gear and shaft introduction-齿轮与轴的介绍-陈小杰
齿轮和轴的介绍__机械外文翻译.doc

毕业设计(论文)外文翻译GEAR AND SHAFT 外文题目INTRODUCTION 译文题目齿轮和轴的介绍专业工程机械专业班级机自082211H学生姓名徐佳宁学号200822010108指导教师要志斌日期2012/3/1齿轮和轴的介绍摘要:在传统机械和现代机械中齿轮和轴的重要地位是不可动摇的。
齿轮和轴主要安装在主轴箱来传递力的方向。
通过加工制造它们可以分为许多的型号,分别用于许多的场合。
所以我们对齿轮和轴的了解和认识必须是多层次多方位的。
关键词:齿轮;轴在直齿圆柱齿轮的受力分析中,是假定各力作用在单一平面的。
我们将研究作用力具有三维坐标的齿轮。
因此,在斜齿轮的情况下,其齿向是不平行于回转轴线的。
而在锥齿轮的情况中各回转轴线互相不平行。
像我们要讨论的那样,尚有其他道理需要学习,掌握。
斜齿轮用于传递平行轴之间的运动。
倾斜角度每个齿轮都一样,但一个必须右旋斜齿,而另一个必须是左旋斜齿。
齿的形状是一溅开线螺旋面。
如果一张被剪成平行四边形(矩形)的纸张包围在齿轮圆柱体上,纸上印出齿的角刃边就变成斜线。
如果我展开这张纸,在血角刃边上的每一个点就发生一渐开线曲线。
直齿圆柱齿轮轮齿的初始接触处是跨过整个齿面而伸展开来的线。
斜齿轮轮齿的初始接触是一点,当齿进入更多的啮合时,它就变成线。
在直齿圆柱齿轮中,接触是平行于回转轴线的。
在斜齿轮中,该先是跨过齿面的对角线。
它是齿轮逐渐进行啮合并平稳的从一个齿到另一个齿传递运动,那样就使斜齿轮具有高速重载下平稳传递运动的能力。
斜齿轮使轴的轴承承受径向和轴向力。
当轴向推力变的大了或由于别的原因而产生某些影响时,那就可以使用人字齿轮。
双斜齿轮(人字齿轮)是与反向的并排地装在同一轴上的两个斜齿轮等效。
他们产生相反的轴向推力作用,这样就消除了轴向推力。
当两个或更多个单向齿斜齿轮被在同一轴上时,齿轮的齿向应作选择,以便产生最小的轴向推力。
交错轴斜齿轮或螺旋齿轮,他们是轴中心线既不相交也不平行。
齿轮

齿轮[编辑]维基百科,自由的百科全书油井上的齿轮组两个齿轮传递旋转运动。
请注意,小齿轮旋转速度更快。
虽然较大的齿轮转动较慢,它的扭矩按比例更大。
齿轮(Gear) 是依靠齿的啮合传递扭矩的轮状机械零件。
齿轮通过与其它齿状机械零件(如另一齿轮、齿条、蜗杆)传动,可实现改变转速与扭矩、改变运动方向和改变运动形式等功能。
由于传动效率高、传动比准确、功率范围大等优点,齿轮机构在工业产品中广泛应用,其设计与制造水平直接影响到工业产品的品质。
“齿轮轮齿相互扣住齿轮会带动另一个齿轮转动来传送动力。
将两个齿轮分开,也可以应用链条、履带、皮带来带动两边的齿轮而传送动力。
”而两个齿轮互相咬合时,转动的方向会相反。
如右图:目录[隐藏]∙ 1 发展史∙ 2 齿轮机构的类型o 2.1 蜗杆∙ 3 斜齿圆柱齿轮主要参数∙ 4 术语∙ 5 换挡齿轮∙ 6 齿轮材料∙7 制造∙8 检查∙9 失效∙10 象征∙11 相关条目∙12 参考文献发展史[编辑]人类对齿轮的使用源远流长,亚里士多德可认为是第一个系统论述这一机构的人。
而阿基米德不仅对齿轮和蜗轮有详尽的论述,Pappus更记载了阿基米德通过一个蜗轮和九个齿轮的机构,使少数几个奴隶就将大船Syrakusia推下海中。
古印度的棉核剔除机构(现收藏于柏林博物馆)都含有齿轮机构。
齿轮的具体发明人无史可考,而早期齿轮并没有齿形和齿距的规格要求,因此连续转动的主动轮往往不能使被动轮连续转动。
为了解决这一问题,齿形发展为弧形,并通过减小齿距使被动轮获得连续转动,这使得齿轮机构的汲水装置十分普及。
由于钟表的出现和普及,人们产生了对齿轮定速传动的需求。
由齿廓啮合基本定律:∙一对齿廓的瞬时速比,等于该瞬时接触点的公法线截连心线为两段线段的反比。
和传动比恒定的条件:∙过接触点所作两齿廓的公法线均须与连心线交于一固定的点。
所决定的齿形理论上是无穷多的,Olaf Roemer在1674年曾论述外摆线齿形,而1694年Philipp de la Hire提出了渐开线齿形(齿形为圆形的渐开线)。
齿轮Gear

齿轮Gear齿轮副Gear pair平行轴齿轮副Gear pair with parallel exes相交轴齿轮副Gear pair with n-n-intersecting axes 齿轮系Train of gears行星齿轮系Planetary geartrain齿轮传动Gear drive ,Gear transmission配对齿轮mating gear小齿轮pinion大齿轮wheel ,gear主动齿轮driving gear从动齿轮driven gear行星齿轮planet gear行星架planet gear太阳轮sun gear内齿圈ring gear ,annulus gear外齿轮External gear内齿轮internal gear中心距centre distance轴交角shaft angle连心线line of centers减速齿轮副speed reducing gear pair增速齿轮副speed increasing gear pair齿数比gear ratio传动比transmission ration轴平面axial plane基准平面datum plane节平面pitch plane端平面transverse plane法平面normal plane分度曲面reference surface节曲面pitch surface齿顶曲面tip surface齿根曲面root surface基本齿廓basic tooth profile基本齿条basic rack产形齿条counterpart rack产形齿轮generating flank基准线datum line轮齿gear teech,tooth齿槽tooth space右旋齿right-hand teech左旋齿left-hand teech齿面tooth flank右侧齿面right flank左侧齿面left flank同侧齿面corresponding flanks异侧齿面opposite flanks工作齿面working flank非工作齿面non-working flank相啮齿面mating flank共轭齿面conjugate flank可用齿面usable flank有效齿面active flank上齿面addendum flank下齿面dedendum flank齿根过渡曲面fillet齿顶(齿顶面) crest ,top land槽底(齿槽底面) bottom land ,bottom of tooth space齿廓tooth profile端面齿廓transverse profile法向齿廓normal profile轴向齿廓axial profile背锥齿廓back cone tooth profile齿线tooth trace齿棱tip, tooth tip模数module端面模数transverse module法向模数normal module轴向模数axial module径节diametical pitch齿数number of teech当量齿数virtual number of teech头数number of threads ,number of starts螺旋线helix,circular helix圆锥螺旋线conical spiral螺旋角Helix angle(for cylindrical gears),spiral angle(for bevel and hypoid gears) 导程lend导程角lead angle阿基米德螺旋线Archimedes spiral外摆线epicycloid长幅外摆线Prolate epicycloids短幅外摆线curate epicycloids摆线cycloid长幅摆线prolate cycloid短幅摆线curtate cycloid内摆线Hypocycloid长幅内摆线curtate cycloid短幅内摆线curtate hypocycloid渐开线(圆的渐开线) involute , involute to a circle延伸渐开线prolate involute缩短渐开线curtate involute球面渐开线spherical involute渐开线螺旋面involute helicoids球面渐开螺旋面sphefical involute helicoids阿基火德螺旋面screw helicoids圆环面toroid圆环面的母圆generate of the toroid圆环面的中性圆middle circle of the toroid圆环面的中间平面mid-plane of the tororid啮合干涉meshing interference齿廓修形profile modification ,profile correction修缘tip relief修根root relief齿向修形axial modification longgituinal correction 齿端修薄end relief鼓形修整corwning鼓形齿crowned teech挖根undercut瞬时轴instantaneous axis瞬时接触点point of contact瞬时接触线line of contact啮合mesh, engagement啮合线path of contact端面啮合线transverse path of contact啮合曲面surface of action啮合平面plane of action啮合区域zone of action总作用弧total arc of transmission端面作用弧transverse arc of transmission纵向作用弧overlap angle总作用角total angle of transmission端面作用角transuerse angle of transmission纵向作用角overlap angle总重合度transuevse contact ration端面重合度transuevse contact ration纵面重合度overlap ratio标准齿轮standard gears非变位齿轮x-gero gear标准中心距reference centre distance名义中心距normal centre distance变位齿轮gears with addendum modification,x-gears高变位圆柱齿轮副x-gear pair with reference centre distance角变位圆柱齿轮副x-gear pair with modified centre distance高变位锥齿轮副x-gear pair without shaft angle modification角变位锥齿轮副x-gear pair with shaft angle modification变位系数modification coefficient变位量addendum modification(for exter-nal gears) dedendum modification (for internal gears) 径向变位系数addendum modification coefficient中心距变动系数centre distance modification coefficient圆柱齿轮cylindrical gear直齿轮spur gear斜齿轮helical gear,single-helical gear直齿条spur rack斜齿条helical rack人字齿轮double-helical