保护下,进行地下工程掘砌作业。
它是土层的物理加固方法,是一种临时加固技术,当工程需要时冻土可具有岩石般的强度,如不需要加固强度时,又可采取强制解冻技术使其融化。
工艺流程冻结法施工工艺流程图施工操作要点施工时,应不断对每个施工工序进行管理。
控制冻结孔施工、冻结管安装、冻结站安装、冻结过程检测的质量。
1、冻结孔施工1.1开孔间距误差控制在±20mm内。
在打钻设备就位前,用仪器精确确定开孔孔位,以提高定位精度。
1.2准确丈量钻杆尺寸,控制钻进深度。
1.3按要求钻进、用灯光测斜,偏斜过大则进行纠偏。
钻进3m时,测斜一次,如果偏斜不符合设计要求,立即采取调整钻孔角度及钻进参数等措施进行纠偏,如果钻孔仍然超出设计规定,则进行补孔。
2、冻结管试漏与安装2.1选择φ63×4mm无缝钢管,在断管中下套管,恢复盐水循环。
2.2冻结管(含测温管)采用丝扣联接加焊接。
冻结法原理及应用资料

冻结法施工的原理图
去路
盐水泵
盐水箱
螺杆压缩机
清水泵
冷却塔
回路
闸阀
去路 回路
盐水系统
氟系统
清水系统
一、冻结法施工技术概况
3、国内外现状: 1)、国外:广泛应用于城市基坑施工、地下铁隧道、煤 矿井筒等工程领域;煤矿井筒冻结深度最大930米。 2)、国内:1955年从前苏联引进冻结法凿井技术,冻 结煤矿井筒约600多个,冻结冲积层最大厚度近600米, 冻结最大深度737米,冻结法凿井技术应用于城市市政 工程起始于上世纪90年代,至今冻结市政工程项目超过 200个,水平冻结最长140米。上世纪末冻结法凿井技术 进一步推广到交通、水利领域,使用冻结法凿井技术施 工桥墩基础、引水通道等。
4、冻土具有冻胀性和融沉性
四、冻土特性
抗压强度
无侧限抗压强度 MPa
30 0.7358T 1.0962
16
12
8
4
0
0
-5
-10
-15
-20
温度 ℃
图6 冻结细砂无侧限抗压强度与负温的关系
四、冻土特性
弹性模量
E50 1.1398T 2 41.301T 36.607
弹性模量 MPa
400
300
五、冻结法设计及施工组织
• 冻结壁厚度设计与强度检验 1)冻结壁应按承载力要求设计冻结壁厚度。 2)冻结壁内力宜采用通用结构力学计算方法计算。冻结壁的力学计算模
型可按均质线弹性体简化,其力学特性参数宜取冻结壁平均温度下 的冻土力学特性试验值。 3)冻结壁内力和变形计算可考虑设置有内支撑的工况,但必须对内支撑 的结构形式、承载力及其施工时序等有明确的设计。设内支撑时, 冻结壁的空帮时间不宜大于24小时。 4)冻结壁强度检验安全系数要满足有关规程要求。有特殊要求时验算冻 结壁的变形。
冻结法施工

压缩机选型 根据实际制冷量的要求,确定低压缩机的台数: N1=Vh/vh 式中 N1—低压缩机台数,台; vh— 一台低压缩机的理论容积,m3/s,查技术特征表; Vh—冻结一个井筒时,要求的压缩机理论容积,m3/s。按下式 计算。 Vh=(Q0v1)/(q0λ) 式中 v1—压缩机入口的比容,m3/kg; λ—输气系数,可按N.N列菲公式计算; q0—单位理论制冷量,kJ/kg。 高压机台数可按高低压机的理论容积比求出,最后再验算电 动机功率。
(如软土、含水不稳定土层、流砂、高水压及高地压地层)条 件下冻结技术 有效、可行;
(3) 灵活性好,可以人为地控制冻结体的形状和扩展范围,必要时可以绕
过地下障碍物进行冻结;
(4) 可控性较好,冻结加固土体均匀、完整;
(5) 经济上较合理。
