平面向量坐标运算及共线的坐标表示
平面向量的坐标运算以及共线的坐标表示

的坐标.
如果P1P=
1 2
PP2
(如图),那么
y
OP=OP1+P1P=OP1+13 P1P2
P2
=OP1+ 13(OP2-OP1)
=
2 3
OP1+
13OP2
P P1
O
=(2x13+x2 ,2y13+y2). x 即点P的坐标是 (2x13+x2,2y13+y2).
同理,如果P1P=2PP2,那么点P的坐标是 ( x1+32x2,y1+32y2).
理由.
x
∴顶点D的坐标为(2,2).
CHENLI
8
向量a与非零向量b平行(共线)的充要条件是有且 只有一个实数λ,使得
a=λb.
如何用坐标表示两个共线向量?
CHENLI
9
设a=(x1,y1),b=(x2,y2),其中b≠0.则由a=λb, 有
(x1,y1)=λ(x2,y2)
即 消去λ后得:
x1=λx2, y1=λy2.
解:
即 同理可得
a + b=(x1i+y1j)+(x2i+y2j ) =(x1+x2)i+(y1+y2)j
a + b =(x1+x2,y1+y2)
a - b =(x1-x2,y1-y2)
两个向量和(差)的坐标分别等于这两个向量相 应坐标的和(差).
CHENLI
3
λa =λ(x1i+y1j) =λx1i+λy1j
x
∴
1=3-x 2=4-y
∴ x=2 y=2
∴顶点D的坐标为(2,2).
平面向量坐标运算及共线的坐标表示

那么a,b满足什么关系? a=λb.
思考2:设a=(x1,y1),b=(x2,y2),若向量a, b共线(其中b≠0),则这两个向量的坐标应 满足什么关系?反之成立吗?
㈣向量a,b(b≠0)共线 x1y2 x2y1
思考3:已知点P1(x1,y1),P2(x2,y2), 若点P分别是线段P1P2的中点、三等分点, 如何用向量方法求点P的坐标?
向量a+b,a-b,λa(λ∈R)如何分别用基底i、j表示?
a+b=(x1+x2)i+(y1+y2)j, a-b=(x1-x2)i+(y1-y2)j, λa=λx1i+λy1j.
a+b=(x1+x2,y1+y2); a-b=(x1-x2,y1-y2); λa=(λx1,λy1).
说明:向量和(差)的坐标等于这向量相应坐标的和(差); 实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.
则y ( B )
A. 6
B. -5
C. 7
D. -8
2. 若A(x, -1),B(1, 3),C(2, 5)三点共线,
则x的值为( B )
A. -3 B. -1 C. 1
D. 3
课后练习
3. 若 AB i 2 j, DC (3 x)i (4 y) j (其中i, j的方向分别与x轴、y轴正方向相 同且为单位向量), AB与DC共线,则x、y
海 盐高级中学 高新军
复习引入:
1.平面向量的基本定理是什么? 若e1、e2是同一平面内的两个不共线向量,则对于这一平面内的任 意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2. 2.用坐标表示向量的基本原理是什么?
设i、j是与x轴、y轴同向的两个单位向量,若a=xi+yj,则a= (x,y).
平面向量的坐标运算

别业岁月悠长,有暗香盈袖。
冗长了日与夜,空掷了乐与悲。
遂撰文三两卷,遣尽浮光,以飨后学。
谨祝诸位:学业有成,前程似锦。
编者:李健,匠人,喜于斗室伏案两三卷,愁与身在红尘浪荡无涯。
写过一些铅字附庸了世态,跑过几个码头了断了青春。
如今归去来兮,只为了挥洒一方三尺讲台。
第2讲 平面向量基本定理及坐标表示一.知识梳理 1.平面向量基本定理如果12,e e 是平面内两个不共线的向量,那么对于这个平面内的任意向量a ,有且只有一对实数12,λλ,使1122a e e λλ=+.其中不共线的向量12,e e 叫做表示这一平面内所有向量的一组基底.2.平面向量的坐标运算 (1)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量坐标. ②设1122(,),(,)A x y B x y ,则2121(,)AB x x y y =--;||(AB x =(2)向量的加法、减法、数乘及向量的模:设1122(,),(,)a x y b x y ==1212(,)a b x x y y +=++;1212(,)a b x x y y -=--;11(,)a x y λλλ=;21||a x y =+.3.平面向量共线的坐标表示设1122(,),(,)a x y b x y ==,其中0b ≠,则12210a b x y x y ⇔-=∥. 二.要点整合 1.辨明三个易误点(1)注意能作为基底的两个向量必须是不共线的.(2)要注意运用两个向量,a b 共线坐标表示的充要条件12210x y x y -=.(3)要注意区分点的坐标与向量的坐标的不同,尽管形式上一样,但意义完全不同,向量坐标中既有大小的信息也有方向的信息.2.有关平面向量的两类本质(1)平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. (2)向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 三.典例精析1.