gear渐开线齿轮involute cylindrical gear摆线齿轮cycloidal gear圆弧齿轮circular-arc gear, w-n gear双圆弧齿轮double-circular-are gear假想曲面imaginary surface分度圆柱面reference cylinder节圆柱面pitch cylinder基圆柱面base cylinder齿顶圆柱面tip cylinder齿根圆柱面root cylinder节点pitch point节线pitch line分度圆reference circle节圆pitch circle基圆base circle顶圆tip circle根圆root circle齿距pitch齿距角angular pitch公法线长度base tangent length分度圆直径refence diameter节圆直径pitch diameter基圆直径base diameter顶圆直径tip diameter根圆直径root diameter齿根圆角半径fillet radius齿高tooth depth工作高度working depth齿顶高addendum齿根高tooth depth顶圆直径tip diameter根圆直径root diameter齿根圆角半径fillet radius齿高tooth depth工作高度working depth齿顶高addendum齿根高dedendum弦齿高chordal height固定弦齿高consfant chord height齿宽facewidth有效齿宽effective facewidth齿厚(端面齿厚)transverse tooth thickness法向齿厚normal tooth thickness端面基圆齿厚transverse chordal tooth thickness法向基圆齿厚normal base thickness弦齿厚(端面弦齿厚) transverse chordal tooth thickness 固定弦齿厚constant chord端面齿顶厚crest width法向齿顶厚normal crest width槽宽(端面齿槽宽) transverse spacewidth法向齿槽宽normal spacewidth齿厚半角tooth thickness half angle槽宽半角spacewidth half angle压力角pressure angle齿形角normal pressure angle任意点法线压力角normal pressure angle at a point任意点端面压力角transuerse pressure angle at a point 啮合角working pressure angle顶隙bottom clearance圆周侧隙circumferential backlash法向侧隙normal backlash径向侧隙radial tacklach锥齿轮bevel gear锥齿轮副bevel gear pain准双曲面齿轮副hynoid gear pain准双曲面齿轮hynoid gear冠轮crown gear端面齿轮contrite gear直齿锥齿轮straight bevel gear斜齿锥子齿轮skew bevel gear ,helical bevel gear曲线齿锥子齿轮Curved tooth bevel gear弧齿锥子齿轮spiral bevel gear摆线齿锥子齿轮enicycloid bevel gear零度齿锥齿轮zero bevel gear圆柱齿轮端面齿轮副contrite gear pain锥齿轮的当量圆柱齿轮virtual cylindrical gear of bevel gear8字啮合锥子齿轮 octoid gear圆弧齿弧齿锥齿轮spiral bevel gfear with cirde are tooth prgfile 分锥(分度圆锥面) reference cone节锥(节圆锥面) pitch tone顶锥(齿顶圆锥面) face cone ,tip cone根锥(齿根圆锥面)root cone背锥(背锥圆) back cone前锥(前锥面) front cone, inner cone中锥(中间锥面) middle cone分锥顶点reference cone apex轴线交点crossing point of axes公共锥顶common apex定位面locating face锥距(外锥距) outer cone distance内锥距inter cone distance中点锥距mean cone distance背锥距back cone distance安装距locating distance轮冠距tip distance ,crown to back冠顶距apex to crown偏置距offset齿线偏置量offset of tooth trace分锥角(分度圆锥角) reference cone angle节锥角pitch angle顶锥角tip angle根锥角root angle背锥角back cone angle齿顶角addendum angle齿根角dadendum angle任意点压力角pressure angle at a point任意点螺旋角spiral angle at a point中点螺旋角mean spiral angle大端螺旋角outer spiral angle小端螺旋角inter spiral angle蜗杆worm蜗轮worm wheel蜗杆副worm gear pair圆柱蜗杆cylindrical worm圆柱蜗杆副cylindrical worm pair环面蜗杆enveloping worm环面蜗杆副enveloping worm pair阿基米德蜗杆straight sided axial worm,za-worm渐开线蜗杆invotute helicoids worm,zi-worm法向直廓蜗杆straight sided normal worm ,zn-worm锥面包络圆柱蜗杆milled helicoids worm ,zk-worm圆弧圆柱蜗杆arc-contact worm,hollow flank worm,zc-worm直廓环面蜗杆enveloping worm with stranight line generatrix, ta-worm平面蜗轮planar worm wheel,p-worm wheel平面包络环面蜗杆planar double enveloping worm ,tp-worm平面二次包络蜗轮planar double-enveloping worm wheel, tp-worm wheel锥面包络环蜗杆toroid enveloping worm with cone generatrix, tk-worm gear渐开线包络环面蜗杆toroid enveloping worm hich involute holicoid generatrix,ti-worm 锥蜗杆spiroid锥蜗轮spiroid gear锥蜗轮副spiroid gear pair中平面(中间平面) mid-plane分度圆环圆reference tosoid齿根圆环圆root toroid咽喉面gorge喉平面gorge plane喉圆gorge circle ,circle at root of gorge分度圆蜗旋线reference helix螺纹thread蜗杆齿宽worm facewidth蜗轮齿宽worm wheel facewidth直径系数diametrical quotient咽喉半径gorge radius齿宽角width angle非圆齿轮non-circular gear椭圆齿轮elliptical gear圆柱针轮副cylindsical lantern pinion and wheel针轮cylindsical tan tein gear ,pin-wheel非圆齿轮副non-circular gear pair谐波齿轮传动harmoric gear dirve波发生器wave generator柔轮(柔性齿轮) flexspline刚轮(刚性齿轮) circular spline。
齿轮基础知识详解,看看你知道多少

齿轮基础知识详解,看看你知道多少1. 什么是齿轮?齿轮是能互相啮合的有齿的机械零件。
它在机械传动及整个机械领域中的应用极其广泛。
2. 齿轮的历史早在公元前350年,古希腊著名的哲学家亚里士多德在文献中对齿轮有过记录。
公元前250年左右,数学家阿基米德也在文献中对使用了涡轮蜗杆的卷扬机进行了说明。
在现今伊拉克凯特斯芬遗迹中还保存着公元前的齿轮。
齿轮在我国的历史也源远流长。
据史料记载,远在公元前400~200年的中国古代就已开始使用齿轮,在我国山西出土的青铜齿轮是迄今已发现的最古老齿轮,作为反映古代科学技术成就的指南车就是以齿轮机构为核心的机械装置。
15世纪后半的意大利文艺复兴时期,著名的全才列奧纳多.达芬奇,不仅在文化艺术方面,在齿轮技术史上也留下了不可磨灭的功绩,经过了500年以上,现在的齿轮仍然保留着当时素描的原型。
直到17世纪末,人们才开始研究能正确传递运动的轮齿形状。
18世纪,欧洲工业革命以后,齿轮传动的应用日益广泛;先是发展摆线齿轮,而后是渐开线齿轮,一直到20世纪初,渐开线齿轮已在应用中占了优势。
其后又发展了变位齿轮、圆弧齿轮、锥齿轮、斜齿轮等等。
现代齿轮技术已达到:齿轮模数0.004-100毫米;齿轮直径由1毫米-150米;传递功率可达十万千瓦;转速可达十万转/分;最高的圆周速度达300米/秒。
国际上,动力传动齿轮装置正沿着小型化、高速化、标准化方向发展。
特殊齿轮的应用、行星齿轮装置的发展、低振动、低噪声齿轮装置的研制是齿轮设计方面的一些特点。
3. 齿轮一般分为三大类齿轮的种类繁多,其分类方法最通常的是根据齿轮轴性。
一般分为平行轴、相交轴及交错轴三种类型。
1)平行轴齿轮:包括正齿轮、斜齿轮、内齿轮、齿条及斜齿条等。
2)相交轴齿轮:有直齿锥齿轮、弧齿锥齿轮、零度齿锥齿轮等。
3)交错轴齿轮:有交错轴斜齿齿轮、蜗杆蜗轮、准双曲面齿轮等。
上表中所列出的效率为传动效率,不包括轴承及搅拌润滑等的损失。
齿轮简介介绍

05
齿轮的发展趋势和前景
齿轮技术的发展趋势
01
精细化
随着现代工业的发展,齿轮的制造精度要求越来越高,齿轮技术的精细
化成为发展趋势。通过精细化技术,可以提高齿轮传动的效率和可靠性
。
02
高速化
高速齿轮传动技术是现代机械传动领域的一个重要发展方向。随着动力
传动装置向小型化、轻量化、高速化的方向发展,高速齿轮的设计和制
齿轮的传动特点
01
02
03
传动比准确
齿轮传动的传动比非常准 确,能够满足各种精密传 动的要求。
传动效率高
齿轮传动的传动效率很高 ,一般可达95%以上,因 此在实际应用中非常广泛 。
载荷能力强
齿轮传动具有较高的载荷 能力,能够承受较大的扭 矩和冲击载荷。
齿轮的制造材料和热处理
制造材料
齿轮常用的制造材料有碳钢、合金钢、铸铁等。其中,碳钢 和合金钢具有较高的强度和韧性,适用于高速、重载的齿轮 传动;铸铁则具有较好的耐磨性和减震性能,适用于低速、 轻载的齿轮传动。
齿形检测:采Biblioteka 齿形测量仪对齿轮的齿形精度进 行测量,确保齿轮的啮合性能。
无损检测:采用超声波、磁粉、涡流等无损检测 技术,对齿轮内部缺陷进行检测,确保齿轮的安 全使用。
表面质量检测:通过显微镜、硬度计等设备对齿 轮表面质量进行检测,保证齿轮的耐磨性和抗疲 劳性能。
通过以上制造技术和加工工艺的应用,以及严格 的检测技术和质量控制,可以确保齿轮的高精度 、高强度、高可靠性,从而满足各种机械设备对 齿轮传动的需求。
硬质合金