三、冻结法凿井原理
立井冻结凿井是利用传统的氨循环制冷技术来完成的 。它是在井筒开挖之前,用人工制冷的方法,将井筒周围 含水地层冻结成一个封闭的不透水的帷幕------冻结壁, 用以抵抗地压,水压,隔绝地下水与井筒之间的联系。而 后,在其保护下进行挖砌施工。 三大循环系统:盐水循环、氨循环和冷却水循环。制 冷三大循环构成热泵,其功能是将地层中的热量通过压缩 机排到大气中去。
氟里昂 饱和碳氢化合物的氟、氯、溴衍生物的总称。目前 使用的主要是甲烷和乙烷的衍生物。 优点:无毒,无味,无燃烧与爆炸危险,对金属腐 蚀很小,热化学稳定性较好,绝热指数小,压缩机排 气温度低,分子量大,适用于离心式压缩机。蒸发温 度低(-40~-80℃之间) 缺点:价格昂贵,易漏且不宜发现. 氟里昂R12与水 或氧混合与明火接触可分解出光气(COCl2)。其性能 是放热系数低,单位容积制冷量小,比重大,流动性 差。 适用于中小型制冷机,低温装置及其他特殊要求的 制冷装置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
41.2
1.793
143.1
66.8
2.700
凝固温 度,℃ -77.7 -56.6 -75.2 -155.0 -97.6
3.3.2 冻结法原理与设计原则
冷媒剂——传递冷效应的物质,又称载冷剂。 选用原则:冰点低、热容大、不腐蚀、价格低廉的物质
如CaCl2溶液、NaCl溶液、乙醇、空气、氨、各种卤化物。 冻结法通常采用CaCl2溶液作冷媒剂(常称为盐水)。 氯化钙溶液性质:蒸发温度-25~-35℃,溶液密度1.25 ~1.27g/cm3,波美度为29~31°Be,凝固温度-34.6~42.6℃
3.3.2 冻结法原理与设计原则
l
可能产生冻胀的土层,,地下水位、变化波动范围、流速、方向
l
地下水含盐量
l
冻土强度和变形性质
(3)在技术方法方面 冻结制冷方式,制冷机、液氮或其它冻结方式
必要的预研究内容 (1)土工性质 (2)冻土性质 (3)环境评价 (4)冻土设计 (5)冻土监测
但存在用水量大,漏氨不易被察觉的等缺点。
(二)制冷设备
2、冷凝器与蒸发器
(2)蒸发器
液氨在其中蒸发(沸腾) 变为饱和蒸气,吸收其 周围盐水中的热量,产生
低温盐水。
蒸发器置于盐水箱中,是制冷系统输出冷量的设备。
(二)制冷设备 3、节流阀
节流阀的功用是使高压液氨减压到蒸发压力,给液 氨创造蒸发条件。因而节流阀又叫减压阀。要求节
(二)制冷设备 6、贮氨器
贮氨器的作用是贮存液氨,用于调节, 补充系统中氨的用量。
贮氨器与冷凝器内的压力相同,为使 液氨依靠自重流入贮氨器,贮氨器应 放在冷凝器附近,其液氨入口标高应
低于冷凝器出口标高。
(二)制冷设备 7、氨液分离器
使来自蒸发器的液氨分离出去重新蒸发。防止液氨 进缸,产生冲击造成事故。液氨分离原理也是依靠
3.3.2 冻结法原理与设计原则
如果说盐水循环是将地层的热量传给了氨循环,则冷却水循环是将热量释放给大气。 冷却水循环将压缩后的过热蒸气氨冷却为液态氨,以便再蒸发。 冷却水由水泵驱动,通过冷凝器进行热交换。
3.3.2 冻结法原理与设计原则 经过上述循环,冻结管周围土体中温度将随时间而降低
稳定水流中单管冻结土体的扩展以及冻土墙的形 成和扩展
3.3.2 冻结法原理与设计原则
3.3.2 冻结法原理与设计原则
(1) 土工性质 内容:
