初中八年级(人教版)一次函数知识点总结

合集下载

【人教版】初中数学知识点总结 一次函数

【人教版】初中数学知识点总结 一次函数

一次函数的图象和性质一、知识要点:1、一次函数:若两个变量x,y存在关系为y=kx+b (k≠0, k,b为常数)的形式,则称y 是x的函数。

注意:(1)k≠0,自变量x的最高次项的系数为1;(2)当b=0时,y=kx,y叫x的正比例函数。

2、图象:一次函数的图象是一条直线,(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-,0)。

(2)正比例函数y=kx(k≠0)的图象是经过(0,0)和(1,k)的一条直线;一次函数y=kx+b(k≠0)的图象是经过(-,0)和(0,b)的一条直线。

(3)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。

3、一次函数图象的性质:(1)图象在平面直角坐标系中的位置:(2)增减性:k>0时,y随x增大而增大;k<0时,y随x增大而减小。

4、求一次函数解析式的方法求函数解析式的方法主要有三种:一是由已知函数推导,如例题1;二是由实际问题列出两个未知数的方程,再转化为函数解析式,如例题4的第一问。

三是用待定系数法求函数解析式,如例2的第二小题、例7。

其步骤是:①根据题给条件写出含有待定系数的解析式;②将x、y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程,得到待定系数的具体数值;④将求出的待定系数代入要求的函数解析式中。

二、例题举例:例1、已知变量y与y1的关系为y=2y1,变量y1与x的关系为y1=3x+2,求变量y与x 的函数关系。

分析:已知两组函数关系,其中共同的变量是y1,所以通过y1可以找到y与x的关系。

例2、解答下列题目(1)(甘肃省中考题)已知直线与y轴交于点A,那么点A的坐标是()。

(A)(0,–3)(B)(C)(D)(0,3)(2)(杭州市中考题)已知正比例函数,当x=–3时,y=6.那么该正比例函数应为()。

(A)(B)(C)(D)(3)(福州市中考题)一次函数y=x+1的图象,不经过的象限是()。

八年级数学上一次函数讲义知识点分析人教版

八年级数学上一次函数讲义知识点分析人教版

一次函数一提要1 概念:一般地,形如的函数,叫做一次函数。

当,所以说正比例函数是一种特殊的一次函数。

(注:当k=0时,有y=b,此时函数为一条于x轴平行直线)2 图像及作法:(1)列表;(2)描点;(3)连线图1 图2 图3图43 性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与x轴交点的坐标总是(0,b),正比例函数的图像总是过原点。

(3)k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大,即增函数;当k<0时,直线必通过二、四象限,y随x的增大而减小,即减函数。

当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。

特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

自变量x和因变量y有如下关系:y=kx+b,则此时称y是x的一次函数;当b=0时,y是x的正比例函数,即:y=kx (k为常数,k≠0)4 图像与性质关系:(1)常数项b:一次函数直线对y轴截距,且直线与y轴交点(0,b);又当y =kx+b 中y为0时,有x=,即直线与x轴交点为(,0),我们又知道两点可以确定一条直线,所以我们可以通过(0,b)和(,0)这两点确定函数图像,这也是我们经常使用的一种作图方法,(2)如下图图5通过该图我们可以直接读出,此图中k<0,b>0。

如果是选择题,那就很方便,而不需要求具体数值(3)如函数,当k不变,b变化时,图像会向上或向下移动,此时k因为不变,所以移动后的直线与原直线平行;如函数,当b不变,k变化时,图像以(0,-2)为中心旋转。