平面向量基本定理及其应用【例题1】(1)在梯形ABCD 中,,2,,A B C D A B C D M N=∥分别是,C D B C 的中点,若AB AM AN λμ=+,则λμ+=( )1.5A 2.5B 3.5C 4.5D (2)在ABC 中,P 是AB 上一点,且21,33CP CA CB Q =+是BC 的中点,AQ 和CP 的交点为M ,又CM tCP =,则t = . 【变式1】(1)如图,在ABC 中,P 为线段AB 上的一点,OP xOA yOB =+,且2BP PA =,则( )21.,33A x y == 12.,33B x y == 13.,44C x y == 31.,44D x y ==(2)如图,在ABC 中,13AN NC =,P 是BN 上一点,若211AP mAB AC =+,则m = .2.平面向量的坐标运算【例题2】(1)已知(2,4),(3,1),(3,4)A B C ----.设,,AB a BC b CA c ===,且3,2C M c C N b==-. (Ⅰ)求33a b c +-;(Ⅱ)求满足a mb nc =+的实数,m n ; (Ⅲ)求,M N 的坐标及向量MN 的坐标.(2)给定两个长度为1的平面向量OA 和OB ,它们的夹角为23π.如图,点C 在以O 为圆心的AB 上运动.若(,)OC xOA yOB x y R =+∈,则x y +的最大值为 .【变式2】(1)已知O 为坐标原点,点C 是线段AB 上一点,且(1,1),(2,3)A C ,||2||BC AC =,则向量OB 的坐标是 .(2)(2014福建质检)如图,设向量(3,1),(1,3)OA OB ==,若OC =OA λOB μ+,且1λμ≥≥,则用阴影表示C 点所有可能的位置区域正确的是( )(3)已知||||2,a b a b ==⊥,若向量c 满足||2c a b --=,则||c 的取值范围是 .3.平面向量共线的坐标表示)两向量共线的充要条件的作用【例题3】(1)已知向量1(8,),(,1)2a xb x ==,其中0x >,若(2)(2)a b a b -+∥,则x 的值为( ).4A .8B .0C .2D(2)已知点(4,0),(4,4),(2,6)A B C ,则AC 与OB 的交点P 的坐标为 . (3)(2014广东佛山)设(1,2),(,1),(,0)OA OB a OC b =-=-=-,0a >,0,b O >为坐标原点,若,,A B C 三点共线,则12a b+的最小值为( ).2A .4B .6C .8D 【变式3】(1)已知向量(1,3),(2,1),(1,2)OA OB OC k k =-=-=+-,若,,A B C 三点不能构成三角形,则实数k 应满足的条件是( ).2A k =- 1.2B k =.1C k = .1D k =- (2)(2015河北唐山)设向量,a b 满足||25,(2,1)a b ==,且a 与b 的方向相反,则a 的坐标为 .(3)(2014陕西)设02πθ<<,向量(sin 2,cos ),(cos ,1)a b θθθ==,若a b ∥,则tan θ= .四.针对训练.A 组 基础训练1.如图,在平行四边形ABCD 中,E 为DC 边的中点,且,AB a AD b ==,则BE =( )1.2A b a -1.2B b a + 1.2C a b + 1.2D a b - 2.(2015宁夏质检)如图,设O 为平行四边形ABCD 两对角线的交点,给出下列向量组:①AD 与AB ;②DA 与BC ;③CA 与DC ;④OD 与OB .其中可作为该平面内其他向量的基底的是( ).A ①② .B ①③ .C ①④ .D ③④3.已知向量3,1),(0,2)a b =-=(.若实数k 与向量c 满足2a b kc +=,则c 可以是( ).,1)A - .(3)B - .(,1)C - .(3)D - 4.已知点(1,3),(4,1)A B -,则与向量AB 同方向的单位向量是( )34.(,)55A - 43.(,)55B - 34.(,)55C - 43.(,)55D -5.(2015吉林长春)如图,设向量12,OA e OB e ==,若12,e e 不共线,且点P 在线段AB 上,||:||2AP PB =,则OP =( )1212.33A e e -1221.33B e e + 1212.33C e e + 1221.33D e e -6.已知ABC 中,点D 在BC 边上,且2,s CD DB CD r AB AC ==+,则r s +的值是( ) 2.3A 4.3B .3C - .0D 7.若三点(1,5),(,2),(2,1)A B a C ----共线,则实数a 的取值范围是 .8.在ABC 中,点P 在BC 上,且2BP PC =,点Q 是AC 中点,若(4,3)PA =,(1,5)PQ =,则BC = .9.(2015江西九江){|(1,1)(1,2)}P a a m m R ==-+∈,{|(1,2)Q b b ==-(2,3),}n n R +∈是两个向量集合,则PQ 等于 .10.ABC 中,内角,,A B C 所对的边分别为,,a b c ,若(,)p a c b =+,(,)q b a c a =--,且p q ∥,则角C = . 11.已知(1,0),(2,1)a b ==.(Ⅰ)当k 为何值时,ka b -与2a b +共线;(Ⅱ)若23,AB a b BC a mb =+=+且,,A B C 三点共线,求m 的值.12.(2015山东莱芜)如图,已知ABC 中,点C 是以A 为中点的点B 的对称点,D 将OB分为2:1两部分的一个内分点,DC 和OA 交于点E ,设OA a =,OB b =. (Ⅰ)用a 和b 表示向量,OC DC ; (Ⅱ)若OE OA λ=,求实数λ的值..B 组 能力提升1.