激光多普勒流速测量法
激光多普勒测速

(1)波源和观察者相对于介质是静止的(u=0,v=0), 观察者接收到的频率即为波源原有的频率,即f= f0
(2)波源不动,观察者以速度v相对于介质运动
(u=0,v 0),观察者接收到的频率为 观察者背离波源取负号。
f
V v
(1
v V
)
f
0
(3)观察者不动,波源以速度u相对于介质运动(
这种在迭加区域出现的光强稳定的强弱分布的现象称为光的 干涉。在观察时间内,P点平均光强为:
I 1
Id
0
E021
E022
2 E01 E02
1
cosd
0
பைடு நூலகம்
如果在观察时间内,各个时刻到达的两束光波迅速而无规
则地变化,多次经理0~2之间的一切值,则,
1
0
cosd
intensity points
DL
F
1
0 1/e 2 z
x
y
X
Transmitting System
Z
Y X Intensity
Distribution
Z Measurement Volume Y
Measurement Volume
Length:
4F
z
E
DL
sin
2
5-9 激光多普勒流速仪测速
1.概述-激光特性与应用
激光是完全新颖的光源,它以高亮度(比 太阳光亮1010倍)、高纯度(单色性,比 氪灯纯上万倍)、高方向性(既相干性) 而著称。因为普通光源向4立体角发散, 而激光的发散角只有10-6rad,因而单位立 体角单位面积的输出功率就特别大。
流体力学实验装置的流体参数测量技术

流体力学实验装置的流体参数测量技术流体力学是研究流动物质力学性质和规律的学科,涉及领域广泛,包括气体、液体等多种介质的研究。
在流体力学实验中,准确测量流体参数是非常重要的,如流速、压力、密度、流量等。
本文将重点介绍流体力学实验装置中常用的流体参数测量技术。
流速测量技术实验室常用的流速测量技术有热膜法、热线法、红外法和激光多普勒测速法等。
其中,热膜法是一种简单有效的方法。
通过在管道内安装薄膜传感器,利用电热效应产生的温度变化来测量流体速度。
热线法则是利用导电材料丝在流体中受热后的电阻变化来测量流速。
红外法是通过感应被测流体中红外辐射的强度来判断流速。
而激光多普勒测速法则是通过激光束对流体中颗粒反射回来的光频率变化来计算流速。
这些方法在实验装置中广泛应用,可以满足不同流速范围的测量需求。
压力测量技术在流体力学实验中,压力是一个非常重要的参数。
常用的压力测量技术包括毛细管压力计、压电传感器、晶体管传感器和压力传感器等。
毛细管压力计是一种简单且精确的压力测量方法,通过测量管道中液体的压力差来计算流速。
压电传感器则是利用压电效应将压力转化为电信号进行测量。
晶体管传感器也是一种常用的压力测量设备,通过晶体管的变化来判断压力值。
而压力传感器则是一种高精度的压力测量装置,可以满足各种实验装置对于精准压力测量的需求。
密度测量技术密度是流体的重要参数之一,对流体的性质和流动规律有着重要影响。
在流体力学实验中,准确测量密度是非常关键的。
常用的密度测量技术有悬浮小球法、浮标法、声速法和测量涡旋频率等。
悬浮小球法是通过将小球悬浮在流体中并测量其浮力来计算密度。
浮标法则是通过在流体中浮放不同密度的浮标,通过其浸没深度来计算密度。
声速法则是通过测量声波在流体中的传播速度来计算密度。
而测量涡旋频率则是利用涡旋在流体中传播的规律来间接计算密度。
这些方法在实验装置中广泛应用,为密度测量提供了多种选择。
流量测量技术流量是指单位时间内流体通过管道或通道的体积或质量。
激光多普勒血流测定法

