专训1.2 复数(新高考地区专用)(学生版)
高考数学《复数》专项练习(含答案)

【复数】专项练习参考答案1.〔2021全国Ⅰ卷,文2,5分〕设(12i)(i)a ++的实部与虚部相等,其中a 为实数,那么a =( )〔A 〕−3 〔B 〕−2 〔C 〕2 〔D 〕3 【答案】A【解析】(12i)(i)2(12)i a a a ++=-++,由,得a a 212+=-,解得3-=a ,选A .2.〔2021全国Ⅰ卷,理2,5分〕设(1i)1i x y +=+,其中x ,y 是实数,那么i =x y +( )〔A 〕1 〔B 〔C 〔D 〕2 【答案】B【解析】因为(1i)=1+i,x y +所以i=1+i,=1,1,|i |=|1+i |x x y x y x x y +==+=所以故应选B .3.〔2021全国Ⅱ卷,文2,5分〕设复数z 满足i 3i z +=-,那么z =( ) 〔A 〕12i -+ 〔B 〕12i - 〔C 〕32i + 〔D 〕32i - 【答案】C【解析】由i 3i z +=-得32i z =-,所以32i z =+,应选C .4.〔2021全国Ⅱ卷,理1,5分〕(3)(1)i z m m =++-在复平面内对应的点在第四象限,那么实数m 的取值范围是( )〔A 〕(31)-, 〔B 〕(13)-, 〔C 〕(1,)∞+ 〔D 〕(3)∞--,5.〔2021全国Ⅲ卷,文2,5分〕假设43i z =+,那么||zz =( ) 〔A 〕1 〔B 〕1- 〔C 〕43i 55+ 〔D 〕43i 55-【答案】D【解析】∵43i z =+,∴z =4-3i ,|z |=2234+.那么43i ||55z z ==-,应选D .6.〔2021全国Ⅲ卷,理2,5分〕假设z =1+2i ,那么4i1zz =-( ) (A)1 (B)−1 (C)i (D)−i 【答案】C【解析】∵z =1+2i ,∴z =1-2i ,那么4i 4ii (12i)(12i)11zz ==+---,应选C . 7.〔2021全国Ⅰ卷,文3,5分〕复数z 满足(z -1)i =1+i ,那么z =( )A .-2-iB .-2+iC .2-iD .2+i【答案】C【解析一】(z -1)i =1+i ⇒ zi -i =1+i ⇒ zi =1+2i ⇒ z =1+2i i=(1+2i)i i 2=2-i .应选C .【解析二】(z -1)i =1+i ⇒ z -1=1+i i⇒ z =1+i i+1 ⇒z =(1+i)i i 2+1=2-i .应选C .8.〔2021全国Ⅰ卷,理1,5分〕设复数z 满足1+z1z-=i ,那么|z|=( )〔A 〕1 〔B 〔C 〔D 〕2 【答案】A 【解析一】1+z1z-=i ⇒ 1+z =i(1-z) ⇒ 1+z =i -zi ⇒ z +zi =-1+i ⇒ (1+i)z =-1+i ⇒9.〔2021全国Ⅱ卷,文2,5分〕假设a 为实数,且2+ai 1+i=3+i ,那么a =( )A .-4B .-3C .3D .4 【答案】D【解析】由得2+ai =(1+i)(3+i)=2+4i ,所以a =4,应选D .10.〔2021全国Ⅱ卷,理2,5分〕假设a 为实数,且(2+ai)(a -2i)=-4i ,那么a =( )A .-1B .0C .1D .2 【答案】B【解析】(2+ai)(a -2i)=-4i ⇒ 2a -4i +a 2i +2a =-4i ⇒ 2a -4i +a 2i +2a +4i =0⇒ 4a +a 2i =0 ⇒ a =0.11.〔2021全国Ⅰ卷,文3,5分〕设z =11+i+i ,那么|z|=( )A .12 B .√22 C .√32 D .2 【答案】B 【解析】z =11+i+i =1-i 2+i =12+12i ,因此|z|=√(12)2+(12)2=√12=√22,应选B .12.(1+i )3(1-i )2=( )A .1+iB .1-iC .-1+iD .-1-i 【答案】D 【解析】(1+i )3(1-i )2=(1+i )2(1+i)(1-i )2·=(1+i 2+2i)(1+i)1+i 2-2i==2i(1+i)-2i=-(1+i)=-1-i ,应选D .13.〔2021全国Ⅱ卷,文2,5分〕1+3i 1-i=( )A .1+2iB .-1+2iC .1-2iD .-1-2i【答案】B 【解析】1+3i 1-i=(1+3i )(1+i )(1-i )(1+i )=-2+4i 2=-1+2i ,应选B .14.〔2021全国Ⅱ卷,理2,5分〕设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,那么z 1z 2=( )A .-5B .5C .-4+iD .-4-i【答案】A【解析】由题意得z 2=-2+i ,∴z 1z 2=(2+i)(-2+i)=-5,应选A .15.〔2021全国Ⅰ卷,文2,5分〕1+2i (1-i )2=( )A .-1-12i B .-1+12i C .1+12i D .1-12i 【答案】B 【解析】1+2i(1-i )2=1+2i -2i=(1+2i )i (-2i )i=-2+i 2=-1+12i ,应选B .16.〔2021全国Ⅰ卷,理2,5分〕假设复数z 满足(3-4i)z =|4+3i|,那么z 的虚部为( )A .-4B .-45 C .4 D .45 【答案】D【解析】∵|4+3i|=√42+32=5,∴(3-4i)z =5,∴z=53-4i=5(3+4i )25=35+45i ,虚部为45,应选D .17.〔2021全国Ⅱ卷,文2,5分〕|21+i|=( )A .2√2B .2C .√2D .1【答案】C 【解析】|21+i|=|2(1-i )2|=|1-i|=22)1(1-+=√2.选C .18〔2021全国Ⅱ卷,理2,5分〕设复数z 满足(1-i)z =2i ,那么z =( )A .-1+iB .-1-iC .1+iD .1-i 【答案】A【解析】由题意得z =2i1-i=2i ·(1+i )(1−i )(1+i)=2i +2i 22=2i−22=-1+i ,应选A .19.〔2021全国卷,文2,5分〕复数z =-3+i 2+i的共轭复数是( ) A .2+i B .2-I C .-1+iD .-1-i【答案】D【解析】z =-3+i 2+i=(-3+i )(2-i )(2+i )(2-i )=-5+5i 5=-1+i ,∴z =-1-i ,应选D .20.〔2021全国卷,文2,5分〕复数5i1-2i=( )A .2-iB .1-2iC .-2+iD .-1+2i【答案】C 【解析】5i 1-2i=5i (1+2i )(1-2i )(1+2i )=5(i -2)5=-2+i ,应选C .21.〔2021北京,文2,5分〕复数( ) 〔A 〕i 〔B 〕1+i 〔C 〕 〔D 〕【答案】A 【解析】,应选A .22.〔2021北京,理9,5分〕设,假设复数在复平面内对应的点位于实轴上,那么_____________. 【答案】-1【解析】(1+i)(a +i)=a +i +ai +i 2=a +i +ai -1=(a -1)+(1+a)i ,由题意得虚部为0,即(1+a)=0,解得a =-1. 23.〔2021江苏,文/理2,5分〕复数其中i 为虚数单位,那么z 的实部是____.【答案】524.〔2021山东,文2,5分〕假设复数21iz =-,其中i 为虚数单位,那么z =( ) 〔A 〕1+i〔B 〕1−i〔C 〕−1+i 〔D 〕−1−i【答案】B25.〔2021山东,理1,5分〕假设复数z 满足232i,z z +=- 其中i 为虚数单位,那么z =( )〔A 〕1+2i 〔B 〕1-2i 〔C 〕12i -+ 〔D 〕12i --【答案】B26.〔2021上海,文/理2,5分〕设32iiz +=,其中i 为虚数单位,那么z 的虚部等于_______. 【答案】-312i=2i+-i -1i -12i (12i)(2i)2i 4i 2i 2i (2i)(2i)5+++++-===--+a ∈R (1i)(i)a ++a =(12i)(3i),z =+-【解析】32i 23i,iz +==-故z 的虚部等于−3.27.〔2021四川,文1,5分〕设i 为虚数单位,那么复数(1+i)2=( )(A) 0 (B)2 (C)2i (D)2+2i 【答案】C【解析】22(1i)12i i 2i +=++=,应选C .28.〔2021天津,文9,5分〕i 是虚数单位,复数z 满足(1i)2z +=,那么z 的实部为_______.【答案】1【解析】2(1)211i i iz z +=⇒==-+,所以z 的实部为1.29.〔2021天津,理9,5分〕,a b ∈R ,i 是虚数单位,假设(1+i)(1-b i)=a ,那么ab的值为____.【答案】2【解析】由(1i)(1i)1(1)i b b b a +-=++-=,可得110b a b +=⎧⎨-=⎩,所以21a b =⎧⎨=⎩,2ab=,故答案为2.。
高考数学《复数》专项练习(含答案)