在平面直角坐标系中,点(0,0),(6,8)O P ,将向量OP 绕点O 按逆时针方向旋转34π后得到向量OQ ,则Q 点的坐标是( ).(2)A - .(2)B - .(,2)C -- .(,2)D - 2.已知直线x y a +=与圆224x y +=交于,A B 两点,且||OA OB +=||OA OB -,其中O 为坐标原点,则实数a 的值为( ).2A .2B - .2C 或2- D3.如图,在四边形,,,A B C D 中,1AB BC CD ===,且90B ∠=,BCD ∠=135,记向量,AB a AC b ==,则AD =( )2(1)2b -+2.(1)2B b ++ 2.(1)2C b +-2(1)2b +-4.(2014湖南)在平面直角坐标系中,O 为原点,(1,0),(3,0)A B C -,动点D 满足||1CD =,则||OA OB OD ++的取值范围是( ).[4,6]A .191]B .[7]C .71]D 5.在平面直角坐标系中,O 为坐标原点,已知两点(3,1),(1,3)A B -,若点C 满足(,)OC OA OB R αβαβ=+∈且1αβ+=,则点C 的轨迹方程为 .6.设向量1122(,),(,)a x y b x y ==,定义一种向量积1122(,)a b a b a b ⊗=,已知向量1(2,),(,0)23m b π==,点(,)P x y 在sin y x =图像上运动.Q 是函数()y f x =图像上的点,且满足OQ m OP n =⊗+(其中O 为坐标原点),则函数()y f x =的值域是 .7.如图,,,A B C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外一点D ,若OC mOA nOB =+,则m n +的取值范围是 .8.如图,设,Ox Oy 为平面内相交成60角的两条数轴,12,e e 分别是x 轴、y 轴正方向同方向的单位向量,若12OP xe ye =+,则把有序实数对(,)x y 叫做向量OP 在坐标系xOy 中的坐标.若OP 的坐标为(1,1). (Ⅰ)求||OP ;(Ⅱ)过点P 作直线l 分别与x 轴、y 轴正方向交于点,A B ,试确定,A B 的位置,使AOB 面积最小,并求出最小值.。
2.3.4平面向量共线的坐标表示

新授课:平面向量共线的坐标表示
探究 问题: 如果向量 a b 共线(其中 b≠ 0 , ), 那么a, 满足什么关系? b
r r a = λb
思考: 设 a=(x1,y1), b =(x2,y2),若向量 0, b 共线(其中a ≠b),则这两个向量的坐标应满 足什么关系?
a // b(b ≠ 0) ⇔ x1 y2 − x2 y1 = 0
2.3.4平面向量共线的 2.3.4平面向量共线的 坐标表示
1、平面向量基本定理
r 量, 那么对这一平面内的任一向量 a , 有且只 r r r 有一对实数 λ1 , λ2 ,使 a = λ1e1 + λ2 e2
2.根据平面向量基本定理实现了向量由“几何” 到“代数”的过渡,建立了向量的坐标表达式, 这样,平面向量的线性运算就能通过坐标来 实现。
例2 设点P是线段P1 P2 上的一点, P1 , P2 的坐 标分别是 ( x1 , y1 ), ( x 2 , y2 ) . (1)当点P是线段 P1 P2 的中点时,求点P的坐标. (2)当点P是线段 P1 P2 的一个三等分点时,求 点P的坐标. y P2 结论:中点坐标公式:
x1 + x 2 x= 2 y1 + y2 y= 2
x1 y2 − x 2 y1 = 0 (2) a ∥ b (b ≠ 0) 二.中点坐标公式: 三.线段定比分点坐标公式:
x1 + x 2 x= 2 P1 ( x1 , y1 ) x1 + λx 2 x= 1+ λ y1 + λy2 y= 1+ λ
y1 + y2 y= 2
P2 ( x 2 , y2 )
r r 如果 e1 , e2 是同一平面内的两个不共线向
人教A版2019高中数学必修4讲义:第二章 2.3 2.3.4 平面向量共线的坐标表示_含答案

2.3.4 平面向量共线的坐标表示预习课本P98~100,思考并完成以下问题如何利用向量的坐标运算表示两个向量共线?[新知初探]平面向量共线的坐标表示[点睛] (1)平面向量共线的坐标表示还可以写成x 1x 2=y 1y 2(x 2≠0,y 2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例;(2)当a ≠0,b =0时,a ∥b ,此时x 1y 2-x 2y 1=0也成立,即对任意向量a ,b 都有:x 1y 2-x 2y 1=0⇔a ∥b .[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)已知a =(x 1,y 1),b =(x 2,y 2),若a ∥b ,则必有x 1y 2=x 2y 1.( )(2)向量(2,3)与向量(-4,-6)反向.( )答案:(1)√ (2)√2.若向量a =(1,2),b =(2,3),则与a +b 共线的向量可以是( )A .(2,1)B .(-1,2)C .(6,10)D .(-6,10)答案:C3.已知a =(1,2),b =(x,4),若a ∥b ,则x 等于( )A .-12 B.12C .-2D .2 答案:D4.