面波探测技术方案

合集下载

面波法检测实施细则

面波法检测实施细则

面波法检测实施细则一、背景介绍面波法是一种非破坏性检测方法,广泛应用于土木工程、建造结构和地质勘探等领域。

本文将介绍面波法检测的实施细则,包括检测设备的选择、实施步骤、数据处理和结果分析等内容。

二、检测设备的选择1. 面波发生器:选择频率范围广、输出稳定的发生器,常用的有震源激振器和重锤等。

2. 接收器:选择具有高灵敏度和宽频带的接收器,常用的有加速度计和地震传感器等。

3. 数据采集系统:选择能够实时采集和存储数据的系统,常用的有数字示波器和数据采集卡等。

三、实施步骤1. 布设检测路线:根据实际情况确定检测路线的起点和终点,并按照一定间距布设接收器。

2. 发生面波:使用面波发生器在起点处产生面波信号,确保信号的稳定和准确。

3. 接收面波:接收器记录下面波信号,并将数据传输给数据采集系统。

4. 数据处理:对采集到的数据进行滤波、去噪和补偿等处理,得到清晰的面波图象。

5. 结果分析:根据面波图象分析土层的速度和厚度等参数,评估地下结构的稳定性和土壤的工程性质。

四、数据处理方法1. 滤波处理:采用低通滤波器对采集到的数据进行滤波,去除高频噪声,保留面波信号。

2. 去噪处理:采用小波变换或者相关方法对滤波后的数据进行去噪处理,提高数据的信噪比。

3. 补偿处理:对采集到的数据进行补偿,消除地面反射和传播衰减等因素对数据的影响。

4. 数据分析:根据处理后的数据绘制面波图象,分析波速和波长等参数,评估土层的性质和结构的稳定性。

五、结果分析与应用1. 波速分析:根据面波图象中的波速信息,可以判断土层的类型和厚度,为工程设计提供依据。

2. 地下结构评估:通过分析面波图象中的反射和散射特征,可以评估地下结构的完整性和稳定性。

3. 土壤工程性质评估:根据面波图象中的波长信息,可以判断土壤的工程性质,如密实度和抗剪强度等。

4. 结果应用:面波法检测结果可用于地质勘探、地基设计、工程质量控制等领域,为工程决策提供科学依据。

4实验四地震勘探实验(面波法)

4实验四地震勘探实验(面波法)

实验四地震勘探实验(面波法)一、实验原理瑞雷面波法用于勘探,与以往的弹性波法(反射波法和折射波法)差别在于:它应用的不是纵波和横波,而是以前反射波法和折射波法视为干扰的面波。

其原理是:面波具有频散的特性,其传播的相速度随频率的改变而改变。

这种频散特性可以反映地下介质的特性。

瑞雷面波的特点:瑞雷面波速度低、瑞雷面波在介质中泊松比在0.4~0.5范围内,面波速度与横波速度关系基本接近、瑞雷面波对地层的分辨能力,决定于频率,频率高则分辨能力强。