硬质合金具有高硬度、高强度和良好的耐磨性,是一种优质的齿轮材料。随着硬质合金制 造技术的不断提高,其应用领域也越来越广泛。
Gear介绍

3、同時調整Sensor的位置,使指示器的讀數無限接近于0時 (+/0.05內即可接受)固定Sensor。取出塊規時,在指示器的值最小時將 指未器歸零﹔
4、 根據圖面及測量要求設定好測試壓力(Silitek 測試儀壓力可 設定的范圍為±6N)﹔
5、將標准齒輪和工作齒輪安裝好,開始測量(轉向沒有要求)﹔
6、在測試的過程中我們可以看到指示器的值在不斷變化,我們需要 將工作齒輪旋轉一周時指示器讀數的最大值和最小值記錄下來。即 所需的 Vmax和Vmin。
7、現在我們就可以計算TR了 (unit :mm) TR Max = TR基值 + V Max TR Min = TR基值 + V Min TR Max & TR Min即為我們所需要的數據。
:由于齿顶高ha=
(5)顶隙系数 =0.25 短齿制:
m,所以称为齿顶高系数。 标准齿制:
=1 短齿制:
=0.8
:齿根高 hf=(
=0.3
+
)m,称
为顶隙系数。标准齿制:
三、齒輪的檢測
2、TR 簡單介紹
在使用齒輪嚙合儀來檢測齒輪時,被檢測的齒輪(以下稱為工作齒 輪)和標准齒輪是緊嚙合的。因為我們是使用有很高加工精度的標准 齒輪和治具測量的,所以我們認為誤差全部由工作齒輪產生。
二、 齒輪相關參數
1. 外部齒輪的各部分名稱
2.基本参数 (1)齿数z: 在齿轮整个圆周上轮齿的总数称为齿轮的齿数, 用z表示。 (2)分度圆模数m:因分度圆的周长=πd=z p,即 。 为了便于计算、制造和检验,现将比值 人为地规定为一些简单的数值,并把这个比值叫做模数。以m表示,其单位为mm。即 m= ; d=mz。齿轮的模数已经标准化。 (3)分度圆压力角α: 齿轮压力角是指分度圆上的压力角,以α表示,分度圆压力角已经规定为标准值: a=200(或150)。于是有 或 (4)齿顶高系数
GEAR AND SHAFT INTRODUCTION

GEAR AND SHAFT INTRODUCTION——齿轮和轴的介绍GEAR AND SHAFT INTRODUCTIONAbstract: The important position of the wheel gear and shaft can''''''''''''''''t falter in traditional machine and modern machines.The wheel gear and shafts mainly install the direction that delivers the dint at the principal axis box.The passing to process to make them can is divided into many model numbers, useding for many situations respectively.So we must be the multilayers to the understanding of the wheel gear and shaft in many ways . Key words: Wheel gear;ShaftIn the force analysis of spur gears, the forces are assumed to act in a single plane. We shall study gears in which the forces have three dimensions. The reason for this, in the case of helical gears, is that the teeth are not parallel to the axis of rotation. And in the case of bevel gears, the rotational axes are not parallel to each other. There are also other reasons, as we shall learn. Helical gears are used to transmit motion between parallel shafts. The helix angle is the same on each gear, but one gear must have a right-hand helix and the other a left-hand helix. The shape of the tooth is an involute helicoid. If a piece of paper cut in the shape of a parallelogram is wrapped around a cylinder, the angular edge of the paper becomes a helix. If we unwind this paper, each point on the angular edge generates an involute curve. The surface obtained when every point on the edge generates an involute is called an involute helicoid.The initial contact of spur-gear teeth is a line extending all the way across the face of the tooth. The initial contact of helical gear teeth is a point, which changes into a line as the teeth come into more engagement. In spur gears the line of contact is parallel to the axis of the rotation; in helical gears, the line is diagonal across the face of the tooth. It is this gradual of the teeth and the smooth transfer of load from one tooth to another, which give helical gears the ability to transmit heavy loads at high speeds. Helical gears subject the shaft bearings to both radial and thrust loads. When the thrust loads become high or are objectionable for other reasons, it may be desirable to use double helical gears. A double helical gear (herringbone) is equivalent to two helical gears of opposite hand, mounted side by side on the same shaft. They develop opposite thrust reactions and thus cancel out the thrust load. When two or more single helical gears are mounted on the same shaft, the hand of the gears should be selected so as to produce the minimum thrust load.Crossed-helical, or spiral, gears are those in which the shaft centerlines are neither parallel nor intersecting. The teeth of crossed-helical fears have point contact with each other, which changes to line contact as the gears wear in. For this reason they will carry out very small loads and are mainly for instrumental applications, and are definitely not recommended for use in the transmission of power. There is on difference between a crossed helical gear and a helical gear until they are mounted in mesh with each other. They are manufactured in the same way. A pair of meshed crossed helical gears usually have the same hand; that is ,a right-hand driver goes with a right-hand driven. In the design of crossed-helical gears, the minimum sliding velocity is obtained when the helix angle are equal. However, when the helix angle are not equal, the gear with the larger helix angle should be used as the driver if both gears have the same hand.Worm gears are similar to crossed helical gears. The pinion or worm has a small number of teeth, usually one to four, and since they completely wrap around the pitch cylinder they are called threads. Its mating gear is called a worm gear, which is not a true helical gear. A worm and worm gear are used to provide a high angular-velocity reduction between nonintersecting shafts which are usually at right angle. The worm gear is not a helical gear because its face is made concave to fit the curvature of the worm in order to provide line contact instead of point contact. However, a disadvantage of worm gearing is the high sliding velocities across the