已知向量a =(-2,3),b ∥a ,向量b 的起点为A (1,2),终点B 在x 轴上,则点B 的坐标为________.答案:⎝⎛⎭⎫73,0[典例] (1)已知向量a =(1,2),b =(λ,1),若(a +2b )∥(2a -2b ),则λ的值等于( ) A.12 B.13C .1D .2 (2)已知A (2,1),B (0,4),C (1,3),D (5,-3).判断AB 与CD 是否共线?如果共线,它们的方向相同还是相反?[解析] (1)法一:a +2b =(1,2)+2(λ,1)=(1+2λ,4),2a -2b =2(1,2)-2(λ,1)=(2-2λ,2),由(a +2b )∥(2a -2b )可得2(1+2λ)-4(2-2λ)=0,解得λ=12. 法二:假设a ,b 不共线,则由(a +2b )∥(2a -2b )可得a +2b =μ(2a -2b ),从而⎩⎪⎨⎪⎧1=2μ,2=-2μ,方程组显然无解,即a +2b 与2a -2b 不共线,这与(a +2b )∥(2a -2b )矛盾,从而假设不成立,故应有a ,b 共线,所以1λ=21,即λ=12. [答案] A(2)[解] AB =(0,4)-(2,1)=(-2,3),CD =(5,-3)-(1,3)=(4,-6), ∵(-2)×(-6)-3×4=0,∴AB ,CD 共线. 又CD =-2AB ,∴AB ,CD 方向相反.综上,AB 与CD 共线且方向相反.已知a =(1,2),b =(-3,2),当k 为何值时,ka +b 与a -3b 平行,平行时它们的方向相同还是相反?解:ka +b =k (1,2)+(-3,2)=(k -3,2k +2), a -3b =(1,2)-3(-3,2)=(10,-4),若ka +b 与a -3b 平行,则-4(k -3)-10(2k +2)=0,解得k =-13,此时ka +b =-13a +b =-13(a -3b ),故ka +b 与a -3b 反向. ∴k =-13时,ka +b 与a -3b 平行且方向相反.[典例] (1)已知OA =(3,4),OB =(7,12),OC =(9,16),求证:A ,B ,C 三点共线;(2)设向量OA =(k,12),OB =(4,5),OC =(10,k ),当k 为何值时,A ,B ,C 三点 共线?[解] (1)证明:∵AB =OB -OA =(4,8),AC =OC -OA =(6,12), ∴AC =32AB ,即AB 与AC 共线. 又∵AB 与AC 有公共点A ,∴A ,B ,C 三点共线.(2)若A ,B ,C 三点共线,则AB ,AC 共线, ∵AB =OB -OA =(4-k ,-7),AC =OC -OA =(10-k ,k -12),∴(4-k )(k -12)+7(10-k )=0.解得k =-2或k =11.一般是看AB 与BC AB 与AC AC BC AC BC AB λBC ,或AB =λAC 设点A (x,1),B (2x,2),C (1,2x ),D (5,3x ),当x 为何值时,AB 与CD 共线且方向相同,此时,A ,B ,C ,D 能否在同一条直线上?解:AB =(2x,2)-(x,1)=(x,1),BC =(1,2x )-(2x,2)=(1-2x,2x -2),CD =(5,3x )-(1,2x )=(4,x ).由AB 与CD 共线,所以x 2=1×4,所以x =±2.又AB 与CD 方向相同,所以x =2.此时,AB =(2,1),BC =(-3,2),而2×2≠-3×1,所以AB 与BC 不共线,所以A ,B ,C 三点不在同一条直线上.所以A ,B ,C ,D 不在同一条直线上.题点一:两直线平行判断1. 如图所示,已知直角梯形ABCD,AD⊥AB,AB=2AD=2CD,过点C作CE⊥AB于E,用向量的方法证明:DE∥BC;证明:如图,以E为原点,AB所在直线为x轴,EC所在直线为y轴建立直角坐标系,设|AD|=1,则|DC|=1,|AB|=2.∵CE⊥AB,而AD=DC,∴四边形AECD为正方形,∴可求得各点坐标分别为E(0,0),B(1,0),C(0,1),D(-1,1).∵ED=(-1,1)-(0,0)=(-1,1),BC=(0,1)-(1,0)=(-1,1),∴ED=BC,∴ED∥BC,即DE∥BC.题点二:几何形状的判断2.已知直角坐标平面上四点A(1,0),B(4,3),C(2,4),D(0,2),求证:四边形ABCD是等腰梯形.证明:由已知得,AB=(4,3)-(1,0)=(3,3),CD=(0,2)-(2,4)=(-2,-2).∵3×(-2)-3×(-2)=0,∴AB与CD共线.AD=(-1,2),BC=(2,4)-(4,3)=(-2,1),∵(-1)×1-2×(-2)≠0,∴AD与BC不共线.∴四边形ABCD是梯形.∵BC=(-2,1),AD=(-1,2),∴|BC|=5=|AD|,即BC=AD.故四边形ABCD是等腰梯形.题点三:求交点坐标3. 如图所示,已知点A(4,0),B(4,4),C(2,6),求AC和OB交点P的坐标.解:法一:设OP=t OB=t(4,4)=(4t,4t),则AP=OP-OA=(4t,4t)-(4,0)=(4t-4,4t),AC=OC-OA=(2,6)-(4,0)=(-2,6).由AP ,AC 共线的条件知(4t -4)×6-4t ×(-2)=0,解得t =34.∴OP =(3,3). ∴P 点坐标为(3,3).法二:设P (x ,y ), 则OP =(x ,y ),OB =(4,4). ∵OP ,OB 共线,∴4x -4y =0.