图6 图7结论:○1斜率(k)相同的直线相互平行,在y轴截距不同;○2截距(b)相同的直线在y轴上相交于同一点,但是一般不相互平行。

4.一次函数应用:一般情况下x,y的X围为全体实数,但是在实际应用中要考虑x,y的实际X围。

考点一概念:1.下列属于一次函数的为AB y=x2+2x+5C y=2xDE y=a+3F y=a+b2.如图的四个图象中,不表示某一函数图象的是()考点二性质1.函数y=-x的图象是一条过原点及(2,___ )的直线,这条直线经过第_____象限,当x增大时,y随之________2. 函数y=2x-4,当x_______,y<0.3.若y=ax+b与直线y=4x平行,与直线y=3x+8交点为(0,8),则a=_____ ,b=____ 4.函数y=3x+5上取x1=1,x2=2,比较大小:y1_______y2;函数y=(m2+1)x+2 (m为常数)有x1=—1,x2=2,比较大小y1_______y2;5.函数y=(m2—1)x+2,(m为常数)其中 x1=—2,x2=1,试比较y1与y2关系6.某一次函数图像过一三四象限,问:k___0,b___07.如下图,判断那些点属于该直线A.(1,3)B.(-1,1)C.(2,-2)D.(,-1)8.已知函数,试问其对应图像可能为()a b c d练习题➢填空题1.点B(-5,-2)到x轴的距离是____,到y轴的距离是____,到原点的距离是____ 2.小华用500元去购买单价为3元的一种商品,剩余的钱y(元)与购买这种商品的件数x(件)之间的函数关系是______________, x的取值X围是__________3.函数y=-2x+4的图象经过___________象限,它与两坐标轴围成的三角形面积为_________,周长为_______4.一次函数y=kx+b的图象经过点(1,5),交y轴于3,则k=____,b=____5.若点(m,m+3)在函数y=- x+2的图象上,则m=____6.若函数y=4x+b的图象与两坐标轴围成的三角形面积为6,那么b=_____➢选择题1.一次函数y=x-1的图像不经过( )B.第二象限2.(2004·某某)已知正比例函数y=kx(k≠0)的图像过第二、四象限,则( )C.当x<0时,y随x的增大而增大;当x>0时,y随x的增大而减小D.不论x如何变化,y不变3.(2003·某某)结合正比例函数y=4x的图像回答:当x>1时,y的取值X围是( )A.y=1 ≤y<4 C.y=4 D.y>44.(2004·某某)直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C最多有( )5.如下图,判断直线k,b值X围A. k>0,b<0B. k<0,b<0C. k>0,b>0D. k<0,b>0图86.如下图,判断那些点属于该直线A.(1,3)B.(-1,1)C.(2,-2)D.(,-1)图97.已知y与x-2成正比例关系,且当x=3时,y=6,求函数的表达式8.已知有一次函数与正比例函数,试问下列图形中正确的可能为()a b c d➢作图题,某直线上有五点(1,-1),(4,2),(-1,-3)(50,48)(77,75),作出该直线➢已知一次函数的图象经过点A(-1,3)和点(2,-3),(1)求一次函数的解析式;(2)判断点C(-2,5)是否在该函数图象上。

八年级(人教版)函数知识点总结

八年级(人教版)函数知识点总结

八年级(人教版)函数知识点总结1. 函数的概念1.1 函数的定义- 函数是一种具有特定输入和输出的关系。

1.2 函数的表示方法- 显式函数表达式- 隐式函数表达式- 函数图像2. 函数的性质2.1 奇偶性- 如果对于任何$x$,都满足$f(-x) = f(x)$,则称函数为偶函数。