——矿物种类 ——密度 ——含水量 ——饱和度 ——渗透性 ——孔隙率 ——物理状态指标 目的: ——评价冻结法的适宜性和可能性 ——考虑可能的冻结方式
3.3.2 冻结法原理与设计原则
根据工程需要可以采用正、反盐水循环系统 l 正循环:盐水由供液管进冻结管,在其中循环后,再由回液管返回盐水公路 l 反循环:方向与正循环恰好相反 一般用正循环,当需要先快速冻结上部地层时,可使用反循环。 通过设置在管路上的阀门进行正、反循环切换
盐水
供
回
液
液
管
管
冻结管
降低蒸气速度和改变流向实现的。
(二)制冷设备 8、盐水循环系统设备
盐水循环系统主要设备有盐水泵、去回路盐水干管、 盐水沟槽、配液与集液圈、冻结器。盐水循环设备应 有良好保温措施,在保温情况下,其冷量损失约占冷 冻站总制冷量的1/4,因此,应特别注意它们的保温 措施。去回路盐水干管铺设在四周保温的沟槽内。
3.3.2 冻结法原理与设计原则
➢由于干冰的理化性质,可作为固体制冷工质 ➢干冰低升华温度,可直接用于吸收地层热量冻结地层 ➢干冰冻结不需制冷机、制冷循环系统、电、水 ➢简单、廉价、安全、冻结时间短 ➢可采用(1)直接制冷、(2)加不冻液、(3)加压气 ➢ 加速制冷工艺 ➢干冰制冷已得到一些国家的重视和研究,并已成功 ➢ 应用到一些岩土工程中,我国也开始了这一方向研究
(二)制冷设备 1、氨压缩机 (2)螺杆式压缩机
由于螺杆压缩机采用喷油冷却,有耗油量大,输油 系统复杂,不适合变压比下工作,噪声大等缺点。
(二)制冷设备 2、冷凝器与蒸发器
(1)冷凝器
冷凝器有立式,淋水式, 卧式及组合式几种。
立式冷凝器占地面积小,冷却效率高,不易堵塞, 消除水垢时不必停止工作。
2 液氮制冷: 液氮是制氧过程中的副产品 性质:液氮无色,透明,稍轻于水
惰性强,无腐蚀性,对震动、热、电火花稳定 蒸发温度-195.8℃;气化潜热为197.6kJ/kg 特有的理化性质,理想的制冷工质 以液氮为制冷工质的简单、低温、快速制冷技术得以发展
主要工艺系统包括地面槽车(1)、储氮罐(2)以及管路(3)等。 液氮制冷过程中:液氮既是制冷剂,又是冷媒剂。 液氮制冷系统要比氨制冷系统要简单得多,一般无需建立制冷剂的循环系统,
3.3.2 冻结法原理与设计原则 冻结沟槽 在井口周围冻结管的上部挖掘环形冻结沟槽。冻结沟槽内设配液圈和集液圈。
井口环形冻结沟槽
(二)制冷设备
1、氨压缩机
(1)活塞式氨压缩机 按标准制冷能力可分为: 小型机:<60kw 中型机:60~600kw 大型机:>600kw
按汽缸中心线的位置分类有卧式,立式,V型,W型 和S型(扇型)压缩机。
氟里昂性质:蒸发温度较低,一般在-40~-80℃之间; 无毒、无味、安全、对金属腐蚀性小,热化学稳定性好。 价格昂贵,易泄漏且不易发现。 单位容积的制冷量小,流动性差,比重较大。
3.3.2 冻结法原理与设计原则
常用制冷剂性能参数
名称
符号
分子式
标准蒸发 温度,℃
氨
R717
NH3
-33.35
二氧化碳
R747
一 级 压 缩 制 冷 原 理
周而复始循环,可获取-25℃左右的低温盐水
-25℃低温盐水一般不能满足大型岩土工程的需要,若需要更低的蒸发温度——二级压缩制冷 本质:增加中间冷却器,用一级制冷蒸发温度冷却
二级压缩制冷原理
3.3.2 冻结法原理与设计原则
盐水循环: 将地层热量带到大气中的循环,在制冷过程中起热量传递作用 一般采用氯化钙(CaCl2)溶液作为盐水。 盐水循环由盐水箱、盐水泵、盐水管路、集液圈、配液圈、冻结器等组成。 其中,冻结器安设于预先钻进的冻结孔中,是低温盐水与地层进行热交换的换热器,由冻结管、供液管和回 液管构成。