① 又CP =(x -2,y -6),CA =(2,-6), 且向量CP ,CA 共线,∴-6(x -2)+2(6-y )=0.②解①②组成的方程组,得x =3,y =3,∴点P 的坐标为(3,3).应用向量共线的坐标表示求解几何问题的步骤层级一 学业水平达标1.下列向量组中,能作为表示它们所在平面内所有向量的基底的是( )A .e 1=(0,0),e 2=(1,-2)B .e 1=(-1,2),e 2=(5,7)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=⎝⎛⎭⎫12,-34 解析:选B A 中向量e 1为零向量,∴e 1∥e 2;C 中e 1=12e 2,∴e 1∥e 2;D 中e 1=4e 2,∴e 1∥e 2,故选B.2.已知点A (1,1),B (4,2)和向量a =(2,λ),若a ∥AB ,则实数λ的值为( )A .-23B.32C.23 D .-32解析:选C 根据A ,B 两点的坐标,可得AB =(3,1),∵a ∥AB ,∴2×1-3λ=0,解得λ=23,故选C. 3.已知A (2,-1),B (3,1),则与AB 平行且方向相反的向量a 是( )A .(2,1)B .(-6,-3)C .(-1,2)D .(-4,-8)解析:选D AB =(1,2),向量(2,1)、(-6,-3)、(-1,2)与(1,2)不平行;(-4,-8)与(1,2)平行且方向相反.4.已知向量a =(x,2),b =(3,-1),若(a +b )∥(a -2b ),则实数x 的值为( )A .-3B .2C .4D .-6解析:选D 因为(a +b )∥(a -2b ),a +b =(x +3,1),a -2b =(x -6,4),所以4(x +3)-(x -6)=0,解得x =-6.5.设a =⎝⎛⎭⎫32,tan α,b =⎝⎛⎭⎫cos α,13,且a ∥b ,则锐角α为( ) A .30°B .60°C .45°D .75° 解析:选A ∵a ∥b ,∴32×13-tan α cos α=0, 即sin α=12,α=30°. 6.已知向量a =(3x -1,4)与b =(1,2)共线,则实数x 的值为________.解析:∵向量a =(3x -1,4)与b =(1,2)共线,∴2(3x -1)-4×1=0,解得x =1.答案:17.已知A (-1,4),B (x ,-2),若C (3,3)在直线AB 上,则x =________. 解析:AB =(x +1,-6),AC =(4,-1), ∵AB ∥AC ,∴-(x +1)+24=0,∴x =23.答案:238.已知向量a =(1,2),b =(-2,3),若λa +μb 与a +b 共线,则λ与μ的关系是________.解析:∵a =(1,2),b =(-2,3),∴a +b =(1,2)+(-2,3)=(-1,5),λa +μb =λ(1,2)+μ(-2,3)=(λ-2μ,2λ+3μ),又∵(λa +μb )∥(a +b ),∴-1×(2λ+3μ)-5(λ-2μ)=0,∴λ=μ.答案:λ=μ9.已知A ,B ,C 三点的坐标为(-1,0),(3,-1),(1,2),并且AE =13AC ,BF =13BC ,求证:EF ∥AB .证明:设E ,F 的坐标分别为(x 1,y 1)、(x 2,y 2), 依题意有AC =(2,2),BC =(-2,3),AB =(4,-1). ∵AE =13AC ,∴(x 1+1,y 1)=13(2,2). ∴点E 的坐标为⎝⎛⎭⎫-13,23. 同理点F 的坐标为⎝⎛⎭⎫73,0,EF =⎝⎛⎭⎫83,-23. 又83×(-1)-4×⎝⎛⎭⎫-23=0,∴EF ∥AB . 10.已知向量a =(2,1),b =(1,1),c =(5,2),m =λb +c (λ为常数).(1)求a +b ;(2)若a 与m 平行,求实数λ的值.解:(1)因为a =(2,1),b =(1,1),所以a +b =(2,1)+(1,1)=(3,2).(2)因为b =(1,1),c =(5,2),所以m =λb +c =λ(1,1)+(5,2)=(λ+5,λ+2).又因为a =(2,1),且a 与m 平行,所以2(λ+2)=λ+5,解得λ=1.层级二 应试能力达标1.已知平面向量a =(x,1),b =(-x ,x 2),则向量a +b ( )A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第二、四象限的角平分线解析:选C 因为a +b =(0,1+x 2),所以a +b 平行于y 轴.2.若A (3,-6),B (-5,2),C (6,y )三点共线,则y =( )A.13B.-13C.9 D.-9解析:选D A,B,C三点共线,∴AB∥AC,而AB=(-8,8),AC=(3,y+6),∴-8(y+6)-8×3=0,即y=-9.3.已知向量a=(1,0),b=(0,1),c=ka+b(k∈R),d=a-b,如果c∥d,那么() A.k=1且c与d同向B.k=1且c与d反向C.k=-1且c与d同向D.k=-1且c与d反向解析:选D∵a=(1,0),b=(0,1),若k=1,则c=a+b=(1,1),d=a-b=(1,-1),显然,c与d不平行,排除A、B.若k=-1,则c=-a+b=(-1,1),d=a-b=-(-1,1),即c∥d且c与d反向.4.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个顶点的坐标是()A.