《复数》专项练习参考答案1.(2016全国Ⅰ卷,文2,5分)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a =( )(A )−3 (B )−2 (C)2 (D )3 【答案】A【解析】(12i)(i)2(12)i a a a ++=-++,由已知,得a a 212+=-,解得3-=a ,选A .2.(2016全国Ⅰ卷,理2,5分)设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +( )(A )1 (B)2 (C )3 (D )2 【答案】B【解析】因为(1i)=1+i,x y +所以i=1+i,=1,1,|i |=|1+i |2,x x y x y x x y +==+=所以故故选B .3.(2016全国Ⅱ卷,文2,5分)设复数z 满足i 3i z +=-,则z =( ) (A )12i -+ (B )12i - (C)32i + (D )32i - 【答案】C【解析】由i 3i z +=-得32i z =-,所以32i z =+,故选C . 4.(2016全国Ⅱ卷,理1,5分)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( )(A )(31)-, (B)(13)-, (C )(1,)∞+ (D )(3)∞--,5.(2016全国Ⅲ卷,文2,5分)若43i z =+,则||zz =( )(A)1 (B)1- (C )43i 55+ (D )43i 55-【答案】D【解析】∵43i z =+,∴z =4-3i ,|z |=2234+.则2243i 43i ||5543z z -==-+,故选D .6.(2016全国Ⅲ卷,理2,5分)若z =1+2i ,则4i1zz =-( ) (A )1 (B )−1 (C)i (D)−i【答案】C【解析】∵z =1+2i ,∴z =1-2i ,则4i 4ii (12i)(12i)11zz ==+---,故选C . 7.(2015全国Ⅰ卷,文3,5分)已知复数z 满足(z -1)i =1+i ,则z =( )A .-2-iB .-2+iC .2-iD .2+i 【答案】C【解析一】(z -1)i =1+i ⇒ zi -i =1+i ⇒ zi =1+2i ⇒ z ===2-i .故选C .【解析二】(z -1)i =1+i ⇒ z -1=⇒ z =+1 ⇒z =+1=2-i .故选C.8.(2015全国Ⅰ卷,理1,5分)设复数z满足1+z1z-=i,则|z|=()(A)1(B)2(C)3(D)2 【答案】A【解析一】1+z1z-=i⇒1+z=i(1-z)⇒1+z=i-zi⇒z+zi=-1+i ⇒(1+i)z=-1+i⇒9.(2015全国Ⅱ卷,文2,5分)若a为实数,且=3+i,则a=()A.-4B.-3C.3D.4【答案】D【解析】由已知得2+ai=(1+i)(3+i)=2+4i,所以a=4,故选D.10.(2015全国Ⅱ卷,理2,5分)若a为实数,且(2+ai)(a-2i)=-4i,则a=()A.-1B.0C.1D.2【答案】B【解析】(2+ai)(a-2i)=-4i⇒2a-4i+a2i+2a=-4i⇒2a-4i+a2i+2a+4i =0⇒4a+a2i=0⇒a=0.11.(2014全国Ⅰ卷,文3,5分)设z=+i,则|z|=()A.B.C.D.2【答案】B【解析】z=+i=+i=i,因此|z|=,故选B.12.=()A.1+i B.1-i C.-1+i D.-1-i【答案】D【解析】·====-(1+i)=-1-i,故选D.13.(2014全国Ⅱ卷,文2,5分)=()A.1+2i B.-1+2i C.1-2i D.-1-2i【答案】B【解析】==-1+2i,故选B.14.(2014全国Ⅱ卷,理2,5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A .-5B .5C .-4+iD .-4-i 【答案】A【解析】由题意得z 2=-2+i ,∴z 1z 2=(2+i)(-2+i )=-5,故选A .15.(2013全国Ⅰ卷,文2,5分)=( )A .-1-B .-1+C .1+D .1-i【答案】B 【解析】=-1+i ,故选B .16.(2013全国Ⅰ卷,理2,5分)若复数z 满足(3-4i )z =|4+3i |,则z 的虚部为( )A .-4B .-C .4D . 【答案】D【解析】∵|4+3i |==5,∴(3-4i )z =5,∴z =i ,虚部为,故选D .17.(2013全国Ⅱ卷,文2,5分)=( )A .2B .2C .D .1 【答案】C【解析】=|1-i|=22)1(1-+=.选C .18(2013全国Ⅱ卷,理2,5分)设复数z 满足(1-i )z =2i,则z =( )A .-1+iB .-1-iC .1+iD .1-i 【答案】A【解析】由题意得z =====-1+i ,故选A .19.(2012全国卷,文2,5分)复数z =的共轭复数是( ) A .2+i B .2-I C .-1+i D .-1-i【答案】D【解析】z ==-1+i ,∴=-1-i ,故选D .20.(2011全国卷,文2,5分)复数=( )A .2-iB .1-2iC .-2+iD .-1+2i 【答案】C【解析】=-2+i ,故选C .21.(2016北京,文2,5分)复数12i=2i+-( )(A)i (B )1+i (C )i - (D )1i - 【答案】A 【解析】12i (12i)(2i)2i 4i 2i 2i (2i)(2i)5+++++-===--+,故选A .22.(2016北京,理9,5分)设a ∈R ,若复数(1i)(i)a ++在复平面内对应的点位于实轴上,则a =_____________. 【答案】-1【解析】(1+i )(a +i)=a +i +ai +i 2=a +i +ai -1=(a -1)+(1+a)i ,由题意得虚部为0,即(1+a )=0,解得a =-1. 23.(2016江苏,文/理2,5分)复数(12i)(3i),z =+-其中i 为虚数单位,则z 的实部是____.【答案】524.(2016山东,文2,5分)若复数21i z =-,其中i 为虚数单位,则z =( ) (A )1+i(B )1−i(C )−1+i (D )−1−i【答案】B25.(2016山东,理1,5分)若复数z 满足232i,z z +=- 其中i 为虚数单位,则z =( )(A)1+2i (B)1-2i (C )12i -+ (D )12i -- 【答案】B26.(2016上海,文/理2,5分)设32iiz +=,其中i 为虚数单位,则z 的虚部等于_______. 【答案】-3【解析】32i 23i,iz +==-故z 的虚部等于−3.27.(2016四川,文1,5分)设i 为虚数单位,则复数(1+i)2=( )(A) 0 (B )2 (C)2i (D )2+2i 【答案】C 【解析】22(1i)12i i 2i +=++=,故选C .28.(2016天津,文9,5分)i 是虚数单位,复数z 满足(1i)2z +=,则z 的实部为_______.【答案】1【解析】2(1)211i i iz z +=⇒==-+,所以z 的实部为1.29.(2016天津,理9,5分)已知,a b ∈R ,i 是虚数单位,若(1+i)(1-b i )=a ,则ab的值为____.【答案】2【解析】由(1i)(1i)1(1)i b b b a +-=++-=,可得110b a b +=⎧⎨-=⎩,所以21a b =⎧⎨=⎩,2ab=,故答案为2.。
高考数学专题《复数》习题含答案解析

专题10.2 复数1.(2020·全国高考真题(理))复数113i-的虚部是( )A .310-B .110-C .110D .310【答案】D 【解析】因为1131313(13)(13)1010i z i i i i +===+--+,所以复数113z i =-的虚部为310.故选:D.2.(2020·全国高考真题(文))(1–i )4=( )A .–4B .4C .–4i D .4i【答案】A 【解析】422222(1)[(1)](12)(2)4i i i i i -=-=-+=-=-.故选:A.3.(2021·北京·高考真题)在复平面内,复数z 满足(1)2i z -=,则z =( )A .1i --B .1i-+C .1i-D .1i+【答案】D 【分析】由题意利用复数的运算法则整理计算即可求得最终结果.【详解】由题意可得:()()()()2121211112i i z i i i i ++====+--+.故选:D.4.(2021·全国·高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i-C .62i+D .42i+【答案】C 【分析】练基础利用复数的乘法和共轭复数的定义可求得结果.【详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i+=-+--=+故选:C.5.(2021·全国·高考真题(文))已知2(1)32i z i -=+,则z =( )A .312i--B .312i-+C .32i-+D .32i--【答案】B 【分析】由已知得322iz i+=-,根据复数除法运算法则,即可求解.【详解】2(1)232i z iz i -=-=+,32(32)23312222i i i i z i i i i ++⋅-+====-+--⋅.故选:B.6.(2021·全国·高考真题(理))设()()2346z z z z i ++-=+,则z =( )A .12i -B .12i+C .1i+D .1i-【答案】C 【分析】设z a bi =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【详解】设z a bi =+,则z a bi =-,则()()234646z z z z a bi i ++-=+=+,所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1z i =+.故选:C.7.(2021·全国·高考真题(文))设i 43i z =+,则z =( )A .–34i -B .34i-+C .34i-D .34i+【答案】C 【分析】由题意结合复数的运算法则即可求得z 的值.【详解】由题意可得:()2434343341i i i i z i i i ++-====--.故选:C.8.(2021·浙江·高考真题)已知a R ∈,()13ai i i +=+,(i 为虚数单位),则a =( )A .1-B .1C .3-D .3【答案】C 【分析】首先计算左侧的结果,然后结合复数相等的充分必要条件即可求得实数a 的值.【详解】()213ai i i ai i a a i i +=-=-+=++=,利用复数相等的充分必要条件可得:3,3a a -=∴=-.故选:C.9.(2019·北京高考真题(文))已知复数z =2+i ,则( )ABC .3D .5【答案】D 【解析】∵ 故选D.10.(2019·全国高考真题(文))设,则=( )A.2B CD .1【答案】C 【解析】因为,所以,所以,故选C .1.(2010·山东高考真题(文))已知 ,,其中 为虚数单位,则=( )A .-1B .1C .2D .3【答案】B 【解析】z z ⋅=z 2i,z z (2i)(2i)5=+⋅=+-=3i12iz -=+z 312iz i -=+(3)(12)17(12)(12)55i i z i i i --==-+-z ==2a ib i i+=+,a b ∈R i +a b 练提升因为 ,,所以,则,故选B.2.(全国高考真题(理))复数的共轭复数是( )A .B .iC .D .【答案】A 【解析】,故其共轭复数为.所以选A.3.(2018·全国高考真题(理))设,则( )A .B .C .D【答案】C 【解析】,则,故选c.4.