上图为72道的面波采集记录:震源在左上角,同一震源下的直达波、折射波、反射波和面波遵循各自的传播规律,分布在不同的区域。

其中面波传播的特征:近震源处发育、震幅大、传播速度低。

上图为实际勘探过程中采集得到的面波记录:以近震源、小道距、长采样、宽频率激发、低频率接收。

工程检测方面的应用实例:上图采集地点为:云南某高速公路的路基检测,检测深度为4米。

由图中的“频散曲线”分层可以看出:每层的厚度约在0.3米-0.5米。

填筑路基施工是分层进行,松散料经过压实,达到压实度后再进行下一层的填料。

图中频散曲线的拐点清晰,分析的层厚度在0.35米-0.5米之间。

二、实验目的1.了解面波法的原理;2.了解面波法工作布置及观测方法;3.掌握面波法数据采集、处理和解释,熟练操作相关软件。

三、实验仪器SWS型多波列数字图像工程勘察与工程检测仪。

该系统由主机、多芯电缆、检波器、触发器、震源(大锤或炸药)、铁板、直流电源、直流电源线以及数据采集、处理和解释软件等组成。

四、实验步骤1.在工区布设测线在工区布设测线,原则:由南向北、由西向东测线号与测点号依次增大。

使用皮尺标注检波器位置与激发点位置。

2.连接仪器的各个部分将主机、电源、多芯电缆、检波器、大锤、触发器按正确的方式一一连接起来。

注意:各接口均使用“防呆”设计,电缆插头与对应的插槽才能连接,电缆插头与非对应的插槽不能连接。

禁止暴力插拔各插头、插槽,以防仪器损坏。

面波法检测实施细则

面波法检测实施细则

面波法检测实施细则一、背景介绍面波法是一种非破坏性检测方法,广泛应用于土木工程、建筑结构和地质勘探领域。

它通过测量地面上的面波传播速度和衰减特性,来评估地下介质的物理性质和结构状况。

本文将详细介绍面波法检测的实施细则,包括设备要求、操作步骤、数据处理和结果分析等方面。

二、设备要求1. 面波法检测仪器:应选择具有高频率范围和高精度的面波法检测仪器,以确保测量结果的准确性和可靠性。

2. 震源:需要使用合适的震源设备,如重锤或振动器,产生合适的激发波形。

3. 接收器:应选用高灵敏度和宽频带的地震接收器,以接收地面上的面波信号。

三、操作步骤1. 数据采集准备:a. 在待测区域选择适当的测线,并标记测点位置。

b. 安装地震接收器,保证其与地面紧密接触。

c. 设置合适的震源位置和震源与接收器之间的距离。

2. 数据采集过程:a. 在每个测点上,使用震源激发地面,并记录激发波形。

b. 通过接收器采集地面上的面波信号,并记录相应的波形数据。

3. 数据处理:a. 对采集到的波形数据进行预处理,包括滤波和去噪处理,以提高数据质量。

b. 对每个测点的面波信号进行分析,计算面波传播速度和衰减特性。

4. 结果分析:a. 根据测得的面波传播速度和衰减特性,评估地下介质的物理性质和结构状况。

b. 将测量结果与标准值进行对比,判断地下介质的健康状况和可能存在的问题。

四、数据处理和结果分析方法1. 面波传播速度计算:a. 根据采集到的面波波形数据,通过频谱分析方法计算面波传播速度。

b. 可采用多种方法计算传播速度,如多次到达法、频散曲线法等。

2. 面波衰减特性计算:a. 根据采集到的面波波形数据,通过振幅衰减分析方法计算面波衰减特性。

b. 可采用多种方法计算衰减特性,如Q值法、能量比法等。

3. 结果分析和解释:a. 将测得的面波传播速度和衰减特性与已有的标准值进行对比,判断地下介质的健康状况。

b. 根据测量结果,对可能存在的问题进行分析和解释,并提出相应的建议和措施。

面波法检测实施细则

面波法检测实施细则

面波法检测实施细则一、背景介绍面波法是一种常用的非破坏性检测方法,广泛应用于建造结构、桥梁、地下管线等工程领域。

它通过测量地表上的面波信号,来评估结构体的强度、稳定性和缺陷情况。

本文将详细介绍面波法检测的实施细则。

二、实施步骤1. 前期准备在进行面波法检测前,需要进行一些前期准备工作。

首先,确定检测目标和检测区域,并制定详细的检测方案。

其次,选择合适的面波法检测设备,确保其性能符合要求。

最后,进行现场勘测,了解地质情况和周边环境,为后续的数据分析提供参考。

2. 传感器布设面波法检测需要将传感器布设在地表上,以接收地下结构体传递到地表的面波信号。

传感器的布设需要考虑结构体的类型和大小,普通采用直线布设方式。

在布设传感器时,要保证传感器之间的距离均匀,以获取准确的数据。

3. 数据采集在进行面波法检测时,需要进行数据采集。