(1,5)或(5,5)B.(1,5)或(-3,-5)C.(5,-5)或(-3,-5)D.(1,5)或(5,-5)或(-3,-5)解析:选D设A(-1,0),B(3,0),C(1,-5),第四个顶点为D,①若这个平行四边形为▱ABCD,则AB=DC,∴D(-3,-5);②若这个平行四边形为▱ACDB,则AC=BD,∴D(5,-5);③若这个平行四边形为▱ACBD,则AC=DB,∴D(1,5).综上所述,D点坐标为(1,5)或(5,-5)或(-3,-5).5.已知AB=(6,1),BC=(x,y),CD=(-2,-3),BC∥DA,则x+2y的值为________.解析:∵AD=AB+BC+CD=(6,1)+(x,y)+(-2,-3)=(x+4,y-2),∴DA=-AD=-(x+4,y-2)=(-x-4,-y+2).∵BC∥DA,∴x(-y+2)-(-x-4)y=0,即x+2y=0.答案:06.已知向量OA =(3,-4),OB =(6,-3),OC =(5-m ,-3-m ).若点A ,B ,C 能构成三角形,则实数m 应满足的条件为________.解析:若点A ,B ,C 能构成三角形,则这三点不共线,即AB 与AC 不共线. ∵AB =OB -OA =(3,1),AC =OC -OA =(2-m,1-m ),∴3(1-m )≠2-m ,即m ≠12.答案:m ≠127.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a 与b 之间的数量关系;(2)若AC =2AB ,求点C 的坐标.解:(1)若A ,B ,C 三点共线,则AB 与AC 共线.AB =(3,-1)-(1,1)=(2,-2),AC =(a -1,b -1),∴2(b -1)-(-2)(a -1)=0,∴a +b =2.(2)若AC =2AB ,则(a -1,b -1)=(4,-4),∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,∴⎩⎪⎨⎪⎧ a =5,b =-3,∴点C 的坐标为(5,-3).8.如图所示,在四边形ABCD 中,已知A (2,6),B (6,4),C (5,0),D (1,0),求直线AC 与BD 交点P 的坐标.解:设P (x ,y ),则DP =(x -1,y ),DB =(5,4),CA =(-3,6),DC =(4,0).由B ,P ,D 三点共线可得DP =λDB =(5λ,4λ). 又∵CP =DP -DC =(5λ-4,4λ), 由于CP 与CA 共线得,(5λ-4)×6+12λ=0.解得λ=47, ∴DP =47DB =⎝⎛⎭⎫207,167,∴P 的坐标为⎝⎛⎭⎫277,167.。
2.3.4平面向量共线的坐标表示

本节课到此结束,请同学们课后再 做好复习与作业。谢谢!
作业:课本P101习题2.3.4:6、7 B组1~4
《聚焦课堂》
再见!
聚焦作业手册P80: 8T
已知A(2,3)、B(5,4)、C(7,10),若AP=AB+λAC (λ∈R),试求λ为何值时,点P在第三象限内? 解:设P(x,y). AP =(x-2,y-3), AB =(3, 1), x-2=3+5λ y-3=1+7λ AC =(5, 7), (x-2, y-3) =(3, 1)+λ(5, 7) =(3+5λ, 1+7λ) x=5+5λ <0 y=4+7λ <0
∴只能有:
(1)k 1 : ke1 e2 e 1 ke2 ,同向共线. (2)k 1 : ke1 e2 (e 1 ke2 ) ,反向共线.
{ k 1 0
k 0
λ 1 k 1.
a ( x1 , y1 ), b ( x2 , y2 ).
B( x 2 , y 2 )
x1=x2,且y1=y2
( x2 x1 , y2 y1 )
A( x1 , y1 )
探究:
向量平行的坐标表示
向量平行的向量表示
设a=(x1,y1), b=(x2,y2), 其中a≠0, b // a b = λa (x2,y2) =λ(x1,y1) = (λx1,λy1)
(x , y ) λa 3.两个结论 AB ( x2 x1 , y2 y1 ) a b x1=x2,且y1=y2 4.共线向量的充要条件:(a≠0) x1y2-x2y1=0 向量a与b共线 b=λa
a b ( x 1 x 2 , y1 y2 ), a b ( x 1 x 2 , y1 y2 ),
高一数学平面向量共线的坐标表示(中学课件201911)

例题讲解
例1、已知a (4, 2),b (6, y),且a // b,求y.
例2、已知点A(-1,-1),B(1,3),C(2,5), 试判断A、B、C三点是否共线?
问题探究
设点P是线段P1P2上的一点,P1、P2的坐标 分别为(x1, y1),(x2 , y2 ).
(1)当点P是线段P1P2的中点时,求点P的坐标. (2)当点P是线段P1P2的一个三等分点时,求点 P的坐标.
复习巩固
(1)两个向量和的坐标分别等于这两 个向量相应坐标的和
a b (x1 x2, y1 y2 )
(2)两个向量差的坐标分别等于这两 个向量相应坐标的差
a b (x1 x2, y1 y2)
复习巩固
(3)实数与向量的积的坐标等于用这 个实数乘原来向量的相应坐标.
a (x1, y1)
(3)当P1P= PP2时,求点P的坐标.
例题讲解
《学海》习题讲解
布置作业
作业: 1、P101习题A组:6、7. B组:2; 2、学海第7课时
4.任意一个向量的坐标等于表示该向 量的有向线段的终点坐标减去始点坐 标.