- 如果对于任何$x$,都满足$f(-x) = -f(x)$,则称函数为奇函数。

2.2 周期性- 如果对于任何$x$,都满足$f(x+T) = f(x)$,则称函数为周期函数。

2.3 单调性- 如果对于$x_1 < x_2$,都满足$f(x_1) < f(x_2)$,则称函数为单调递增。

- 如果对于$x_1 < x_2$,都满足$f(x_1) > f(x_2)$,则称函数为单调递减。

3. 函数的基本图像与简单变形3.1 常函数$f(x) = C$3.2 一次函数$f(x) = kx + b$3.3 二次函数$f(x) = ax^2 + bx + c$,其中$a\neq 0$ 3.4 绝对值函数$f(x) = |x|$3.5 倒数函数$f(x) = \frac{1}{x}$3.6 反比例函数$f(x) = \frac{k}{x}$,其中$k\neq 0$ 4. 函数的运算4.1 函数的和、差、积、商- 设$f(x)$和$g(x)$是定义域为$D$的函数,则:- 和函数:$(f+g)(x) = f(x)+g(x)$,$D_{f+g} = D_f \cap D_g$ - 差函数:$(f-g)(x) = f(x)-g(x)$,$D_{f-g} = D_f \cap D_g$- 积函数:$(f\times g)(x) = f(x)\times g(x)$,$D_{f\times g} = D_f \cap D_g$- 商函数:$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$,$D_{\frac{f}{g}} = \{x\in D_f \cap D_g|g(x)\neq 0\}$4.2 复合函数- 设$f(x)$和$g(x)$是定义域为$D$的函数,则:- $(f\circ g)(x) = f(g(x))$,$D_{f\circ g} = \{x\in D_g|g(x)\in D_f\}$5. 函数的应用5.1 解方程- 通过函数图像的交点来求解方程。

八年级(人教版)一次函数知识点总结

八年级(人教版)一次函数知识点总结

八年级数学一次函数知识点总结基本概念1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

例题:在匀速运动公式s vt中,v表示速度,t表示时间,s表示在时间t内所走的路程,则变量是________,常量是_______.在圆的周长公式C=2πr中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数取值范围的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

. 8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

八年级数学上人教版《一次函数》课堂笔记

八年级数学上人教版《一次函数》课堂笔记

《一次函数》课堂笔记
一、一次函数的概念:
一般地,形如y=kx+b(k,b是常数,k≠0)的函数叫做一次函数。

当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

二、一次函数的图象:
一次函数的图象是一条直线,当k>0时,图象经过一、三象限;当k<0时,图象经过二、四象限。

三、一次函数的性质:
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

四、一次函数的图象的应用:
通过观察图象可以解决一些实际问题,如时间、速度、路程等。

例如:某人以4千米/小时的速度匀速行走,他每走1千米所需的时间为y小时,则y与x 之间的关系式为y=4x。

五、实际应用:
通过实例让学生感受一次函数在生活中的应用,如购物、收费等。

例如:某超市的销售额为y万元,每件商品的售价为x元,则y与x之间的关系式为y=x-3(x≥50)。

六、解题方法:
1.理解一次函数的概念;
2.掌握一次函数的图象和性质;
3.会利用一次函数的图象解决实际问题;
4.会利用一次函数的性质解决较复杂的实际问题。

新人教版八年级下册数学第十九章一次函数知识点总结

新人教版八年级下册数学第十九章一次函数知识点总结

新人教版八年级下册数学第十九章一次函数知识点总结八年级下册数学第十九章一次函数知识点总结一、基本概念:1.变量是在一个变化过程中数值发生变化的量,而常量是在一个变化过程中数值始终不变的量。

2.函数定义是指在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x 的函数。

当x=a时y=b,那么b叫做当自变量的值为a时的函数值。

3、定义域是指一个函数的自变量x允许取值的范围。

4、确定函数定义域的方法有以下几种:1)关系式为整式时,函数定义域为全体实数;2)关系式含有分式时,分式的分母不等于零;3)关系式含有二次根式时,被开放方数大于等于零;4)关系式中含有指数为零的式子时,底数不等于零;5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