teeth, the same as with crossed helical gears.Worm gearing are either single or double enveloping. A single-enveloping gearing is one in which the gear wraps around or partially encloses the worm.. A gearing in which each element partially encloses the other is, of course, a double-enveloping worm gearing. The important difference between the two is that area contact exists between the teeth of double-enveloping gears while only line contact between those of single-enveloping gears. The worm and worm gear of a set have the same hand of helix as for crossed helical gears, but the helix angles are usually quite different. The helix angle on the worm is generally quite large, and that on the gear very small. Because of this, it is usual to specify the lead angle on the worm, which is the complement of the worm helix angle, and the helix angle on the gear; the two angles are equal for a 90-deg. Shaft angle. When gears are to be used to transmit motion between intersecting shaft, some of bevel gear is required. Although bevel gear are usually made for a shaft angle of 90 deg. They may be produced for almost any shaft angle. The teeth may be cast, milled, or generated. Only the generated teeth may be classed as accurate. In a typical bevel gear mounting, one of the gear is often mounted outboard of the bearing. This means that shaft deflection can be more pronounced and have a greater effect on the contact of teeth. Another difficulty, which occurs in predicting the stress in bevel-gear teeth, is the fact the teeth are tapered.Straight bevel gears are easy to design and simple to manufacture and give very good results in service if they are mounted accurately and positively. As in the case of squr gears, however, they become noisy at higher values of the pitch-line velocity. In these cases it is often go 马棚网od design practice to go to the spiral bevel gear, which is the bevel counterpart of the helical gear. As in the case of helical gears, spiral bevel gears give a much smoother tooth action than straight bevel gears, and hence are useful where high speed are encountered.It is frequently desirable, as in the case of automotive differential applications, to have gearing similar to bevel gears but with the shaft offset. Such gears are called hypoid gears because their pitch surfaces are hyperboloids of revolution. The tooth action between such gears is a combination of rolling and sliding along a straight line and has much in common with that of worm gears.A shaft is a rotating or stationary member, usually of circular cross section, having mounted upon it such elementsas gears, pulleys, flywheels, cranks, sprockets, and other power-transmission elements. Shaft may be subjected to bending, tension, compression, or torsional loads, acting singly or in combination with one another. When they are combined, one may expect to find both static and fatigue strength to be important design considerations, since a single shaft may be subjected to static stresses, completely reversed, and repeated stresses, all acting at the same time.The word “shaft”covers numerous variations, such as axles and spindles. Anaxle is a shaft, wither stationary or rotating, nor subjected to torsion load.A shirt rotating shaft is often called a spindle.When either the lateral or the torsional deflection of a shaft must be held to close limits, the shaft must be sized on the basis of deflection before analyzing the stresses. The reason for this is that, if the shaft is made stiff enough so that the deflection is not too large, it is probable that the resulting stresses will be safe. But by no means should the designer assume that they are safe; it is almost always necessary to calculate them so that he knows they are within acceptable limits. Whenever possible, the power-transmission elements, such as gears or pullets, should be located close to the supporting bearings, This reduces the bending moment, and hence the deflection and bending stress.Although the von Mises-Hencky-Goodman method is difficult to use in design of shaft, it probably comes closest to predicting actual failure. Thus it is a good way of checking a shaft that has already been designed or of discovering why a particular shaft has failed in service. Furthermore, there are a considerable number of shaft-design problems in which the dimension are pretty well limited by other considerations, such as rigidity, and it is only necessary for the designer to discover something about the fillet sizes, heat-treatment, and surface finish and whether or not shot peening is necessary in order to achieve the required life and reliability.Because of the similarity of their functions, clutches and brakes are treated together. In a simplified dynamic representation of a friction clutch, or brake, two in 马棚网ertias I1 and I2 traveling at the respective angular velocities W1 and W2, one of which may be zero in the case of brake, are to be brought to the same speed by engaging the clutch or brake. Slippage occurs because the two elements are running at different