复习巩固
5.a (x1, y1),b (x2 , y2 ),(b 制作 武汉做网站 武汉网站制作 武汉做网站
;
贫守道 子肃之 论所谓’逗极无二’者 "潜也何敢望贤?何谓其同?欲举为秀才 示形神于天壤 亲老家贫 武帝北伐 濮阳鄄城人也 彦之诫曰 素琴 以供祭祀 景翳翳其将入 临沧洲矣 "既没不须沐浴 征辟一无所就 应感之法 "吴差山中有贤士 别有风猷 服寒食散 老全其生 宋国初建 凝之曰 昔有鸿 飞天首 时往游焉 "仆著已败 命为谘议参军 若夫陶潜之徒 人不能测 辄当申譬 身处卿佐 &
2.3.3 平面向量的坐标运算 2.3.4 平面向量共线的坐标表示

2.3.3 平面向量的坐标运算2.3.4 平面向量共线的坐标表示 ●温故知新1.(1)式子12(2)如果基底的两个向量1e 、2e ________,则这个基底为正交基底.2.在直角坐标系中建立一个________{},i j ,对于平面内任一向量a 可分解为x y =+a i j ,则有序 实数对______叫做向量a 的坐标,记作_________.3.设OA x y =+i j ,则向量OA 的坐标______就是_________的坐标;反过来,_________的坐标______也就是向量OA 的坐标.4.向量的加法法则:两向量首尾相接,则和向量为首向量的______指向末向量的______. ●课题引入在直角坐标平面中,(1)画出()2,4OA =,如何画()2,4=a ?(2)若()2,4=a ,()3,1=b ,画出+a b ,如何求+a b 的坐标?●教材新知1.2.(1)若向量的起点是坐标原点,则向量的坐标等于___________; (2)设()11,A x y ,()22,B x y ,则AB =_________.即一个向量的坐标等于表示此有向线段的___________减去___________.3.将一个向量的始点平移到坐标原点,则向量的坐标和平移后向量的______是相同的.4.设()11,x y =a ,()22,x y =b ,其中≠0b ,则a ‖b ⇔________1212,x x y y λλ=⎧⇔⇔⎨=⎩___________. 5.设()11,A x y ,()22,B x y ,()33,C x y ,只要证明________,便可证得A、B 、C 三点共线. 6.设()111,P x y ,()222,P x y ,(),P x y ,()121PP PP λλ=≠-时,x =_______,y =_______. (1)当1λ=,即点P 为12P P 的______,此时x =_______,y =_______.(2)ABC ∆中,()11,A x y ,()22,B x y ,()33,C x y ,重心(),G x y ,则x =_______,y =_______.●题组集训(1)若点P 的坐标为()11,x y ,向量PQ 的坐标为()22,x y ,则点Q 的坐标为( )A.()1212,x x y y --B.()2121,x x y y --C.()1212,x x y y ++D.()1212,x x y y -+ (2)()3,2=a ,()0,1=-b ,则向量2-b a 的坐标是( )A.()3,4-B.()3,4-C.()3,4D.()3,4-- (3)设()2,3AB =,(),BC m n =,()1,4CD =-,则DA =( )A.()1,7m n ++B.()1,7m n ----C.()1,7m n --D.()1,7m n -+-+ (4)若()0,0O ,()1,1A 且'2OA OA =,则点'A 的坐标为_______.(5)已知点()3,2M -,()5,1N --,若12MP MN =,则点P 的坐标是_______.●课堂精讲【例1】已知点A 、B 、C 的坐标分别为()2,4A -、()0,6B 、()8,10C -.求向量122AB BC AC +-的坐标.【例2】已知()1,2=a ,()3,2=-b ,当k 为何值时,k +a b 与3-a b 平行?平行时它们是同向还是反向?【变式训练】已知点()4,0A ,()5,5B ,()2,6C ,O 为坐标原点,求直线AC 与OB 的交点P 的坐 标.【例3】已知点()6,3A ,O 为坐标原点,点P 在直线OA 上,且12OP PA =,若P 是线段OB 的中点,求点B 的坐标.【变式训练1】在ABC ∆中,已知点()3,7A 、()2,5B -.若线段AC 、BC 的中点都在坐标轴上,求点C 的坐标.【变式训练2】如图,已知三点()0,8A ,()4,0B -,()5,3C -,D 点在线段AB 上,且13AD DB=, E 点在线段BC 上,若BDE ∆的面积是ABC ∆面积的一半,求向量AE 的坐标.●课后反馈(1)若三点()1,1P ,()2,4A -,(),9B x -共线,则( )A.1x =-B.3x =C.92x =D.51x = (2)在平行四边形ABCD 中,AC 为一条对角线,若()2,4AB =,()1,3AC =,则BD =( )A.()2,4--B.()3,5--C.()3,5D.()2,4 (3)已知两点()2,1A -,()3,1B ,与AB 平行且方向相反的向量a 是( )A.()1,2=-aB.()9,3=aC.()1,2=-aD.()4,8=--a (4)已知()5,2=-a ,()4,3=--b ,(),x y =c ,若23-+=0a b c ,则c 等于( ) A.81,3⎛⎫ ⎪⎝⎭ B.138,33⎛⎫ ⎪⎝⎭ C.134,33⎛⎫ ⎪⎝⎭ D.134,33⎛⎫-- ⎪⎝⎭(5)设1,tan 3α⎛⎫= ⎪⎝⎭a ,3cos ,2α⎛⎫= ⎪⎝⎭b ,且a 与b 共线,则锐角α的值为( )A.12πB.6πC.4πD.3π(6)若ABC ∆的三条边得中点分别为()2,1和()3,4-,()1,1--,则ABC ∆的重心坐标为______.