(2009·重庆高考真题(理))已知复数的实部为,虚部为2,则的共轭复数是( )A .B .C .D .【答案】B 【解析】由题意得:所以,共轭负数为2+i 故选B5.(2017·山东高考真题(理))已知,是虚数单位,若,,22222a i ai i ai b i i i+--==-=+-,a b ∈R 2211b b a a ==⎧⎧⇒⎨⎨-==-⎩⎩+1a b =212ii+-i -35i-35i()()()()2i 12i 5i i12i 12i 5++==-+i -1i2i 1iz -=++||z =0121()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+i 2i i =-+=1z =z 1-5iz2i -2i+2i--2i-+R a ∈i z a =4z z ⋅=则( )A .1或B或C .D【答案】A 【解析】由得,所以,故选A.6.(2021·广东龙岗·高三期中)已知复数z 满足()2i 34i z +=+(其中i 为虚数单位),则复数z =( )A .2i -B .2i-+C .2i+D .2i--【答案】C 【分析】根据复数除法运算求出z ,即可得出答案.【详解】()2i 35z +=+= ,()()()52i 52i 2i 2i 2i z -∴===-++-,则2i z =+.故选:C.7.(2021·安徽·合肥一六八中学高一期中)欧拉公式i s co in s i x e x x +=(i 是虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,i 3e π表示的复数位于复平面中的( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【分析】先由欧拉公式计算可得312e π=,然后根据复数的几何意义作出判断即可.【详解】根据题意i s co in s i xe x x +=,故i3is n 1cos 33i 2e πππ=+=,对应点12⎛ ⎝,在第一象限.故选:A .8.【多选题】(2021·全国·模拟预测)已知复数z =(i 为虚数单位),则下列说法正确的是()A .复数z 在复平面内对应的点坐标为()sin 3cos3,sin 3cos3+-a =1-,4z a z z =+⋅=234a +=1a =±B .z 的虚部为C .2z z ⋅=D .z ⋅为纯虚数【答案】CD 【分析】根据复数的概念、共轭复数的概念、复数的几何意义以及四则运算法则即可求解.【详解】复数3cos3i sin 3cos3z =++-.因为334ππ<<,所以sin 3cos3304π⎛⎫+=+< ⎪⎝⎭,sin 3cos30->,所以原式()()sin 3cos3i sin 3cos3=-++-,所以选项A 错误;复数z B错误;222z z ⋅=+=,所以选项C 正确;z ⋅=()i 1sin 61sin 62i⋅=++-=,所以选项D 正确.故选:CD.9.【多选题】(2021·河北武强中学高三月考)已知复数cos isin z θθ=+(其中i 为虚数单位),下列说法正确的是( )A .1z z ⋅=B .1z z+为实数C .若83πθ=,则复数z 在复平面上对应的点落在第一象限D .若(0,)θπ∈,复数z 是纯虚数,则2πθ=【答案】ABD 【分析】对选项A ,根据计算1z z ⋅=即可判断A 正确,对选项B ,根据12cos z zθ+=即可判断B 正确,对选项C ,根据88cosisin 33z ππ=+在复平面对应的点落在第二象限,即可判断C 错误,对选项D ,根据z 是纯虚数得到2πθ=即可判断D 正确.【详解】对选项A ,()()()2222cos isin cos isin cos isin cos sin 1z z θθθθθθθθ⋅=+-=-=+=,故A 正确.对选项B ,因为11cos isin cos isin z z θθθθ+=+++()()cos isin cos isin cos isin cos isin θθθθθθθθ-=+++-cos isin cos isin 2cos θθθθθ=++-=,所以1z z+为实数.故B 正确.对选项C ,因为83πθ=为第二象限角,所以8cos03π<,8sin 03π>,所以88cos isin 33z ππ=+在复平面对应的点落在第二象限.故C 错误.对选项D ,复数z 是纯虚数,则cos 0sin 0θθ=⎧⎨≠⎩,又因为(0,)θπ∈,所以2πθ=,故D 正确.故选:ABD10.(2021·福建·厦门一中模拟预测)在复平面内,复数(,)z a bi a b R =+∈对应向量OZ(O为坐标原点),设||OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则(cos sin )z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:1111(cos sin )z r i θθ=+,2222(cos sin )z r i θθ=+,则12121212[cos()sin()]z z rr i θθθθ=+++,由棣莫弗定理可以推导出复数乘方公式:[(cos sin )](cos sin )n n r i r n i n θθθθ+=+,已知4)z i =,则||z =______;若复数ω满足()*10n n ω-=∈N ,则称复数ω为n 次单位根,若复数ω是6次单位根,且ω∉R ,请写出一个满足条件的ω=______.【答案】16 ()22cossin 1,2,4,566k k i k ππ+= 【分析】2(cos sin )66i i ππ+=+,则4222(cos sin )33z i ππ=+,再由||||z z =求解,由题意知61ω=,设cos sin i ωθθ=+,即可取一个符合题意的θ,即可得解.【详解】解: 2(cos sin )66i i ππ=+,∴4422)2(cos sin )33z i i ππ==+,则4||||216z z ===.由题意知61ω=,设cos sin i ωθθ=+,则6cos 6sin 61i ωθθ=+=,所以sin 60cos 61θθ=⎧⎨=⎩,又ω∉R ,所以sin 0θ≠,故可取3πθ=,则cossin33i ππω=+故答案为:16,cossin33i ππω=+(答案不唯一).1.(2021·江苏·高考真题)若复数z 满足()1i 3i z +=-,则z 的虚部等于( )A .4B .2C .-2D .-4【答案】C 【分析】利用复数的运算性质,化简得出12z i =-.【详解】若复数z 满足()1i 3i z +=-,则()()()()3i 1i 3i 12i 1i 1i 1i z ---===-++-,所以z 的虚部等于2-.故选:C.2.(2021·全国·高考真题)复数2i13i--在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【分析】利用复数的除法可化简2i13i--,从而可求对应的点的位置.【详解】()()2i 13i 2i 55i 1i13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫ ⎪⎝⎭,该点在第一象限,故选:A.3.(2020·全国高考真题(理))若z=1+i ,则|z 2–2z |=( )A .0B .1C D .2练真题【答案】D 【解析】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D.4.(2020·全国高考真题(文))若312i i z =++,则||=z ( )A .0B .1CD .2【答案】C 【解析】因为31+21+21z i i i i i =+=-=+,所以z ==故选:C .5.(2019·全国高考真题(理))设z =-3+2i ,则在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C 【解析】由得则对应点(-3,-2)位于第三象限.故选C .6.(2018·江苏高考真题)若复数满足,其中i 是虚数单位,则的实部为________.【答案】2【解析】因为,则,则的实部为.z 32,z i =-+32,z i =--32,z i =--z i 12i z ⋅=+z i 12i z ⋅=+12i2i iz +==-z 2。
专题17 复数-高考题专项练习(解析版)

专题17 复数-高考题专项练习一、单选题1.(2018·全国高考真题(文)) A . B . C .D .【答案】D【分析】根据公式,可直接计算得(23)32i i i +=-+ 【解析】 ,故选D .【名师点睛】复数题是每年高考的必考内容,一般以选择或填空形式出现,属简单得分题,高考中复数主要考查的内容有:复数的分类、复数的几何意义、共轭复数,复数的模及复数的乘除运算,在解决此类问题时,注意避免忽略中的负号导致出错. 2.(2018·全国高考真题(理)) A . B . C .D .【答案】D 【解析】 故选D .3.(2019·全国高考真题(文))设,则= A .2 B . C .D .1【答案】C【分析】先由复数的除法运算(分母实数化),求得,再求. 【解析】因为,所以,所以,故选C .【名师点睛】本题主要考查复数的乘法运算,复数模的计算.本题也可以运用复数模的运算性质直接求解.4.(2019·全国高考真题(理))设复数z 满足,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y += B .22(1)1x y -+= C .22(1)1y x +-= D .22(+1)1y x +=【答案】C【分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x ,y )和点(0,1)之间的距离为1,可选正确答案C .【解析】,(1),z x yi z i x y i =+-=+-1,z i -=则22(1)1y x +-=.故选C .【名师点睛】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.5.(2020·浙江高考真题)已知a ∈R ,若a –1+(a –2)i (i 为虚数单位)是实数,则a = A .1 B .–1 C .2D .–2【答案】C【解析】因为(1)(2)a a i -+-为实数,所以202a a -=∴=,,故选C 6.