首先,进行基准线的测量,以确定传感器之间的距离。

然后,进行面波信号的采集,普通采用震源激发的方式。

在采集数据时,要保持传感器的稳定,并记录下每次采集的震源位置和激发参数。

4. 数据处理和分析采集到的面波信号需要进行数据处理和分析,以获取结构体的相关参数。

首先,进行数据的滤波和去噪处理,以提高数据的质量。

然后,进行频谱分析,得到面波的频散曲线。

最后,通过拟合曲线和反演方法,计算出结构体的速度剖面和厚度剖面。

5. 结果解读和评估根据数据处理和分析的结果,进行结果的解读和评估。

根据速度剖面和厚度剖面,可以评估结构体的强度和稳定性。

同时,结合其他相关信息,如地质勘探数据和设计参数,可以评估结构体的缺陷情况和安全性。

6. 缺陷修复和监测根据面波法检测的结果,对于存在缺陷的结构体,需要进行修复和监测。

修复措施可以根据具体情况采取加固、更换或者重建等方式。

修复后,需要进行定期的面波法检测,以监测结构体的变化和效果。

三、注意事项1. 在进行面波法检测时,要选择合适的天气条件,避免雨雪等天气对数据采集的影响。

面波法检测实施细则

面波法检测实施细则

面波法检测实施细则一、引言面波法是一种常用的非破坏性检测方法,广泛应用于建筑、桥梁、地下管线等工程领域。

本文旨在制定面波法检测实施细则,以确保检测工作的准确性、可靠性和一致性。

二、适用范围本实施细则适用于所有使用面波法进行非破坏性检测的工程项目。

三、术语定义1. 面波法:一种利用地震波在地下介质中传播和反射的原理,通过检测地表上的面波信号来获取地下结构信息的方法。

2. 面波速度:地表上面波传播的速度,通常以米/秒(m/s)为单位。

3. 面波频散曲线:面波速度与频率之间的关系曲线。

4. 面波频散分析:通过测量不同频率下的面波速度,绘制面波频散曲线,并进行数据分析的过程。

四、检测设备和工具1. 面波仪器:应选择符合国家标准的面波仪器,确保其精度和可靠性。

2. 地震传感器:应选择合适的地震传感器,能够准确地测量地表上的面波信号。

3. 数据采集系统:应使用可靠的数据采集系统,能够实时采集、存储和处理面波数据。

五、检测前准备1. 环境调查:在进行面波法检测前,应对检测区域的地质、地貌、地下结构等进行详细的环境调查,以了解可能对面波信号产生影响的因素。

2. 设计检测方案:根据环境调查结果和检测目的,制定合理的检测方案,包括选择适当的检测线路、测点布设和检测参数设置等。

六、检测过程1. 仪器校准:在进行面波法检测前,应对面波仪器进行校准,确保其测量结果的准确性。

2. 测点布设:按照检测方案,在检测区域内合理布设测点,保证测点之间的间距均匀,并考虑到地下结构的变化。

3. 数据采集:将地震传感器安装在每个测点上,并连接到数据采集系统。

启动数据采集系统,开始采集地表上的面波信号。

4. 数据处理:对采集到的面波数据进行处理,包括去除噪声、提取面波信号、计算面波速度等。

5. 面波频散分析:根据处理后的面波数据,进行面波频散分析,绘制面波频散曲线,并进行数据分析和解释。

七、数据分析和报告编制1. 面波速度分析:根据面波频散曲线,计算并分析地下结构的面波速度分布情况,提取有关结构特征的信息。

面波法检测实施细则

面波法检测实施细则

面波法检测实施细则一、背景介绍面波法(Surface Wave Method)是一种非破坏性地下勘探技术,主要用于评估地下土壤和岩石的力学特性。

该方法通过在地表上激发地震波,利用地震波在地下传播的特点来获取地下介质的信息。

面波法检测实施细则旨在规范面波法检测的操作流程、数据处理和结果解释,确保检测结果准确可靠。

二、检测设备和工具1. 面波仪器:采用高精度的面波仪器,具备稳定的信号源和高灵敏度的接收器,能够准确地记录地震波信号。

2. 震源:选择合适的震源,如重锤或振动器,能够产生足够的能量以激发地表面波。

3. 接收器:使用合适的接收器,如加速度计或地震仪,能够准确地记录地震波信号。

三、检测前的准备工作1. 勘测区域选择:根据需要勘测的目标和勘测范围,选择合适的勘测区域,并进行必要的前期调查和分析。

2. 地形和地貌调查:对勘测区域的地形和地貌进行调查,了解地表情况,确定检测线路和测点布设。

3. 勘测线路布设:根据勘测目标和地表条件,合理布设勘测线路,保证测点的密度和均匀性。

4. 测点标识:在每个测点上设置标志,方便后续的数据采集和处理。

四、实施步骤1. 震源激发:在每个测点上,使用震源激发地表面波。