空气浓度达0.5~0.6%时,半小时人即中毒; 当浓度达11~14%时,可燃烧; 当浓度达16~25%时,可引起爆炸。 适用:大、中型制冷机
3.3.2 冻结法原理与设计原则
小型冻结制冷系统中一般采用氟里昂作为制冷工质。 氟里昂是饱和碳氢化合物的氟、氯、溴的衍生物的总称,目前主要用的是甲烷和乙烷的衍生物。
(三)冻结法设计原则 迄今为止,冻结土体设计尚无统一标准(规程、DIN等) 若: (1) 遵循冻结法设计的基本原则 (2) 充分了解和掌握冻结工程特殊边界条件、初始条件 同其他方法一样,冻结法可以达到技术可靠、经济合理
3.3.2 冻结法原理与设计原则
先期准备工作 在进行冻结设计之前,有必要评价:
—— 施工环境 —— 地基的要求 —— 冻结方法适应性等
标准蒸发温度-33.35℃ 最低蒸发温度可达-70℃ 常温下冷凝压力≤1.47MPa,一般1.2MPa左右
可按任何比例溶于水,每升水可溶1300升氨,放出大量热量 超过0.2%。
一般规定氨中含水量不得
3.3.2 冻结法原理与设计原则
优点:容积制冷量大,价格低廉,易得 缺点:氨蒸气无色,强烈刺激气味,有毒性。
CO2
-78.52
二氧化硫
R764
SO2
氟里昂R12
R12
CF2Cl 2
氟里昂R40
R40
CH3Cl
-10.01 -29.80 -23.74
临界温 度, ℃
112.9
临界压力 ,10-5Pa
112.9
临界比 容
,m3/kg
4.4130
31.0
73.8
2.456
157.5
78.8
1.920
112.04
温度 ℃ -1 0
0
a 单管冻土温度分布及变化 b 静水中单管冻结的冻土体扩展 c 冻土墙的形成和发展过程
冻结管 t1 t2 t3 t4
t0
t1
t2
t0< t1< t2 t1 时 刻 冻 结 锋 面 t2 时 刻 冻 结 锋 面
距离
t1 t2 t3 t4
t1< t2< t3< t4
3.3.2 冻结法原理与设计原则
盐水循环 低温盐水: 加热盐水:
冷却水循环 常温冷却水:
加热冷却水:
8
氨制冷循环:由蒸发器、氨压缩机、冷凝器和节流阀构成系统 饱和蒸气氨(1) 压缩机等熵绝热压缩 高温、高压过热蒸气氨(2) 高温高压过热蒸气氨(2) 冷凝器等压冷却 高压常温液态氨(3) 高压常温液态氨(3) 节流阀等焓降压 低压液态氨(4) 低压液态氨(4) 蒸发器等压蒸发,吸盐水热量 饱和蒸气氨(1)
冻结设计的基础
3.3.2 冻结法原理与设计原则
(1)在施工环境方面 l 环境允许竖向沉降和水平位移的量值 l 是否允许震动 l 允许噪声的大小 l 控制冻胀的范围和量值 l 冻结钻进的可能位置 l 施工场地条件 l 施工工期和时间
3.3.2 冻结法原理与设计原则
(2)在工程条件方面 l 冻土体功能,(1)密封、(2)承载或(3)密封和承载 l 冻土体形状与尺寸 l 地层特征、分层 l 地层初始温度及变化 l 土性:粒径、密度、塑限与液限、含水量、饱和度 l 土的热物理参数,试验
3.3.2 冻结法原理与设计原则
冻结孔的布置 以井筒同心圆等距离布置在井筒周围。表土较浅时一般采用单圈冻结,对于深厚表土可采用双圈或三圈
冻结。冻结深度大和冻结壁厚时,为缩短冻结时间,也可以布置多圈。 冻结孔布置的圈径:由井筒断面、冻结深度、冻结壁厚度确定。冻结孔的间距一般取0.9~1.3m;孔径