(2020·全国高考真题(理))复数的虚部是 A . B . C .D .【答案】D【分析】利用复数的除法运算求出z 即可. 【解析】因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数的虚部为.故选D .【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题. 7.(2020·全国高考真题(文))(1–i )4= A .–4 B .4 C .–4i D .4i【答案】A【分析】根据指数幂的运算性质,结合复数的乘方运算性质进行求解即可. 【解析】.故选A .【名师点睛】本题考查了复数的乘方运算性质,考查了数学运算能力,属于基础题. 8.(2020·全国高考真题(理))若z=1+i ,则|z 2–2z |= A .0B .1【答案】D【分析】由题意首先求得的值,然后计算其模即可. 【解析】由题意可得()2212z i i =+=,则()222212z z i i -=-+=-.故.故选D .【名师点睛】本题主要考查复数的运算法则和复数的模的求解等知识,属于基础题. 9.(2020·全国高考真题(文))若312i i z =++,则 A .0 B .1 C . D .2【答案】C【分析】先根据将化简,再根据向量的模的计算公式即可求出. 【解析】因为31+21+21z i i i i i =+=-=+,所以.故选C . 【名师点睛】本题主要考查向量的模的计算公式的应用,属于容易题. 10.(2017·山东高考真题(文))已知i 是虚数单位,若复数z 满足,则= A .-2i B .2i C .-2D .2【答案】A【解析】由得22(i)(1i)z =+,即,所以,故选A .【名师点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.注意下面结论的灵活运用:(1)(1±i)2=±2i ;(2)=i ,=-i .11.(2017·全国高考真题(理))设有下面四个命题 :若复数满足,则; :若复数满足,则; :若复数满足,则; :若复数,则. 其中的真命题为 A .B .【答案】B【解析】令i(,)z a b a b R =+∈,则由2211i i a b z a b a b-==∈++R 得,所以,故正确;当时,因为22i 1z ==-∈R ,而知,故不正确; 当时,满足,但,故不正确;对于,因为实数的共轭复数是它本身,也属于实数,故正确,故选B .【名师点睛】分式形式的复数,分子、分母同乘以分母的共轭复数,化简成i(,)z a b a b R =+∈的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.12.(2017·北京高考真题(文))若复数(1–i )(a +i )在复平面内对应的点在第二象限,则实数a 的取值范围是 A .(–∞,1) B .(–∞,–1) C .(1,+∞) D .(–1,+∞)【答案】B【解析】设()()()()1i i 11i z a a a =-+=++-,因为复数对应的点在第二象限,所以,解得,故选B .【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.复数z =a +b i 复平面内的点Z (a ,b )(a ,b ∈R).复数z =a +b i(a ,b ∈R) 平面向量. 13.(2018·全国高考真题(文))设,则 A . B . C .D .【答案】C【分析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模. 【解析】()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+,则,故选C . 【名师点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.14.(2019·北京高考真题(理))已知复数z=2+i,则A.B.C.3D.5【答案】D【分析】题先求得,然后根据复数的乘法运算法则即得.【解析】因为z2i,z z(2i)(2i)5=+⋅=+-=故选D.【名师点睛】本题主要考查复数的运算法则,共轭复数的定义等知识,属于基础题..15.(2018·浙江高考真题)若复数,其中i为虚数单位,则 =A.1+i B.1−iC.−1+i D.−1−i【答案】B【解析】22(1i)1i,1i1i(1i)(1i)z z+===+∴=---+,选B.【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,一般考查复数运算与概念或复数的几何意义,也是考生必定得分的题目之一.16.(2019·全国高考真题(理))设z=-3+2i,则在复平面内对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【分析】先求出共轭复数再判断结果.【解析】由得则对应点(-3,-2)位于第三象限.故选C.17.(2019·全国高考真题(文))设z=i(2+i),则=A.1+2i B.–1+2iC.1–2i D.–1–2i【答案】D【分析】本题根据复数的乘法运算法则先求得,然后根据共轭复数的概念,写出.【解析】2i(2i)2i i 12i z =+=+=-+,所以,选D .【名师点睛】本题主要考查复数的运算及共轭复数,容易题,注重了基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.18.(2020·北京高考真题)在复平面内,复数对应的点的坐标是,则. A . B . C .D .【答案】B【分析】先根据复数几何意义得,再根据复数乘法法则得结果. 【解析】由题意得,.故选B .【名师点睛】本题考查复数几何意义以及复数乘法法则,考查基本分析求解能力,属基础题.19.(2020·海南高考真题)= A . B . C .D .【答案】B【解析】2(12)(2)2425i i i i i i ++=+++=,故选B. 20.(2020·海南高考真题) A .1 B .−1 C .i D .−i【答案】D【分析】根据复数除法法则进行计算. 【解析】,故选D.【名师点睛】本题考查复数除法,考查基本分析求解能力,属基础题. 21.(2017·全国高考真题(理))复数等于 A . B . C .D . 【答案】D【解析】=2-i .故选D .【名师点睛】这个题目考查了复数的除法运算,复数常考的还有几何意义,z =a +bi(a ,b ∈R)与复平面上的点Z(a ,b)、平面向量都可建立一一对应的关系(其中O 是坐标原点);复平面内,实轴上的点都表示实数;虚轴上的点除原点外都表示纯虚数.涉及到共轭复数的概念,一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,复数z 的共轭复数记作.22.(2017·山东高考真题(理))已知,是虚数单位,若,,则 A .1或 B .或 C .D .【答案】A【解析】由,4z a z z =+⋅=得,所以,故选A .【名师点睛】复数(,)a bi a b R +∈的共轭复数是i(,)a b a b -∈R ,据此结合已知条件,求得的方程即可.23.(2017·全国高考真题(文))(2017新课标全国卷II (文)) A . B . C . D .【答案】B【解析】由题意,故选B .【名师点睛】首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如(+)i(,,,)ad bc a b c d R ∈. 其次要熟悉复数相关基本概念,如复数+i(,)a b a b R ∈的实部为、虚部为、模为、对应点为、共轭复数为.24.(2017·全国高考真题(文))复平面内表示复数z=i(–2+i)的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限【答案】C【解析】i(2i)12i z =-+=--,则表示复数i(2i)z =-+的点位于第三象限. 所以选C .【名师点睛】对于复数的四则运算,首先要切实掌握其运算技巧和常规思路,如.其次要熟悉复数的相关基本概念,如复数i(,)a b a b +∈R 的实部为、虚部为、模为、对应的点为、共轭复数为25.(2017·全国高考真题(理))(2017高考新课标III ,理3)设复数z 满足(1+i)z =2i ,则∣z ∣= A . B . C . D .2【答案】C【解析】由题意可得,由复数求模的法则可得,则.故选C . 【名师点睛】共轭与模是复数的重要性质,运算性质有: (1)1212z z z z ±=±;(2)1212z z z z ⨯=⨯;(3); (4);(5);(6).26.(2018·全国高考真题(理)) A . B . C .D . 【答案】D【分析】根据复数除法法则化简复数,即得结果.【解析】212(12)341255i i ii ++-+==∴-选D .【名师点睛】本题考查复数除法法则,考查学生基本运算能力. 二、填空题1.(2017·天津高考真题(文))已知,为虚数单位,若为实数,则的值为________. 【答案】-2 【解析】为实数, 则.【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. 复数(,)z a bi a b R =+∈,当时,为虚数,当时,为实数,当0,0a b =≠时,为纯虚数. 2.(2019·江苏高考真题)已知复数的实部为0,其中为虚数单位,则实数a 的值是________. 【答案】2【分析】本题根据复数的乘法运算法则先求得,然后根据复数的概念,令实部为0即得a 的值. 【解析】, 令得.【名师点睛】本题主要考查复数的运算法则,虚部的定义等知识,意在考查学生的转化能力和计算求解能力.3.(2017·上海高考真题)已知复数满足,则________. 【答案】【分析】设(,)z a bi a b R =+∈,代入,由复数相等的条件列式求得的值得答案. 【解析】由,得,设(,)z a bi a b R =+∈, 由得,即,解得, 所以,则.【名师点睛】本题考查复数代数形式的乘除运算,考查了复数相等的条件以及复数模的求法,是基础题,着重考查了考生的推理与运算能力.4.(2019·浙江高考真题)复数(为虚数单位),则________. 【答案】【分析】本题先计算,而后求其模.或直接利用模的性质计算. 容易题,注重基础知识、运算求解能力的考查.