根据具体情况,选择适当的震源类型和激发方式。

2. 数据采集:在激发地表面波后,使用接收器记录地震波信号。

确保接收器的位置稳定,并保证数据采集的准确性和一致性。

3. 数据处理:对采集到的地震波信号进行处理,包括滤波、叠加、分析等步骤。

根据处理结果,计算地下介质的速度和衰减系数。

4. 结果解释:根据处理后的数据和地下介质特性,对勘测区域的地质结构和力学特性进行解释。

绘制地震剖面图和速度剖面图,以便更直观地展示结果。

5. 数据质量控制:对采集到的数据进行质量控制,包括数据的准确性、完整性和可靠性等方面的评估。

确保数据符合要求,并能够支持后续的分析和决策。

五、报告编写1. 报告结构:报告应包括背景介绍、勘测目的、勘测方法、数据处理和结果解释等内容。

面波法检测实施细则

面波法检测实施细则

面波法检测实施细则面波法是一种非破坏性检测技术,广泛应用于地质勘探、建筑结构检测、桥梁安全评估等领域。

本文将介绍面波法检测的实施细则,帮助读者了解如何正确使用这一技术。

一、设备准备1.1 选择合适的面波法检测设备:根据实际需要选择合适的面波法检测设备,通常包括发射器、接收器、数据采集系统等。

1.2 确保设备完好:在进行检测前,需要检查设备是否完好,包括电池电量、传感器连接是否良好等。

1.3 调试设备参数:根据实际情况调试设备参数,包括频率、增益等,以确保检测结果准确。

二、现场准备2.1 选择合适的检测地点:在进行面波法检测时,需要选择合适的地点,通常选择平坦、无遮挡的地面进行检测。

2.2 清理检测区域:在进行检测前,需要清理检测区域,确保地面平整、无杂物,以避免对检测结果的影响。

2.3 布置检测线路:根据实际需要布置检测线路,通常需要在地面上标记出检测线路,以便进行数据采集。

三、数据采集3.1 发射面波信号:在进行数据采集时,需要通过发射器发送面波信号,通常采用锤击地面或者振动源的方式。

3.2 接收面波信号:接收器接收地面传播的面波信号,并将数据传输到数据采集系统中进行处理。

3.3 处理数据:对采集到的数据进行处理,包括滤波、叠加等操作,以得到准确的面波速度和传播路径。

四、数据分析4.1 解释面波速度:根据采集到的数据,分析面波速度的变化规律,了解地下介质的性质和结构。

4.2 确定地下结构:通过面波法检测结果,确定地下结构的情况,包括土层厚度、岩层分布等。

4.3 制定进一步探测计划:根据数据分析结果,制定进一步的探测计划,包括钻探、地质勘探等。

五、报告撰写5.1 撰写检测报告:根据数据分析结果,撰写详细的检测报告,包括检测地点、设备使用情况、数据分析结果等。

5.2 提出建议:在检测报告中提出进一步的建议,包括地质勘探、建筑结构加固等方面的建议。

5.3 保存数据:保存检测数据和报告,以备日后参考和查证。

面波法检测实施细则

面波法检测实施细则

面波法检测实施细则面波法是一种常用的非破坏性测试方法,广泛应用于工程结构的检测和评估。

本文将介绍面波法检测的实施细则,包括仪器设备的选择、实施步骤、数据处理方法等内容。

一、仪器设备选择1.1 探头选择:根据被测结构的特点和检测要求,选择合适的面波法探头。

常用的探头有固定频率探头和可调频率探头,根据需要选择合适的频率范围。

1.2 信号发生器选择:面波法需要使用信号发生器产生激励信号,选择合适的信号发生器可以保证信号的稳定性和准确性。

1.3 数据采集设备选择:选择合适的数据采集设备可以实时获取面波信号,并进行后续的数据处理和分析。

二、实施步骤2.1 准备工作:在进行面波法检测前,需要对被测结构进行清理和准备工作,确保测试表面的平整度和光洁度。

2.2 探头安装:将选择好的探头安装在被测结构表面,并确保与被测结构有良好的接触,以保证信号的传递和接收。

2.3 信号发生和数据采集:通过信号发生器产生激励信号,并通过数据采集设备实时采集面波信号,确保信号的稳定和准确。

三、数据处理方法3.1 数据预处理:对采集到的原始数据进行滤波和去噪处理,以去除干扰信号和提取有效信号。

3.2 特征提取:根据面波信号的特点和目标结构的特性,提取合适的特征参数,如波速、衰减系数等。

3.3 数据分析:通过对特征参数的分析,可以评估结构的健康状况和损伤程度,为后续的结构评估和维护提供依据。

四、应用领域4.1 土木工程:面波法可以用于土木工程结构的检测和评估,如桥梁、隧道、地铁等。

4.2 建筑工程:面波法可以用于建筑工程结构的检测和评估,如楼房、大厦等。