speeds and energy is dissipated during actuation, resulting in a temperature rise. In analyzing the performance of these devices we shall be interested in the actuating force, the torque transmitted, the energy loss and the temperature rise. The torque transmitted is related to the actuating force, the coefficient of friction, and the geometry of the clutch or brake. This is problem in static, which will have to be studied separately for eath geometric configuration. However, temperature rise is related to energy loss and can be studied without regard to the type of brake or clutch because the geometry of interest is the heat-dissipating surfaces. The various types of clutches and brakes may be classified as fllows:1. Rim type with internally expanding shoes2. Rim type with externally contracting shoes3. Band type4. Disk or axial type5. Cone type6. Miscellaneous typeThe analysis of all type of friction clutches and brakes use the same general procedure. The following step are necessary:1. Assume or determine the distribution of pressure on the frictional surfaces.2. Find a relation between the maximum pressure and the pressure at any point3. Apply the condition of statical equilibrium to find (a) the actuating force,(b) the torque, and (c) the support reactions.Miscellaneous clutches include several types, such as the positive-contact clutches, overload-release clutches, overrunning clutches, magnetic fluid clutches, and others.A positive-contact clutch consists of a shift lever and two jaws. The greatest differences between the various types of positive clutches are concerned with the design of the jaws. To provide a longer period of time for shift action during engagement, the jaws may be ratchet-shaped, or gear-tooth-shaped. Sometimes a great many teeth or jaws are used, and they may be cut either circumferentially, so that they engage by cylindrical mating, or on the faces of the mating elements.Although positive clutches are not used to the extent of the frictional-contact type, they do have important applications where synchronous operation is required.Devices such as linear drives or motor-operated screw drivers must run todefinite limit and then come to a stop. An overload-release type of clutch is required for these applications. These clutches are usually spring-loaded so as to release at a predetermined toque. The clicking sound which is heard when the overload point is reached is considered to be a desirable signal.An overrunning clutch or coupling permits the driven member of a machine to “freewheel”or “overrun”because the driver is stopped or because another source of power increase the speed of the driven. This 马棚网type of clutch usually uses rollers or balls mounted between an outer sleeve and an inner member having flats machined around the periphery. Driving action is obtained by wedging the rollers between the sleeve and the flats. The clutch is therefore equivalent to a pawl and ratchet with an infinite number of teeth.Magnetic fluid clutch or brake is a relatively new development which has two parallel magnetic plates. Between these plates is a lubricated magnetic powder mixture. An electromagnetic coil is inserted somewhere in the magnetic circuit. By varying the excitation to this coil, the shearing strength of the magnetic fluid mixture may be accurately controlled. Thus any condition from a full slip to a frozen lockup may be obtained. Introduciton of MachiningHave a shape as a processing method, all machining process for the production of the most commonly used and most important method. Machining process is a process generated shape, in this process, Drivers device on the workpiece material to be in the form of chip removal. Although in some occasions, the workpiece under no circumstances, the use of mobile equipment to the processing, However, the majority of the machining is not only supporting the workpiece also supporting tools and equipment to complete.Machining know the process has two aspects. Small group of low-cost production. For casting, forging and machining pressure, every production of a specific shape of the workpiece, even a spare parts, almost have to spend the high cost of processing. Welding to rely on the shape of the structure, to a large extent, depend on effective in the form of raw materials. In general, through the use of expensive equipment and without special processing conditions, can be almost any type of raw materials, mechanical processing to convert the raw materials processed into the arbitrary shape of the structure, as long as the external dimensions large enough, it is possible. Because of a production of spare parts, even when the parts and structure of the production batch sizes are suitable for the original casting, Forging or pressure processing to produce, but usually prefer machining.Strict precision and good surface finish, Machining the second purpose is the establishment of the high precision and surface finish possible on thebasis of. Many parts, if any other means of production belonging to the