【解析】1|||1|2z i ===+. 5.(2018·天津高考真题(理))i 是虚数单位,复数________. 【答案】4–i【分析】由题意结合复数的运算法则整理计算即可求得最终结果. 【解析】由复数的运算法则得.【名师点睛】本题主要考查复数的运算法则及其应用,意在考查学生的转化能力和计算求解能力.6.(2019·上海高考真题)设为虚数单位,,则的值为________. 【答案】【分析】把已知等式变形得,再由,结合复数模的计算公式求解即可.【解析】由365z i i -=+,得366z i =+,即 ,本题正确结果:【名师点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,属于基础题. 7.(2019·天津高考真题(文))是虚数单位,则的值为________. 【答案】【分析】先化简复数,再利用复数模的定义求所给复数的模.【解析】5(5)(1)231(1)(1)i i i i i i i ---==-=++-. 8.(2018·上海高考真题)已知复数满足()117i z i +=-(是虚数单位),则________. 【答案】5【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解析】由(1+i )z=1﹣7i ,得()()()()1711768341112i i i iz i i i i -----====--++-,则|z|=5=.故答案为5.【名师点睛】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题. 9.(2020·江苏高考真题)已知是虚数单位,则复数(1i)(2i)z =+-的实部是________. 【答案】3【分析】根据复数的运算法则,化简即可求得实部的值. 【解析】因为复数,所以2223z i i i i =-+-=+, 所以复数的实部为3.故答案为3.10.(2020·天津高考真题)是虚数单位,复数________. 【答案】【分析】将分子分母同乘以分母的共轭复数,然后利用运算化简可得结果.【解析】()()()()8281510322225i i i ii i i i ----===-++-.故答案为. 11.(2020·全国高考真题(理))设复数,满足,,则=________. 【答案】【分析】方法一:令1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,根据复数的相等可求得2ac bd +=-,代入复数模长的公式中即可得到结果.方法二:设复数所对应的点为,12OP OZ OZ =+, 根据复数的几何意义及复数的模,判定平行四边形为菱形,,进而根据复数的减法的几何意义用几何方法计算.【解析】方法一:设1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,12()z z a c b d i i ∴+=+++=,,又,所以,,,2ac bd ∴+=-12()()z z a c b d i ∴-=-+-==.故答案为.方法二:如图所示,设复数所对应的点为,12OP OZ OZ =+,由已知,所以平行四边形为菱形,且都是正三角形,所以12Z 120OZ ∠=︒,222221212121||||||2||||cos12022222()122Z Z OZ OZ OZ OZ =+-︒=+-⋅⋅⋅-= 所以.【名师点睛】方法一:本题考查复数模长的求解,涉及到复数相等的应用;考查学生的数学运算求解能力,是一道中档题.方法二:关键是利用复数及其运算的几何意义,转化为几何问题求解12.(2017·江苏高考真题)已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是________.【答案】【分析】利用复数的运算法则、模的计算公式即可得出.【解析】复数z =(1+i )(1+2i )=1﹣2+3i =﹣1+3i ,所以|z |==【名师点睛】对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()a bi c di ++=.其次要熟悉复数相关概念,如复数(,)a bi a b R +∈的实部为、虚部为、模为、对应点为、共轭复数为.13.(2018·江苏高考真题)若复数满足,其中i 是虚数单位,则的实部为________.【答案】2【分析】先根据复数的除法运算进行化简,再根据复数实部概念求结果. 【解析】因为,则12i 2i iz +==-,则的实部为. 【名师点睛】本题重点考查复数相关基本概念,如复数+i(,)a b a b ∈R 的实部为、虚部为、模为、对应点为、共轭复数为.三、双空题1.(2017·浙江高考真题)已知a ,b ∈R ,2i 34i a b +=+()(i 是虚数单位)则________,ab =________.【答案】5, 2【解析】由题意可得,则,解得,则225,2a b ab +==.【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为、虚部为、模为、对应点为(,)、共轭为等.。
高考数学《复数》真题练习含答案

高考数学《复数》真题练习含答案一、选择题1.[2024·新课标Ⅰ卷]若z z -1=1+i ,则z =( ) A .-1-i B .-1+iC .1-iD .1+i答案:C解析:由z z -1 =1+i ,可得z -1+1z -1 =1+i ,即1+1z -1 =1+i ,所以1z -1=i ,所以z -1=1i=-i ,所以z =1-i ,故选C. 2.[2024·新课标Ⅱ卷]已知z =-1-i ,则|z |=( )A .0B .1C .2D .2答案:C解析:由z =-1-i ,得|z |=(-1)2+(-1)2 =2 .故选C.3.[2023·新课标Ⅱ卷]在复平面内,(1+3i)(3-i)对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案:A解析:因为(1+3i)(3-i)=3-i +9i -3i 2=6+8i ,所以该复数在复平面内对应的点为(6,8),位于第一象限,故选A.4.[2023·新课标Ⅰ卷]已知z =1-i 2+2i,则z -z - =( ) A .-i B .iC .0D .1答案:A解析:因为z =1-i 2+2i =(1-i )22(1+i )(1-i ) =-12 i ,所以z - =12 i ,所以z -z - =-12 i -12i =-i.故选A. 5.|2+i 2+2i 3|=( )A .1B .2C .5D .5答案:C解析:|2+i 2+2i 3|=|2-1-2i|=|1-2i|=5 .故选C.6.设z =2+i 1+i 2+i5 ,则z - =( ) A .1-2i B .1+2iC .2-iD .2+i答案:B解析:z =2+i 1+i 2+i 5 =2+i 1-1+i =-i ()2+i -i 2 =1-2i ,所以z - =1+2i.故选B.7.[2022·全国甲卷(理),1]若z =-1+3 i ,则z z z --1=( ) A .-1+3 i B .-1-3 iC .-13 +33 iD .-13 -33i 答案:C解析:因为z =-1+3 i ,所以z z z --1=-1+3i (-1+3i )(-1-3i )-1 =-1+3i 1+3-1 =-13 +33i.故选C. 8.[2023·全国甲卷(文)]5(1+i 3)(2+i )(2-i )=( ) A .-1 B .1C .1-iD .1+i答案:C解析:由题意知,5(1+i 3)(2+i )(2-i ) =5(1-i )22-i2 =5(1-i )5 =1-i ,故选C. 9.(多选)[2024·山东菏泽期中]已知复数z =cos θ+isin θ⎝⎛⎭⎫-π2<θ<π2 (其中i 为虚数单位),下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .|z |=cos θC .z ·z - =1D .z +1z为实数 答案:CD解析:复数z =cos θ+isin θ⎝⎛⎭⎫-π2<θ<π2 (其中i 为虚数单位), 复数z 在复平面上对应的点(cos θ,sin θ)不可能落在第二象限,所以A 不正确; |z |=cos 2θ+sin 2θ =1,所以B 不正确;z ·z - =(cos θ+isin θ)(cos θ-isin θ)=cos 2θ+sin 2θ=1,所以C 正确;z +1z =cos θ+isin θ+1cos θ+isin θ=cos θ+isin θ+cos θ-isin θ=2cos θ为实数,所以D 正确.二、填空题10.若a +b i i(a ,b ∈R )与(2-i)2互为共轭复数,则a -b =________. 答案:-7解析:a +b i i =i (a +b i )i 2 =b -a i ,(2-i)2=3-4i ,因为这两个复数互为共轭复数,所以b =3,a =-4,所以a -b =-4-3=-7.11.i 是虚数单位,复数6+7i 1+2i=________. 答案:4-i解析:6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i )=6-12i +7i +145 =20-5i 5=4-i. 12.设复数z 1,z 2 满足|z 1|=|z 2|=2,z 1+z 2=3 +i ,则|z 1-z 2|=________. 答案:23解析:设复数z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则a 2+b 2=4,c 2+d 2=4,又z 1+z 2=(a +c )+(b +d )i =3 +i ,∴a +c =3 ,b +d =1,则(a +c )2+(b +d )2=a 2+c 2+b 2+d 2+2ac +2bd =4,∴8+2ac +2bd =4,即2ac +2bd =-4,∴|z 1-z 2|=(a -c )2+(b -d )2 =a 2+b 2+c 2+d 2-(2ac +2bd ) =8-(-4) =23 .[能力提升] 13.(多选)[2024·九省联考]已知复数z ,w 均不为0,则( )A .z 2=|z |2B .z z - =z 2|z |2C .z -w =z - -w -D .