5、函数解析式是用来表示函数关系的数学式子,使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

6、函数图像的性质是对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图像。

7、函数的三种表示法及其优缺点:1)解析法:两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

2)列表法:把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

3)图像法:用图像表示函数关系的方法叫做图像法。

8、由函数解析式画其图像的一般步骤:1)列表:列表给出自变量与函数的一些对应值。

2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。

3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

9、正比例函数和一次函数:所有一次函数或者正比例函数的图像都是一条直线。

1)正比例函数定义:一般地,形如y=kx(k为常数,k≠)y叫x的正比例函数。

人教版八年级下册数学 第19章《一次函数》讲义 第17讲 函数的认识

人教版八年级下册数学 第19章《一次函数》讲义 第17讲  函数的认识

第17讲函数的认识1、在一个变化过程中,数值保持不变的量叫常量,数值发生改变的量叫变量。

2、实际上,常量就是具体的数,变量就是表示数的字母。

(注意“π”是常量)函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

1、例如:y=±x,当x=1时,y有两个对应值,所以y=±x不是函数关系。

2、对于不同的自变量x的取值,y的值可以相同,例如,函数:y=|x|,当x=±1时,y的对应值都是11、当一个或几个变量取一定的值时,另一个变量有唯一确定值与之相对应,我们称这种关系为确定性的函数关系。

2、两个变量x,y,用一个等式表示出来,如果x取一个值,y都有唯一的值和他对应。

就是y与x的函数关系式。

1、自变量与函数在一个变化过程中,有两个变量x和y,如果x每取一个值,y都有唯一确定的值与它对应,那么,把x叫自变量,y叫x的函数。

2、函数值如果x=a时,y=b,那么把“y=b叫做x=a时的函数值”。

3、自变量取值范围的确定方法(1)、自变量的取值范围必须使解析式有意义。

当解析式为整式时,自变量的取值范围是全体实数;当解析式为分数形式时,自变量的取值范围是使分母不为0的所有实数;当解析式中含有二次根式时,自变量的取值范围是使被开方数大于等于0的所有实数。

(2)、自变量的取值范围必须使实际问题有意义。

4、确定函数取值范围的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义考点1、常量与变量例1、一个长方形的面积是10cm2,其长是acm,宽是bcm,下列判断错误的是()A、10是常量B、10是变量C、b是变量D、a是变量例2、假设汽车匀速行驶在高速公路上,那么在下列各量中,变量的个数是()①行驶速度;②行驶时间;③行驶路程;④汽车油箱中的剩余油量.A、1个B、2个C、3个D、4个例3、“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,______随______变化而变化,其中自变量是______,因变量是______.例4、在公式s=v0t+2t2(v0为已知数)中,常量是,变量是.例5、下列是某报纸公布的世界人口数据情况:(1)表中分别有几个变量?(2)你能将其中某个变量看成另一个变量的函数吗?(3)如果用x表示时间,y表示世界人口总数,那么随着x的变化,y的变化趋势是什么?(4)世界人口每增加10亿,所需的时间是怎样变化的?例6、在烧开水时,水温达到l00℃就会沸腾,下表是某同学做“观察水的沸腾”实验时记录的数据:(1)上表反映了哪两个量之间的关系?哪个是自变量?哪个是因变量?(2)水的温度是如何随着时间的变化而变化的?(3)时间推移2分钟,水的温度如何变化?(4)时间为8分钟,水的温度为多少?你能得出时间为9分钟时,水的温度吗?(5)根据表格,你认为时间为16分钟和18分钟时水的温度分别为多少?(6)为了节约能源,你认为应在什么时间停止烧水?1、在圆周长计算公式C=2πr中,对半径不同的圆,变量有()A、C,rB、C,π,rC、C,πD、C,2π,r2、以固定的速度v0(米/秒)向上抛一个小球,小球的高度h(米)与小球的运动的时间t(秒)之间的关系式是h=v0t-4.9t2,在这个关系式中,常量、变量分别为()A、4.9是常量,t、h是变量B、v0是常量,t、h是变量C、v0、-4.9是常量,t、h是变量D、4.9是常量,v0、t、h是变量3、如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S (m2),周长为p(m),一边长为a(m),那么S,p,a中是变量的是()A、S和pB、S和aC、p和aD、S,p,a4、某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中是自变量,是因变量。