large-scale production, Well Machining is a low-tolerance and can meet the requirements of small batch production. Besides, many parts on the production and processing of coarse process to improve its general shape of the surface. It is only necessary precision and choose only the surface machining. For instance, thread, in addition to mechanical processing, almost no other processing method for processing. Another example is the blacksmith pieces keyhole processing, as well as training to be conducted immediately after the mechanical completion of the processing.Primary Cutting ParametersCutting the work piece and tool based on the basic relationship between the following four elements to fully describe : the tool geometry, cutting speed, feed rate, depth and penetration of a cutting tool.Cutting Tools must be of a suitable material to manufacture, it must be strong, tough, hard and wear-resistant. Tool geometry -- to the tip plane and cutter angle characteristics -- for each cutting process must be correct. Cutting speed is the cutting edge of work piece surface rate, it is inches per minute to show. In order to effectively processing, and cutting speed must adapt to the level of specific parts -- with knives. Generally, the more hard work piece material, the lower the rate.Progressive Tool to speed iscut into the work piece speed. If the work piece or tool for rotating movement, feed rate per round over the number of inches to the measurement. When the work piece or tool for reciprocating movement and feed rate on each trip through the measurement of inches. Generally, in other conditions, feed rate and cutting speed is inversely proportional to。
齿轮和轴的介绍外文文献翻译、中英文翻译

XX设计(XX)外文资料翻译院系专业学生姓名班级学号外文出处Manufacturing Engineering andTechnology-Machining附件:1.外文资料翻译译文(约3000汉字);2.外文资料原文(与课题相关的1万印刷符号左右)。
附件1:外文资料翻译译文齿轮和轴的介绍摘要在传统机械和现代机械中齿轮和轴的重要地位是不可动摇的。
齿轮和轴主要安装在主轴箱来传递力的方向。
通过加工制造它们可以分为许多的型号,分别用于许多的场合。
所以我们对齿轮和轴的了解和认识必须是多层次多方位的。
关键词:齿轮;轴在直齿圆柱齿轮的受力分析中,是假定各力作用在单一平面的。
我们将研究作用力具有三维坐标的齿轮。
因此,在斜齿轮的情况下,其齿向是不平行于回转轴线的。
而在锥齿轮的情况中各回转轴线互相不平行。
像我们要讨论的那样,尚有其他道理需要学习,掌握。
斜齿轮用于传递平行轴之间的运动。
倾斜角度每个齿轮都一样,但一个必须右旋斜齿,而另一个必须是左旋斜齿。
齿的形状是一渐开线螺旋面。
如果一张被剪成平行四边形(矩形)的纸张包围在齿轮圆柱体上,纸上印出齿的角刃边就变成斜线。
如果我展开这张纸,在血角刃边上的每一个点就发生一渐开线曲线。
直齿圆柱齿轮轮齿的初始接触处是跨过整个齿面而伸展开来的线。
斜齿轮轮齿的初始接触是一点,当齿进入更多的啮合时,它就变成线。
在直齿圆柱齿轮中,接触是平行于回转轴线的。
在斜齿轮中,该先是跨过齿面的对角线。
它是齿轮逐渐进行啮合并平稳的从一个齿到另一个齿传递运动,那样就使斜齿轮具有高速重载下平稳传递运动的能力。
斜齿轮使轴的轴承承受径向和轴向力。
当轴向推力变的大了或由于别的原因而产生某些影响时,那就可以使用人字齿轮。
双斜齿轮(人字齿轮)是与反向的并排地装在同一轴上的两个斜齿轮等效。
他们产生相反的轴向推力作用,这样就消除了轴向推力。
当两个或更多个单向齿斜齿轮被在同一轴上时,齿轮的齿向应作选择,以便产生最小的轴向推力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GEAR AND SHAFT INTRODUCTIONAbstract: The important position of the wheel gear and shaft can't falter in traditional machine and modern machines.The wheel gear and shafts mainly install the direction that delivers the dint at the principal axis box.The passing to process to make them can is divided into many model numbers, useding for many situations respectively.So we must be the multilayers to the understanding of the wheel gear and shaft in many ways .Key words: Wheel gear;ShaftIn the force analysis of spur gears, the forces are assumed to act in a single plane. We shall study gears in which the forces have three dimensions. The reason for this, in the case of helical gears, is that the teeth are not parallel to the axis of rotation. And in the case of bevel gears, the rotational axes are not parallel to each other. There are also other reasons, as we shall learn.Helical gears are used to transmit motion between parallel shafts. The helix angle is the same on each gear, but one gear must have a right-hand helix and the other a left-hand helix. The shape of the tooth is an involute helicoid. If a piece of paper cut in the shape of a parallelogram is wrapped around a cylinder, the angular edge of the paper becomes a helix. If we unwind this paper, each point on the angular edge generates an involute curve. The surface obtained when every point on the edge generates an involute is called an involute helicoid.The initial contact of spur-gear teeth is a line extending all the way across the face of the tooth. The initial contact of helical gear teeth is a point, which changes into a line as the teeth come into more engagement. In spur gears the line of contact is parallel to the axis of the rotation; in helical gears, the line is diagonal across the face of the tooth. It is this gradual of the teeth and the smooth transfer of load from one tooth to another, which give helical gears the ability to transmit heavy loads at high speeds. Helical gears subject the shaft bearings to both radial and thrust loads. When the thrust loads become high or are objectionable for other reasons, it may be desirable to use double helical gears. A double helical gear (herringbone) is equivalent to two helical gears of opposite hand, mounted side by side on the same shaft. They develop opposite thrust reactions and thus cancel out the thrust load. When two or more single helical gears are mounted on the same shaft, the hand of the gears should be selected