⎪⎪⎪⎪z w =||z ||w 答案:BCD解析:设z =a +b i(a ,b ∈R ),w =c +d i(c ,d ∈R );对A :z 2=(a +b i)2=a 2+2ab i -b 2=a 2-b 2+2ab i ,|z |2=(a 2+b 2 )2=a 2+b 2,故A 错误;对B: z z - =z 2z -·z ,又z - ·z =||z 2,即有z z - =z 2|z |2 ,故B 正确; 对C :z -w =a +b i -c -d i =a -c +(b -d )i ,则z -w =a -c -(b -d )i ,z - =a -b i ,w -=c -d i ,则z - -w - =a -b i -c +d i =a -c -(b -d )i ,即有z -w =z - -w - ,故C 正确; 对D :⎪⎪⎪⎪z w =⎪⎪⎪⎪⎪⎪a +b i c +d i =⎪⎪⎪⎪⎪⎪(a +b i )(c -d i )(c +d i )(c -d i ) =⎪⎪⎪⎪⎪⎪ac +bd -(ad -bc )i c 2+d 2 =(ac +bd c 2+d 2)2+(ad -bc c 2+d 2)2 =a 2c 2+2abcd +b 2d 2+a 2d 2-2abcd +b 2c 2(c 2+d 2)2 =a 2c 2+b 2d 2+a 2d 2+b 2c 2(c 2+d 2)2 =a 2c 2+b 2d 2+a 2d 2+b 2c 2c 2+d 2 ,||z ||w =a 2+b 2c 2+d2 =a 2+b 2×c 2+d 2c 2+d 2 =(a 2+b 2)(c 2+d 2)c 2+d 2 =a 2c 2+b 2c 2+a 2d 2+b 2d 2c 2+d 2 ,故⎪⎪⎪⎪z w =||z ||w ,故D 正确.故选BCD. 14.[2022·全国乙卷(理),2]已知z =1-2i ,且z +a z +b =0,其中a ,b 为实数,则( )A .a =1,b =-2B .a =-1,b =2C .a =1,b =2D .a =-1,b =-2答案:A解析:由z =1-2i 可知z - =1+2i.由z +a z - +b =0,得1-2i +a (1+2i)+b =1+a +b+(2a -2)i =0.根据复数相等,得⎩⎪⎨⎪⎧1+a +b =0,2a -2=0, 解得⎩⎪⎨⎪⎧a =1,b =-2.故选A. 15.[2023·全国甲卷(理)]设a ∈R ,(a +i)(1-a i)=2,则a =( )A .-2B .-1C .1D .2答案:C解析:∵(a +i)(1-a i)=a +i -a 2i -a i 2=2a +(1-a 2)i =2,∴2a =2且1-a 2=0,解得a =1,故选C.16.已知z (1+i)=1+a i ,i 为虚数单位,若z 为纯虚数,则实数a =________. 答案:-1解析:方法一 因为z (1+i)=1+a i ,所以z =1+a i 1+i =(1+a i )(1-i )(1+i )(1-i )=(1+a )+(a -1)i 2,因为z 为纯虚数, 所以1+a 2 =0且a -12≠0,解得a =-1. 方法二 因为z 为纯虚数,所以可设z =b i(b ∈R ,且b ≠0),则z (1+i)=1+a i ,即b i(1+i)=1+a i ,所以-b +b i=1+a i ,所以⎩⎪⎨⎪⎧-b =1b =a ,解得a =b =-1.。
专题02 复数-十年(2012-2021)高考数学真题分项详解(全国通用)(解析版)

专题02 复数【2021年】1.(2021年全国高考乙卷数学(文)试题)设i 43i z =+,则z =( ) A .–34i - B .34i -+C .34i -D .34i +【答案】C【分析】由题意可得:()2434343341i i i i z i i i ++-====--. 故选:C.2.(2021年全国高考乙卷数学(理)试题)设()()2346z z z z i ++-=+,则z =( ) A .12i - B .12i +C .1i +D .1i -【答案】C【分析】设z a bi =+,则z a bi =-,则()()234646z z z z a bi i ++-=+=+,所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1z i =+.故选:C.3.(2021年全国高考甲卷数学(理)试题)已知2(1)32i z i -=+,则z =( ) A .312i --B .312i -+C .32i -+ D .32i -- 【答案】B 2(1)232i z iz i -=-=+,32(32)23312222i i i i z i i i i ++⋅-+====-+--⋅. 故选:B.4.(2021年全国新高考Ⅰ卷数学试题)已知2i z =-,则()i z z +=( )A .62i -B .42i -C .62i +D .42i +【答案】C【分析】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i +=-+--=+故选:C.【2012年——2020年】1.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))若312i i z =++,则||=z ( ) A .0 B .1C D .2【答案】C【分析】因为31+21+21z i i i i i =+=-=+,所以 z ==.故选:C .2.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))若z=1+i ,则|z 2–2z |=( )A .0B .1C D .2【答案】D【分析】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D.3.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))(1–i )4=( ) A .–4 B .4 C .–4i D .4i【答案】A【分析】422222(1)[(1)](12)(2)4i i i i i -=-=-+=-=-. 故选:A.4.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))若()11+=-z i i ,则z =( ) A .1–i B .1+iC .–iD .i【答案】D【分析】因为21(1)21(1)(1)2i i iz i i i i ---====-++-,所以z i . 故选:D5.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))复数113i-的虚部是( ) A .310-B .110-C .110D .310【答案】D 【分析】因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D .6.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))设3i12iz -=+,则z =A .2BCD .1【答案】C【分析】因为312iz i -=+,所以(3)(12)17(12)(12)55i i z i i i --==-+-,所以z ==,故选C . 7.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x += 【答案】C【分析】,(1),z x yi z i x y i =+-=+-1,z i -则22(1)1y x +-=.故选C . 8.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))设z =i(2+i),则z = A .1+2i B .–1+2i C .1–2i D .–1–2i【答案】D【分析】2i(2i)2i i 12i z =+=+=-+, 所以12z i =--,选D .9.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))设z =-3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】C【分析】由32,z i =-+得32,z i =--则32,z i =--对应点(-3,-2)位于第三象限.故选C . 10.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))若(1i)2i z +=,则z = A .1i -- B .1+i -C .1i -D .1+i【答案】D 【分析】()(2i 2i 1i 1i 1i 1i 1i )()z -===+++-.故选D . 11.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))设1i2i 1iz -=++,则||z =A .0B .12C .1D 【答案】C 【详解】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z ,然后求解复数的模. :()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+i 2i i =-+=,则1z =,故选c. 12.(2018年全国普通高等学校招生统一考试文数(全国卷II ))()i 23i += A .32i - B .32i + C .32i -- D .32i -+【答案】D 【详解】分析:根据公式21i =-,可直接计算得(23)32i i i +=-+:2i(23i)2i 3i 32i +=+=-+ ,故选D. 13.(2018年全国普通高等学校招生统一考试理数(全国卷II ))12i12i+=- A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+【答案】D【详解】详解:212(12)341255i i ii ++-+==∴-选D.14.(2018年全国卷Ⅰ文数高考试题)(1)(2)i i +-= A .3i -- B .3i -+C .3i -D .3i +【答案】D【分析】解: ()()21i 2i 2i 2i 3i i +-=-+-=+故选D.15.(2017年全国普通高等学校招生统一考试文科数学(新课标1卷))下列各式的运算结果为纯虚数的是 A .