中国激光医学杂志CHINESE JOURNAL OF LASER MEDICINE& SURGERY1999年 第8卷 第3期 Vol.8 No.3 1999激光多普勒血流测定法吴劲松 陈衔城 陆栋 1975年,Stern[1]首次报道应用激光多普勒血流测定仪(laser-Doppler flowmetry, LDF)监测皮肤微循环血流量。
20多年来,关于LDF在皮肤、肌肉、移植皮瓣、脑和肾脏等组织器官微循环血流监测的实验和临床应用研究不断深入,取得较大进展。
LDF工作原理 一、激光多普勒效应 光本质上是一种电磁波,具有波的基本特征。
应用于生物体的安全激光波长窗为600~1200nm,在这个测量范围内,生物大分子对光线的吸收相对较弱。
生物介质且有非常复杂和强烈的多点散射界面,投射到生物组织表面的激光束只有很小一部分会透入深层后再反射回表面,因此人们通常只能接受来自生物介质表面层的光学信息。
对毛细血管内红细胞(RBC)运动引起的光强度涨落的分析更为复杂,不同于清洁介质(如大气层)中的激光多普勒效应。
从连续波激光器产生的发射光具有极强的空间和时间的相干性,允许人们从散射光的相位和强度变化来分析散射介质内颗粒物质(如RBC)在很小范围(<1μm)的运动,达到的精度类似于其他光干涉仪技术的测量结果。
早期用激光多普勒狭缝灯作非侵入式的多普勒位移(Dopplershift)测量,发现位移与眼底视网膜动静脉中血流有关[2]。
以后各种利用激光多普勒位移效应测量组织微循环血流量的仪器陆续出现。
激光源产生单色激光束通过探头进入生物介质,在测量深度内的活动颗粒(主要是毛细血管网内快速移动的RBC)表面发生光散射而返回,此时反射光频率已经发生改变,即多普勒位移效应。
多普勒位移发生的幅度和强度分别与测量范围内的RBC移动速度和数量密切相关,而与RBC移动方向无关[3]。
多普勒位移幅度公式为: Δf=2υx/λ (1)式中Δf表示位移幅度,υx表示RBC流动速度,λ表示波长。
基于激光多普勒的水流速测量

妻 誊 ;
0 17 8 ) .74 2T 根据() 8式把综合权重 T加人矩 阵 R,得 到加权规格化属性矩 1 阵 B:
=
{ l U
=
() 2
u为 光束平面 内垂直于交角平分线方 向的速度 。这个公式与用多普勒原理推得 的公式相同。 2 3 验 证 理 论 . ‘ 图 2为用上述双 光束 一双散射模式搭 建的光路测得的数据示意图。 图2 给出的数据频移和 电压对应关系 , 可以看出在过交点处有几种水流速度同时 存在 , 点与水流的理论分析相符合 , . 这 在1 2 KH 对应信号 最强 ,既该流速 为主要 流 速 ,根据公式 2 可得 : () 3
在结合图 2就可以得到水每一时刻的
流速 。
3结束语
通过 上面的分析论证 ,利用双光束 一 双散射模式的激光多普勒测速系统可以很 好的测量出水流的特. 具有测量准确 , 胜, 非 接 触 等 特 点 。 理论 分 析 中 , 用干 涉 条 纹 在 采 模型能够准确的体现 出该种测量方法的原
氦氖激光器的波长 入为 6 2 m,夹角 3n d为 l 。 ,频移 为 1 2 5 . KH 带入 ( ) 3 式得 :
:
! !
2 i蔓 s n
l 2
14 .7×1 m/ ) 0( s
由几何关系可得水流速
u蒜= 8 5 × / =1 2 . l(s ; 0 _6 0 。 . 5 8 m) 8 ,
17 0 ) 9 6T 8
0 Байду номын сангаас
。
0
力。 评价 系统保障性的保障性参数通常分为3 :保障性综 合参数 、 类 保障性设计特性参数和保障系统及保 障资源参数 。 在评价某型装备 保障性时用到的指标 有 :
激光多普勒测速技术