so as to produce the minimum thrust load.Crossed-helical, or spiral, gears are those in which the shaft centerlines are neither parallel nor intersecting. The teeth of crossed-helical fears have point contact with each other, which changes to line contact as the gears wear in. For this reason they will carry out very small loads and are mainly for instrumental applications, and are definitely not recommended for use in the transmission of power. There is on difference between a crossed helical gear and a helical gear until they are mounted in mesh with each other. They are manufactured in the same way. A pair of meshed crossed helical gears usually have the same hand; that is ,a right-hand driver goeswith a right-hand driven. In the design of crossed-helical gears, the minimum sliding velocity is obtained when the helix angle are equal. However, when the helix angle are not equal, the gear with the larger helix angle should be used as the driver if both gears have the same hand.Worm gears are similar to crossed helical gears. The pinion or worm has a small number of teeth, usually one to four, and since they completely wrap around the pitch cylinder they are called threads. Its mating gear is called a worm gear, which is not a true helical gear. A worm and worm gear are used to provide a high angular-velocity reduction between nonintersecting shafts which are usually at right angle. The worm gear is not a helical gear because its face is made concave to fit the curvature of the worm in order to provide line contact instead of point contact. However, a disadvantage of worm gearing is the high sliding velocities across the teeth, the same as with crossed helical gears.Worm gearing are either single or double enveloping. A single-enveloping gearing is one in which the gear wraps around or partially encloses the worm.. A gearing in which each element partially encloses the other is, of course, a double-enveloping worm gearing. The important difference between the two is that area contact exists between the teeth of double-enveloping gears while only line contact between those ofsingle-enveloping gears. The worm and worm gear of a set have the same hand of helix as for crossed helical gears, but the helix angles are usually quite different. The helix angle on the worm is generally quite large, and that on the gear very small. Because of this, it is usual to specify the lead angle on the worm, which is the complement of the worm helix angle, and the helix angle on the gear; the two angles are equal for a 90-deg. Shaft angle.When gears are to be used to transmit motion between intersecting shaft, some of bevel gear is required. Although bevel gear are usually made for a shaft angle of 90 deg. They may be produced for almost any shaft angle. The teeth may be cast, milled, or generated. Only the generated teeth may be classed as accurate. In a typical bevel gear mounting, one of the gear is often mounted outboard of the bearing. This means that shaft deflection can be more pronounced and have a greater effect on the contact of teeth. Another difficulty, which occurs in predicting the stress in bevel-gear teeth, is the fact the teeth are tapered.Straight bevel gears are easy to design and simple to manufacture and give very good results in service if they are mounted accurately and positively. As in the case of squr gears, however, they become noisy at higher values of the pitch-line velocity. In these cases it is often good design practice to go to the spiral bevel gear, which is the bevel counterpart of the helical gear. As in the case of helical gears, spiral bevel gears give a much smoother tooth action than straight bevel gears, and hence are useful where high speed are encountered.It is frequently desirable, as in the case of automotive differential applications, to have gearing similar to bevel gears but with the shaft offset. Such gears are called hypoid gears because their pitch surfaces arehyperboloids of revolution. The tooth action between such gears is a combination of rolling and sliding along a straight line and has much in common with that of worm gears.A shaft is a rotating or stationary member, usually of circular cross section, having mounted upon it such elementsas gears, pulleys, flywheels, cranks, sprockets, and other power-transmission elements. Shaft may be subjected to bending, tension, compression, or torsional loads, acting singly or in combination with one another. When they are combined, one may expect to find both static and fatigue strength to be important design considerations, since a single shaft may be subjected to static stresses, completely reversed, and repeated stresses, all acting at the same time.The word “shaft” covers numerous variations, such as axles and spindles. Anaxle is a shaft, wither stationary or rotating, nor subjected to torsion load. A shirt rotating shaft is often called a spindle.When either the lateral or the torsional deflection of a shaft must be held to close limits, the shaft must be sized on the basis of deflection