(1+i)2 B .i 2(1-i)C .i(1+i)2D .i(1+i)【答案】A【分析】由题意,对于A 中,复数2(1)2i i +=为纯虚数,所以正确; 对于B 中,复数2(1)1i i i ⋅-=-+不是纯虚数,所以不正确; 对于C 中,复数2(1)2i i ⋅+=-不是纯虚数,所以不正确;对于D 中,复数(1)1i i i ⋅+=-+不是纯虚数,所以不正确,故选A.16.(2017年全国普通高等学校招生统一考试理科数学(新课标1卷))设有下面四个命题1p :若复数z 满足1R z∈,则z R ∈;2p :若复数z 满足2z ∈R ,则z R ∈; 3p :若复数12,z z 满足12z z R ∈,则12z z =; 4p :若复数z R ∈,则z R ∈.其中的真命题为 A .13,p p B .14,p p C .23,p pD .24,p p【答案】B 【详解】令i(,)z a b a b R =+∈,则由2211i i a b z a b a b-==∈++R 得0b =,所以z R ∈,故1p 正确; 当i z =时,因为22i 1z ==-∈R ,而i z =∉R 知,故2p 不正确; 当12i z z ==时,满足121z z ⋅=-∈R ,但12z z ≠,故3p 不正确;对于4p ,因为实数的共轭复数是它本身,也属于实数,故4p 正确,故选B.17.(2017年全国普通高等学校招生统一考试文科数学(新课标2卷))(1i)(2i)++= A .1i -B .13i +C .3i +D .33i +【答案】B 【详解】由题意2(1i)(2i)23i i 13i ++=++=+,故选B.18.(2017年全国普通高等学校招生统一考试理科数学)31ii++=( ) A .1+2i B .1-2i C .2+i D .2-i【答案】D 【分析】由题意()()()()3134221112i i i ii i i i +-+-===-++-,故选:D. 19.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷))复平面内表示复数z=i(–2+i)的点位于A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【详解】i(2i)12i z =-+=--,则表示复数i(2i)z =-+的点位于第三象限. 所以选C. 20.(2017年全国普通高等学校招生统一考试理科数学(新课标3卷))设复数z 满足(1+i)z =2i ,则Ⅰz Ⅰ= A .12B.2CD .2【答案】C【解析】由题意可得2i1i z =+,由复数求模的法则可得1121z z z z =,则2i 1i z ===+故选C. 21.(2016年全国普通高等学校招生统一考试文科数学(新课标1卷))设()()12i a i ++的实部与虚部相等,其中a 为实数,则a = A .−3 B .−2C .2D .3【答案】A【详解】:(12)()2(12)i a i a a i ++=-++,由已知,得,解得,选A.22.(2016年全国普通高等学校招生统一考试理科数学(新课标1卷))设,其中x ,y 是实数,则i =x y +A .1BCD .2【答案】B 【详解】试题分析:因为(1i)=1+i,x y +所以i=1+i,=1,1,|i =|1+i x x y x y x x y +==+=所以故故选B.23.(2016年全国普通高等学校招生统一考试文科数学(新课标2卷))设复数z 满足3z i i +=-,则z = A .12i -+ B .12i -C .32i +D .32i -【答案】C 【解析】试题分析:由i 3i z +=-得32i z =-,所以32i z =+,故选C.24.(2016年全国普通高等学校招生统一考试理科数学(新课标2卷))已知(3)(1)z m m i =++-在复平面内对应的点在第四象限,则实数m 的取值范围是A .(31)-, B .(13)-, C .(1,)+∞ D .(3)-∞-,【答案】A【详解】要使复数z 对应的点在第四象限,应满足30{10m m +>-<,解得31m -<<,故选A.25.(2016年全国普通高等学校招生统一考试理科数学)若43z i =+,则zz= A .1 B .1- C .4355i + D .4355i - 【答案】D【详解】由题意可得 :5z ==,且:43z i =-,据此有:4343555z i i z -==-.本题选择D 选项.26.(2016年全国普通高等学校招生统一考试理科数学(全国3卷))若12z i =+,则41izz =- A .1 B .-1 C .i D .-i【答案】C 【详解】 试题分析:441(12)(12)1i ii zz i i ==-+--,故选C .27.(2015年全国普通高等学校招生统一考试理科数学)已知复数z 满足(1)1z i i -=+,则z = A .2i -- B .2i -+ C .2i - D .2i +【答案】C 【详解】试题分析:Ⅰ(1)1z i i -=+,Ⅰz=212(12)()2i i i i i i ++-==--,故选C.28.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))设复数z 满足1+z1z-=i ,则|z|=A .1BCD .2【答案】A【详解】:由题意得,1(1)(1)1(1)(1)i i i z i i i i ---===++-,所以1z =,故选A.29.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))若a 为实数,且 2i3i 1ia +=++,则a = A .4- B .3- C .3 D .4【答案】D【详解】由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D.30.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))若a 为实数且(2)(2)4ai a i i +-=-,则a = A .1- B .0C .1D .2【答案】B 【详解】由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,故选B .31.(2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))设,则A .B .C .D .2【答案】B【详解】:根据复数运算法则可得:111111(1)(1)222i i z i i i i i i i --=+=+=+=+++-,由模的运算可得:z ==. 32.(2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)) A .B .C .D .【答案】D 【详解】试题分析:由已知得22(1)(1)2(1)1(1)2i i i i i i i+++==----.33.(2014年全国普通高等学校招生统一考试理科数学)计算131ii+=- A .12i + B .12i -+C .12i -D .12i --【答案】B【详解】:()()()()1311324121112i i i ii i i i +++-+===-+--+34.(2014年全国普通高等学校招生统一考试理科数学(全国Ⅰ卷))设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z = A .- 5 B .5C .- 4+ iD .- 4 - i【答案】A【详解】:由题意,得22z i =-+,则12(2)(2)5z z i i =+-+=-,故选A .35.(2013年全国普通高等学校招生统一考试文科数学(新课标1卷))212(1)ii +=-A .112i --B .112i -+C .112i +D .112i -【答案】B【详解】2121221(1)222i i i ii i ++-===---.36.(2013年全国普通高等学校招生统一考试理科数学(新课标1卷)已知复数z 满足(3443i z i -=+),则z 的虚部为 A .-4 B .45- C .4 D .45【答案】D【详解】:设z a bi =+(34)(34)()34(34)i z i a bi a b b a i -=-+=++-435i +==Ⅰ345{340a b b a +=-= ,解得45b =37.(2013年全国普通高等学校招生统一考试文科数学(新课标2卷))21i+=11 A.B .2 CD .1 【答案】C 【详解】因为211i i=-+,所以21i =+,故选C. 38.(2013年全国普通高等学校招生统一考试理科数学(新课标2卷))设复数z 满足()12i z i -=,则z= ( ) A .-1+iB .-1-iC .1+iD .1-i 【答案】A【分析】由()12i z i -=得21i z i=-=(1)1i i i +=-+,故选A. 39.(2012年全国普通高等学校招生统一考试文科数学(课标卷))复数32i z i -+=+的共轭复数是 A .2i +B .2i -C .1i -+D .1i -- 【答案】D 【详解()()()()3235512225i i i i z i i i i -+--+-+====-+++-,1z i =--,故选D . 40.(2012年全国普通高等学校招生统一考试理科数学(课标卷))下面是关于复数21z i=-+的四个命题:其中的真命题为 1:2p z =22:2p z i =3:p z 的共轭复数为1i +4:p z 的虚部为1-A .23,p pB .12,p pC .24,p pD .34,p p 【答案】C【详解】因为,所以,,共轭复数为,的虚部为,所以真命题为选C.。
2023年新高考数学临考题号押题第2题 复数(新高考)(解析版)

押新高考卷2题
复
数
考点3年考题
考情分析
复数
2022年新高考Ⅰ卷第2题2022年新高考Ⅱ卷第2题
2021年新高考Ⅰ卷第2题2021年新高考Ⅱ卷第1题2020年新高考Ⅰ卷第2题2020年新高考Ⅱ卷第2题
高考对复数知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练复数基础知识点,包括复数的代数形式,复数的实部与虚部,共轭复数,复数模长,复数的几何意义及四则运算.纵观近几年的新高考试题,均以复数的四则运算为切入点,考查复数的四则运算、共轭复数及几何意义.可以预测2023年新高考命题方向将继续围绕复数的四则运算为背景展开命题.