激光多普勒测速技术激光多普勒测速,简称LDV or LDA ,通常是用来进行流体速度的测量,所以也简称LD 。
多普勒频移由于观察者和被观察者之间有相对运动,使观察者接收到的光波频率发生变化的现象,称Doppler 频移。
例如,一个光源相对于观察者以速度v 运动,速度v与光源到观察者联线(即光传播方向)之间的夹角是θ,而光源发出频率为0ν的光波,在观察者看来,由于存在着相对运动,观察者接收到的光频率为:21/2102(1)/(1cos )v v ccννθ=--0(1cos )v cνθ+其中,c 是光在介质中的传播速度,0/c c n =.在检测中,我们通常用一个位置固定的光源照射一个运动的粒子,用一个位置固定的探测器来接收运动粒子散射的光波来探测粒子的运动速度。
如图所示,粒子以速度v 运动,速度v与粒子和光源联线的夹角是1θ,光源频率为0ν,则在粒子看来所接收的频率是 21/21012(1)/(1cos )v vc cννθ=-- 探测器与粒子联线和粒子速度v21/22122(1)/(1cos )v v ccννθ=--考虑到粒子速度比光速小得多,则可以求得散射光的多普勒频移的表达式为:2012(1(cos cos ))v cννθθ++频率检测多普勒频移通常用来测量粒子的速度,只要测得频移量20D ννν=-,即可求得物体的运动速度。
但是,由于光的频率太高,迄今尚无直接测量光频率的可能,故而通常采用光混频技术,用混频后的差频信号来获取多普勒频移量。
设一束待测的散射光的频率为'ν,而另一束参考光的频率为ν,光探测器分别接收到它们的电场(振幅)强度为:QQS1011cos(2')E E t πνϕ=+ 2022cos(2)E E t πνϕ=+将两束光在探测器表面处混频后,得到的合成电场强度为:12011022cos(2')cos(2)E E E E t E t πνϕπνϕ=+=+++光强度为22122011022222201102201021222220110220102120102()(cos(2')cos(2))cos (2')cos (2))2cos(2')cos(2)cos (2')cos (2))cos(2('))co I E E E E t E t E t E t E E t t E t E t E E t E E πνϕπνϕπνϕπνϕπνϕπνϕπνϕπνϕπννϕϕ==+=+++=++++++=++++++++12s(2('))t πννϕϕ-+-实际测得的是光强度的时间平均值222010*********cos(2('))22I E E E E E t πννϕϕ<>=<>=++-+-在光探测器上输出的电流值是22010********()()cos(2('))2i t k E E kE E t πννϕϕ=++-+-其中,k 是电流转换系数,是一个确定的比例常数。
激光多普勒测速[仅供参考]
![激光多普勒测速[仅供参考]](https://img.taocdn.com/s3/m/185d9808168884868762d6b3.png)
医疗模板
3
激光在工程中的应用
激光得到越来越广泛的应用。例如,在工艺制 造方面,微孔的加工,激光切割,焊接,精密 测长、定位等等。在计量科学方面,激光用于 测长基准、激光测速、测距、测扭、测压、测 角、测温等。在国防科学方面,激光雷达、激 光制导、激光通讯、引爆、致盲、激光炮、激 光枪等。在全息摄影、光学信号处理、流场显
通过双曝光将两幅粒子场记录在同一 块胶片或干版上,
再利用逐点分析或全场分析求出粒子 对的位移场,最后转换成速度场。
医疗模板
12
当流速很快时,可用连续片光照 明,用高速摄影机拍摄一系列粒 子图。
再通过相关运算求出位移场,进 而求出各粒子场的速度。
散斑法只能记录一个平面内的粒 子场速度信息。
医疗模板
13
医疗模板
8
光学速度测试技术具有测量灵敏 度高,不干扰流场等优点,有着 很强的应用前景。
光学测速技术主要有全息干涉法、 散斑照相法、激光多普勒测速法 和激光双焦点测速法等。
医疗模板
9
2. 全息干涉测速法
在被测流体中掺粒子示踪剂,通常用 双脉冲激光作光源,通过双曝光拍摄 相隔t的两幅粒子图于同一块干版上。 利用再现粒子场的实像图,求出粒子 对间的位移大小和方向,再由 v=s/t求出速度场。
§8.2 激光多普勒测速法(LDV)
60年第一台氦-氖激光器诞生,64年 世界上就出现了激光多普勒测速仪。 20多年来,激光多普勒测速技术有了 很大的发展,这是测量技术上的一个 重大突破。
医疗模板
14
多普勒测速是通过检测流体中运动微粒 散射光的多普勒频移来测定速度的。
激光多普勒测速属于非接触测量,激光 作为测量探头不干扰流场。
16
激光多普勒流体速度测量