4.3 能源工程:面波法可以用于能源工程结构的检测和评估,如风力发电机组、水电站等。

五、注意事项5.1 测试环境:面波法需要在相对安静的环境中进行,以保证信号的准确性和可靠性。

5.2 数据分析:在进行数据分析时,需要根据具体情况选择合适的分析方法和模型,以提高评估的准确性和可靠性。

5.3 结果解读:对于面波法检测的结果,需要结合实际情况和其他测试方法的结果进行综合分析和解读,以得出准确的结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深圳地铁7号线福赤区间面波勘探技术方案
深圳市工勘岩土集团有限公司
二O一四年十二月
目录
1、前言 (1)
2、主要勘探目的 (1)
3、执行规范 (1)
4、方法原理 (2)
5、测线布置 (3)
6、瑞利波法现场测试方法 (5)
7、资料处理与解释 (6)
8、提交成果 (8)
9、工期 (8)
10、投入人员及仪器设备 (9)
1、前言
受中国水电四局的委托,我公司拟对深圳地铁7号线福赤盾构区间进行面波(瑞利波)法勘探。

本区间自福田河南岸的福临站北端开始,至滨河大道的赤尾站西端结束,里程桩号大致范围为:
左线ZDK20+360.117~ZDK20+845.492;
右线YDK20+347.717~YDK20+844.001。

线路下穿福田河、福临小区、滨河大道等,线路经过区地面环境复杂多变,将会给面波勘探带来诸多不便和影响,有的区段可能难以展开勘探,即使是积极创造条件勉强开展慨叹的区段,也需要投入更多的时间、人力、物力等,并且在诸多不利因素背景下所解算的成果资料的可信度会大打折扣。

为了尽可能全面地完成地质任务,编制此方案。

2、主要勘探目的
通过面波(瑞利波)勘探,揭示盾构区间隧道穿越区岩土强度的
分布,提请盾构施工时提前采取相应措施。

3、执行规范
本次探测执行如下技术规范:
1)《多道瞬态面波勘察技术规程》(JGJ/T143—2004);
2)《物化探工程测量规范》(DZ/T0153-95);
3)《城市工程地球物理探测规范》(中华人民共和国行业标准
JJ7-2007);
4)《水利水电工程物探规程》(中华人民共和国水利水电行业标准
SL326-2005);
5)《工程测量规范》(GB/50026-2007)。

4、方法原理
瑞利波是面波的一种。

瑞利波法是利用瑞利波的运动学特征和动力学特征来进行工程质量检测及工程地质勘察的地球物理方法。

在自由界面(如地面)上进行竖向激振时,均会在其表面附近产生各种波长的瑞利波,其二维和三维波动及传播示意图见图1和图2。

瑞利波有三个与工程质量检测和地质勘察有关的主要特征:
(1)、在分层介质中,瑞利波具有频散特性;
图1 瑞利波的椭圆极化示意图(二维)
(2)、瑞利波的波长不同,穿透深度也不同;
(3)、瑞利波的传播速度与介质的物理力学性质密切相关。

图2 三维空间的瑞利波传播示意图(三维)
各频率的瑞利波的能量主要集中在地表下一个波长的范围内,而传播速度代表着半个波长(λR 2)范围内介质震动的平均传播速度。

因此,一般认为瑞利波法的测试深度为半个波长。

波长与速度及频率三者有如下关系:
设瑞利波的传播速度为v R ,频率为f R ,则瑞利波的波长λR 为: λR R R
v f = 当速度不变时,频率越低,测试深度就越大。

瑞利波波速与岩土物理力学参数密切相关,波速高介质的刚度
大,同时不同波长的瑞利波,反映不同深度范围内的波速变化。

所以测试出地面以下不同深度处的瑞利波传播速度和波长,就可区分岩土体的地球物理特征,从而划分不同岩土体的界限,识别空洞、、塌陷、富含水区、孤石等。

5、测线布置
1)根据水电四局的意向和要求,本区间面波勘探的测线布置在
隧道中轴线两侧各2.5m处,左右线共布置4条测线,自左线左侧至右线右侧的测线分别命名为1#测线、2#测线、3#测线和4#测线,理论测线总长度1963m左右。

2)遇有障碍物无法实施现场勘探时,跨过。

3)沿隧道轴线方向作业空间不足时,安排横断面或斜交断面进行面波勘探。

测线间距按照沿隧道轴线方向3m布置,测线长度以在有限空间内尽可能揭示隧道全断面为限,并满足面波勘探现场工作方法和资料处理时扫描窗口宽度的需要。

4)隧道出福临小区后,即进入滨河大道,并呈斜交状自道路南测穿越至道路北侧,该段长度约80m左右,东延顺行滨河大道段约120m左右,设想两种方案如下:
(1)向交通主管部门申请,将滨河大道自皇岗路至赤尾人行天桥段全部封闭,实施时间为凌晨0时至5时,约需要两晚上。