1.虚数单位:i ,规定12-=i
2.虚数单位的周期4
=T 3.复数的代数形式:Z=(),a bi a b R +∈,a 叫实部,b 叫虚部4.复数的分类
⎪⎪⎪⎩
⎪⎪⎪⎨
⎧⎩⎨⎧=≠≠⎩⎨⎧===+=000
00
00
a b b b a b bi a z 纯虚数:虚数::实数:5.复数相等:,,21di c Z bi a Z +=+=若则,21Z Z =d
b c a ==,6.共轭复数:若两个复数的实部相等,而虚部是互为相反数时,这两个复数叫互为共轭复数;
(),,z a bi z a bi a b R =+=-∈,
()()()2
22
22
2b a z z b a bi a bi a bi a z z +=⋅+=-=-+=⋅结论:推广:7.复数的几何意义:复数(),z a bi a b R =+∈←−−−→一一对应
复平面内的点(,)
Z a b
8.复数的模:()R b a bi a Z ∈+=,,
则||z a bi =+=;。
(2024新题型)备战2024年高考数学模拟卷(新题型地区专用) 及答案

【赢在高考·黄金8卷】备战2024年高考数学模拟卷(新题型地区专用)黄金卷05(考试时间:120分钟试卷满分:150分)第I卷(选择题)(答案在最后)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要【解析】如上图正方体中,设平面1ABB 11D C 为β,CD 为m ,β,//m α,此时//m β,故,因为n α⊥,n β⊥,α、β是不同的平面,则必有正确;,如上图正方体中,设平面ABB【解析】:()222210x y a b a b+=>>的图象,则)0y ,()0,B y ,则(02,AF c x =- )00,c x y --,()1,BF c y =-- ,x a 223F B ,得(223322F F c B A ==- 00332232c x y -,得005332x c y y ⎧=⎪⎪⎨⎪=-⎪⎩,1BF 得()()110AF BF c x c ⋅=---+000yy +=即222053032c c y +-=2021=,得2222511639c c a b ⎛⎫ ⎪⎝⎭+=,又42255090e e -+=,又椭圆离心率15,得55e =.二、多项选择题:本题共3小题,每小题要求,全部选对的得6分,部分选对的得部分分,有选错的得1z ,2z 为复数,则下列说法正确的是(∈R ,则11z z =312⎝⎭A .4ω=B .9π182f ⎛⎫=⎪⎝⎭C .函数()f x 在ππ,32⎛⎫⎪⎝⎭上单调递减D .若将函数()f x 的图象沿【答案】ACD【解析】令()(sin f x x ω=+由图可知:π23A x k ωϕ+=+所以1π3C B BC x x ω⎛=-=-+ ⎝所以π12π33BC AB ω⎛=-=- ⎝所以()()sin 4f x x ϕ=+,由所以ππ2π3k ϕ-+=+,k ∈所以4π2π3k =+ϕ,Z k ∈,4π因为(2023)(2025)(3)(1)2f f f f +=+=,(2024)(0)0f f ==,所以B 错误.因为(2022)(2024)(2)(0)2f f f f +=+=,(2023)(3)1f f ==,所以(2022)(2024)2(2023)f f f +=,所以(2023)f 是(2022)f 与(2024)f 的等差中项,故C 正确.因为(1)(2)(3)(4)f f f f +++()(1)(3)(2)(4)f f f f =+++2204=++=,所以20241()506[(1)(2)(3)(4)]50642024i f i f f f f ==+++=⨯=∑,故D 正确.故选:ACD第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专训1.2 复 数
1.复数12i
z i
=
+(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
2.已知复数1z i =+,z 为z 的共轭复数,则()1z z ⋅+=( ) A .2
B .2
C .10
D .10
3.复数z 满足22z z i +=,则z 在复平面上对应的点位于( )
题号 1 2 3 4 5 6 7 8
9
10
11
12
13
14
15
16
答案
思维导图
答题区
一.单选题(每题5分,8题,共40分) 限时:16min
A .第一象限
B .第二象限
C .第三象限
D .第四象限
4.复数
2i
i
-的实部与虚部之和为( ) A .35 B .15
-
C .
15
D .
35
5.已知,a b ∈R ,若2()2a b a b i -+->(i 为虚数单位),则a 的取值范围是( ) A .2a >或1a <- B .1a >或2a <- C .12a -<< D .21a -<<
6.已知i 是虚数单位,a 为实数,且3i
1i 2i
a -=-+,则a =( ) A .2 B .1
C .-2
D .-1
7.设a +∈R ,复数()()
()
24
2
121i i z ai ++=-,若1z =,则a =( )
A .10
B .9
C .8
D .7
8.在复平面内,复数z 对应的点的坐标是(1,1),则z
i
=( ) A .1i - B .1i --
C .1i -+
D .1i +
9.已知复数202011i z i
+=-(i 为虚数单位),则下列说法错误的是( )
A .z 的实部为2
B .z 的虚部为1
C .2z i =
-
D .|2|z =
10.若复数351i
z i
-=
-,则( ) A .17z = B .z 的实部与虚部之差为3
C .4z i =+
D .z 在复平面内对应的点位于第四象限
11.已知i 为虚数单位,则下面命题正确的是( )
二.多选题(每题有多个选项为正确答案,少选且正确得2分,每题5分,4题,共20分) 限时:10min
A .若复数3i z =+,则
131010
i z =-. B .复数z 满足21z i -=,z 在复平面内对应的点为(),x y ,则()2
221x y +-=. C .若复数1z ,2z 满足21z z =,则120z z ≥. D .复数13z i =-的虚部是3.
12.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( ) A .3||5
z =
B .12i
5
z +=-
C .复数z 的实部为1-
D .复数z 对应复平面上的点在第二象限
13.若复数z 满足()()3421()2i z i i -=+-,则z 的虚部是______.
14.已知复数03z i =+(i 为虚数单位),复数z 满足002z z z z ⋅=+,则z =______.
15.复数12i z =+,若复数1z ,2z 在复平面内对应的点关于虚轴对称,则1
2
z z 的虚部为______;
16.已知复数z x yi =+,()R ,x y ∈,若21z i +=,则max z =________;2x y +的取值范围是________.
三.填空题(每题5分,4题,共20分) 限时:10min。