激光多普勒流体速度测量系别:11 学号:pb04210264 姓名:孙翀实验目的:1、应用光学元件组装电路;2、测量流体运动的速度。
实验原理:当两束相干光作用到一匀速运动的流体上,这时同样有多普勒效应产生,干涉与流体的速度有关,我们可以通过这种现象来测量流体速度。
1、多普勒效应Doppler effect光源固定,光频率为fs ,接受器运动,速度为U ,则⎟⎟⎠⎞⎜⎜⎝⎛⋅−=c l U 1f f s R r r 光源运动,接受器固定,则: ⎟⎟⎠⎞⎜⎜⎝⎛⋅=c k U -1f f s R r r2、在LDA 中, 激光源固定,激光被流体中的微粒散射后进入光敏二极管D ,被固定接受器接收的激光频率为:⎟⎟⎠⎞⎜⎜⎝⎛⋅⎟⎟⎠⎞⎜⎜⎝⎛⋅−=c k U -1/c l U 1f f s R r r r r3、为了避免直接测量造成的不精确,实验中采用如下方法:一束激光被分成强度相等的两束,在mcv 中聚焦,流体中的微粒同时散射两束光,其散射光的多普勒偏移(Doppler shift )是不同的。
这个不同,Doppler frequency ,可以被精确测量:()λϕ2sin U c l l U f f 12s D ⋅=−⋅=⊥r r其中⎟⎠⎞⎜⎝⎛=2l D arctan ϕ 只需测量D 和l 即可,其意义如图所示:(图缺)代入公式即可求得流体的速度。
数据处理:1、求出角度ϕo 12.711.222.8arctan 2l D arctan =⎟⎠⎞⎜⎝⎛×=⎟⎠⎞⎜⎝⎛=ϕ2、从计算机软件记录的图像中读出f D (即信号的峰值处频率)HZ 1501f D =3、计算流体速度⊥U 由公式:λϕ2sin U f D ⋅=⊥s /m 94.212.sin72mm 108.6321150HZ 2sin f U 6D m =×××=⋅=−⊥o ϕλ实验总结本实验的关键在于光路的调整,必须要使两束干涉光聚焦在流体中心。
激光多普勒测速

激光多普勒测速1.引言激光多普勒测速技术是伴随着激光器的诞生而产生的一种新的测量技术,它是利用激光的多普勒效应来对流体或固体速度进行测量的一种技术,广泛应用于军事,航空,航天,机械,能源,冶金,水利,钢铁,计量,医学,环保等领域[1-2]。
激光多普勒测速仪是利用激光多普勒效应来测量流体或固体运动速度的一种仪器,通常由五个部分组成:激光器,入射光学单元,接收或收集光学单元,多普勒信号处理器和数据处理系统或数据处理器,主要优点在于非接触测量,线性特性,较高的空间分辨率和快速动态响应,采用近代光-电子学和微处理机技术的LDV系统,可以比较容易地实现二维,三维等流动的测量,并获得各种复杂流动结构的定量信息。
由于上述潜在的独特功能,激光多普勒技术吸引了大量的实验流体力学和其他学科的研究工作者去研究和解决这些问题,使激光测速技术得到飞速发展,成为流动测量实验的有力工具。
激光测速技术的发展大体上可分为三个阶段[1-3]。
第一个阶段是1964 – 1972 年,这是激光测速发展的初期。
在此期间,大多数的光学装置都比较简单,用各种元件拼搭而成,光学性能和效率不高,使用调准也不方便;第二个阶段是1973 – 1980 年,在此期间,激光测速在光学系统和信号处理器方面有了很大的发展。
光束扩展,空间滤波,偏振分离,频率分离,光学频移等近代光学技术相继应用到激光测速仪中。
从1980年到现在,激光测速进入了第三个阶段。
在此期间,应用研究得到快速发展。
在发表的论文中,有关流动研究的论文急剧增加。
多维系统,光纤传输技术以及数字信号处理和微机数据处理技术等的出现把激光多普勒技术推向更高水平,使用调整更加方便。
此外,半导体激光器的应用是其小型化成为可能,推动激光多普勒测速走出实验室,迈向工业和现场应用。
激光的多普勒效应是激光多普勒测速技术的重要理论基础,当光源和运动物体发生相对运动时,从运动物体散射回来的光会产生多普勒频移,这个频移量的大小与运动物体的速度,入射光和速度方向的夹角都有关系[1]。