before analyzing the stresses. The reason for this is that, if the shaft is made stiff enough so that the deflection is not too large, it is probable that the resulting stresses will be safe. But by no means should the designer assume that they are safe; it is almost always necessary to calculate them so that he knows they are within acceptable limits. Whenever possible, the power-transmission elements, such as gears or pullets, should be located close to the supporting bearings, This reduces the bending moment, and hence the deflection and bending stress.Although the von Mises-Hencky-Goodman method is difficult to use in design of shaft, it probably comes closest to predicting actual failure. Thus it is a good way of checking a shaft that has already been designed or of discovering why a particular shaft has failed in service. Furthermore, there are a considerable number of shaft-design problems in which the dimension are pretty well limited by other considerations, such as rigidity, and it is only necessary for the designer to discover something about the fillet sizes, heat-treatment, and surface finish and whether or not shot peening is necessary in order to achieve the required life and reliability.Because of the similarity of their functions, clutches and brakes are treated together. In a simplified dynamic representation of a friction clutch, or brake, two inertias I1 and I2 traveling at the respective angular velocities W1 and W2, one of which may be zero in the case of brake, are to be brought to the same speed by engaging the clutch or brake. Slippage occurs because the two elements are running at different speeds and energy is dissipated during actuation, resulting in a temperature rise. In analyzing the performance of these devices we shall be interested in the actuating force, the torque transmitted, the energy loss and the temperature rise. The torque transmitted is related to the actuating force, the coefficient of friction, and the geometry of the clutch or brake. This is problem in static, which will have to be studied separately for eath geometric configuration. However, temperature rise is related to energy loss and can be studied without regard to the type of brake orclutch because the geometry of interest is the heat-dissipating surfaces. The various types of clutches and brakes may be classified as fllows:1. Rim type with internally expanding shoes2. Rim type with externally contracting shoes3. Band type4. Disk or axial type5. Cone type6. Miscellaneous typeThe analysis of all type of friction clutches and brakes use the same general procedure. The following step are necessary:1. Assume or determine the distribution of pressure on the frictional surfaces.2. Find a relation between the maximum pressure and the pressure at any point3. Apply the condition of statical equilibrium to find (a) the actuating force, (b) the torque, and (c) the support reactions.Miscellaneous clutches include several types, such as the positive-contact clutches, overload-release clutches, overrunning clutches, magnetic fluid clutches, and others.A positive-contact clutch consists of a shift lever and two jaws. The greatest differences between the various types of positive clutches are concerned with the design of the jaws. To provide a longer period of time for shift action during engagement, the jaws may be ratchet-shaped, or gear-tooth-shaped. Sometimes a great many teeth or jaws are used, and they may be cut either circumferentially, so that they engage by cylindrical mating, or on the faces of the mating elements.Although positive clutches are not used to the extent of the frictional-contact type, they do have important applications where synchronous operation is required.Devices such as linear drives or motor-operated screw drivers must run to definite limit and then come to a stop. An overload-release type of clutch is required for these applications. These clutches are usuallyspring-loaded so as to release at a predetermined toque. The clicking sound which is heard when the overload point is reached is considered to be a desirable signal.An overrunning clutch or coupling permits the driven member of a machine to “freewheel” or “overrun” because the driver is stopped or because another source of power increase the speed of the driven. This type of clutch usually uses rollers or balls mounted between an outer sleeve and an inner member having flats machined around the periphery. Driving action is obtained by wedging the rollers between the sleeve and the flats. The clutch is therefore equivalent to a pawl and ratchet with an infinite number of teeth.Magnetic fluid clutch or brake is a relatively new development which has two parallel magnetic plates. Between these plates is a lubricated magnetic powder mixture. An electromagnetic coil is inserted somewhere in the magnetic circuit. By varying the excitation to this coil, the shearing strength of the magnetic fluid mixture may be accurately controlled. Thus any condition from a full slip to a frozen lockup may be obtained.。