采取本方案的缺点是:审批难度大,对交通影响大;
采取本方案的优点是:有安全保障,效率高,工作量相对小成本低,可杜绝大量的振动干扰,解算成果的可靠程度高。

(2)跨道路段部分,按照平行于滨河大道行车线方向布置斜交隧道的测线,选择凌晨0点至6点时段,逐步围挡逐步推进施工的方式穿越滨河大道,此段施工约需3晚上,后续东延顺行滨河大道段分为施工围挡内和外,约各需1个晚上。

围挡外(左线)测线仍按局部围挡逐步推进的方式施工。

采取本方案的缺点是:是安全保障难度大,效率低,工作量大,
成本高,振动干扰大,解算成果可靠程度低。

采取本方案的优点是:无需专门审批道路封闭,对交通影响小;
5)测线的测放
测线的测放由施工单位完成,现场面波勘探施工时,根据施测并标记在实地的标志点,参照地形地物,根据测线定稿图,用皮尺丈量和确定。

具体测线布置图,以最终可实施及实施结果为准。

6、瑞利波法现场测试方法
(1)排列布置标准
测线定位准确,按现场试验所确定排列形式布置,以每排列6通道,前后排列搭接3通道,采用追逐法施工。

测线误差小于0.5m,排列位置误差小于0.2m,拾震点前后误差小于5cm ,左右误差小于10cm。

拾震器要求埋置准、稳、直、紧,在硬化地面区配置检波器靴。

激震点位于拾震点连线的延长线上,其前后误差小于100cm,左右误差小于50cm,激震时避开周围有影响的振动干扰,保持充足而均匀的激振能量(单一排列布设示意图3),激震能量不小于660J。

(2)仪器设备及测试方法
本次测试采用我公司SWS-5型多功能数字图像工程物探与检测仪,现场测试的工作原理如图4所示。

P波S波
瑞利波
图4 瑞利波法工作原理图
瑞利面波法在现场测试中采用单一电缆,每个排列6道检波器,道间距2m,激震点偏移距15~25m追逐法逐个排列向前移动采集数据,形成连续测试断面。

瑞利面波仪器及数据采集参数暂设定如表1所示。

表1 仪器及数据采集参数表
7、资料处理与解释
瑞利波测试采集到的原始资料是瑞利波沿地面传播的振动波形,对这种资料进行计算处理和解释后,才能得到所需的成果。

瑞利波资
料的主要处理解释内容为:
(1)、原始记录(见图5)预处理,在预处理阶段对每一排列采集到的原始记录进行时域和频域的分析,对直达波,反射波等规则波动和不规则波动采取限制措施,以最大限度地突出瑞利波,减小其它波动的影响,达到去粗取细、去伪存真,确保客观反映岩土物理状态的原始记录进入下一道处理工序。

图5 原始记录示意图
(2)、对道间波形进行互相关⎰+∞∞-+=dt
t u t u )()(12τγ。

(3)、利用互相关函数求出两个测点间各频率波形的相位差∆ϕ()f 。

(4)、利用v f x R =2πϕ∆∆计算不同频率不同深度处的瑞利波速。

(5)、绘制瑞利波频散曲线(如图6),生成瑞利波频散数据库。

图6 频散曲线示意图
(6)、对频散曲线由浅部到深层进行跟踪扫描和解释,计算出各测点自地表向下的岩土波速分布及异常位置,建立深度─波速异常数据库。

(7)、利用专业软件形成成果图件。

8、提交成果
所提交的成果资料包括:
1)瑞利波探测报告;
2)瑞利波探测解释剖面图;
3)测线布置图。

9、工期
福田河南岸范围内现场工作:1天。

福田河北岸至滨河大道以南范围内现场工作:1天。

滨河大道范围内视方案选择,现场工作:2天~5天。

室内工作10天。

总有效工期14~17天。

10、投入人员及仪器设备
物探高级工程师1名;
工程师3名;
技术工人5~7名;
SWS-5型多功能数字图像工程物探与检测仪1台套;
专业数据处理软件1套,配套高速运算计算机1台套。

9。

相关文档
最新文档