初二数学上册知识点总结人教版

初二数学上册知识点总结人教版

初二数学上册知识点总结人教版初二上册数学知识点一.知识框架二.知识概念1.一次函数:若两个变量x,y间的关系式可以表示成y=kx+bk≠0的形式,则称y是x的一次函数x为自变量,y为因变量。

特别地,当b=0时,称y是x的正比例函数。

2.正比例函数一般式:y=kx(k≠0),其图象是经过原点0,0的一条直线。

3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx 经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

4.已知两点坐标求函数解析式:待定系数法一次函数是初中学生学习函数的开始,也是今后学习其它函数知识的基石。

在学习本章内容时,教师应该多从实际问题出发,引出变量,从具体到抽象的认识事物。

培养学生良好的变化与对应意识,体会数形结合的思想。

在教学过程中,应更加侧重于理解和运用,在解决实际问题的同时,让学习体会到数学的实用价值和乐趣。

初二数学知识点总结归纳运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:① 列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册一次函数知识点总结
一、本节学习指导
本节的知识相当重要,同学们要引起重视,如果给出一个式子让其判断是不是一次函数,判断方法我们要掌握。

关于一次函数的解析式的几种求法我们要会,特别是其中最常用的“待定系数法”。

本节有配套免费学习视频。

二、知识要点
1、一次函数:形如y=kx+b (k≠0, k, b为常数)的函数。

注意:(1)要使y=kx+b是一次函数,必须k≠0。

如果k=0,则kx=0,y=kx+b就不是一次函数;
(2)当b=0时,y=kx,y叫x的正比例函数。

2、图象:一次函数的图象是一条直线。

【重点】
(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-b/k,0)
(2)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。

3、性质:【重点】
(1)图象的位置:
(2)增减性
k>0时,y随x增大而增大
k<0时,y随x增大而减小
4.求一次函数解析式的方法 【重点】
(1)由已知函数推导或推证
(2)由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系。

(3)用待定系数法求函数解析式。

(最常用)
“待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本单元构造方程一般有下列几种情况: ①利用一次函数的定义
x 的系数不为0,x 的最高次数为1,构造方程组。

②利用一次函数y=kx+b 中常数项b 恰为函数图象与y 轴交点的纵坐标,即由b 来定点;直线y=kx+b 平行于y=kx ,即由k 来定方向 。

③利用函数图象上的点的横、纵坐标满足此函数解析式构造方程。

④利用题目已知条件直接构造方程 。

例:
(1)若函数是1)1(2-++=k x k y 正比例函数,则k 的值为( )
(2)已知32)12(--=m x m y 是正比例函数,且y 随x 的增大而减小,则m 的值为_______.
(3)当m=_______时,函数54)3(12-++=-x x
m y m 是一次函数.
解: (1)由于y=(k +1)x +k ²-1是正比例函数,
∴,∴k=1,∴应选B.
(2)是正比例函数的条件是:m2-3=1且2m -1≠0,要使y 随x 的增大而减小还应满足条件2m -1<0,综合这两个条件得当即m=-2时,
是正比例函数且y 随x 的增大而减小.
(3)根据一次函数的定义可知,
是一次函数的条件是:
解得m=1或-3,故填1或-3.
三、经验之谈:
1、判断一个式子是不是一次函数,首先看“k”是否等于零,其次看最高次项是否等于1次。

2、给出一个一次函数,我们要能迅速的画出图像,一看朝向,如果k>0,图像“向上爬”,k<0,图像“向下滑”;二看截距,截距就是|b|,如果b>0,图像和y轴的焦点在y 的正半轴,如果b<0,则在y的负半轴。

3、一次函数的增减性很简单,当函数图像“向上爬”时,y随x的增大而增大;当函数图象“向下滑”时,y随x的增大而减小。

相关文档
最新文档