(7)设向量()1,2=a ,()2,3=b ,若向量λ+a b 与向量()4,7=--c 共线,则λ=______. (8)若()3,4=a ,b ‖a 且b 的起点为()1,2,终点为(),3x x ,则=b ________. (9)若()4,3=-a ,(),5x =b ,()1,y =-c ,若+=a b c ,则(),x y =_______.(10)已知()5,1A ,()1,3B ,113OA OA =,113OB OB =,求11A B .(11)设向量()1,3=-a ,()2,4=-b ,()1,2=--c .若表示向量4a 、42-b c 、()2-a c 、d 的有向线段首尾相接能构成四边形,求向量d .(12)已知O 是坐标原点,()2,1A -,()4,8B -,且3AB BC +=0,求OC 的坐标.(13)平面内给定三个向量()3,2=a ,()1,2=-b ,()4,1=c ,回答下列问题: ①求32+-a b c ;②求满足m n =+a b c 的实数m ,n ; ③若()k +a c ‖()2-b a ,求实数k .(14)如图所示,已知()4,5A ,()1,2B ,()12,1C ,()11,6D ,AC 与BD 相交于点P ,求BP 的坐 标及点P 的坐标.(15)已知平行四边形ABCD 的一个顶点坐标为()2,1A -,一组对边AB 、 CD 的中点分别为()3,0M 、()1,2N --,求平行四边形的各个顶点的坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B. -5
C. 7
D. -8
2. 若A(x, -1),B(1, 3),C(2, 5)三点共线,
则x的值为( B )
A. -3 B. -1 C. 1
D. 3
课后练习
3. 若 AB i 2 j, DC (3 x)i (4 y) j (其中i, j的方向分别与x轴、y轴正方向相 同且为单位向量), AB与DC共线,则x、y
4.若a//b(b≠0)它们的坐标满足什么关系式?
A
5.三角形中位线定理是什么?
AM 1 AB AC
2
B
M
C
6、当P1P
PP2时,点
P坐标为
x1 x2 1
,
y1 y2 1
课后练习:
1. 若a (2, 3), b (4, 1 y), 且a // b,
则y ( B )
A. 6
的值可能分别为( C )
A. 1, 2 B. 3, 2 C. 2, 2 D. 2, 4
课后练习
4. 已知a (1, 2), b ( x, 1), 若a 2b
与2a b平行, 则x的值为
.
5. 已知平行四边形ABCD四个顶点的坐
标为A(5, 7),B(3, x),C(2, 3),D(4, x),
则x=
.
海 盐高级中学 高新军
复习引入:
1.平面向量的基本定理是什么? 若e1、e2是同一平面内的两个不共线向量,则对于这一平面内的任 意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2. 2.用坐标表示向量的基本原理是什么?
设i、j是与x轴、y轴同向的两个单位向量,若a=xi+yj,则a= (x,y).
理论迁移
例1 已知a=(2,1), b=(-3,4),求 a+b,a-b,3a+4b的坐标.
a+b=(-1,5), a-b=(5,-3), 3a+4b=(-6,19).
例2 如图,已知 ABCD的三个顶点的 坐标分别是A(-2,1)、B(-1,3)、 C(3,4),试求顶点D的坐标.
y B
C
A
D
思考2:设a=(x1,y1),b=(x2,y2),若向量a, b共线(其中b≠0),则这两个向量的坐标应 满足什么关系?反之成立吗?
㈣向量a,b(b≠0)共线 x1y2 x2y1
思考3:已知点P1(x1,y1),P2(x2,y2), 若点P分别是线段P1P2的中点、三等分点, 如何用向量方法求点P的坐标?
思考2:如图,已知点A(x1,y1),B(x2,y2),
那么向量 AB的坐标如何?一般地,一个
任意向量的坐标如何计算?
Ay
AB=(x2-x1,y2-y1).
B
o
x
㈡任意一个向量的坐标等于终点坐标减去起点坐标.
思考4:在上图中,如何确定坐标为 (x2-x1,y2-y1)的点P的位置?
Ay
B
o
x
P(x2-x1,y2-y1)
思考5:若向量a=(x,y),则|a|如何计
算?若点A(x1,y1),B(x2,y2),则 AB 如何计算?
y Aa
O
x
㈢ a x2 y2 AB (x2 x1)2 (y2 y1)2
也叫距离公式
探究(二):平面向量共线的坐标表示
思考1:如果向量a,b共线(其中b≠0),
那么a,b满足什么关系? a=λb.
向量a+b,a-b,λa(λ∈R)如何分别用基底i、j表示?
a+b=(x1+x2)i+(y1+y2)j, a-b=(x1-x2)i+(y1-y2)j, λa=λx1i+λy1j.
a+b=(x1+x2,y1+y2); a-b=(x1-x2,y1-y2); λa=(λx1,λy1).
说明:向量和(差)的坐标等于这向量相应坐标的和(差); 实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.
我们需要研究的问题是:
⑴向量的和、差、数乘、模的运算,如何转化为坐标运算。 ⑵共线向量(定理)如何通过坐标来表示。
探究(一):平面向量的坐标运算
思考1:设i、j是与x轴、y轴同向的两个单位向量,若a=(x1,y1),
b=(x2,y2),则a=x1i+y1j,b=x2i+y2j,根据向量的线性运算性质,
D(2,2)
o
x
例3 已知向量a=(4,2),b=(8,y), 且a∥b,求y的值. y=4
例4 已知点A(-1,-1),B(1,3), C(2,5),试判断A、B、C三点是否共线?
AB 2 AC ,A、B、C三点共线.
3
小结作业
1. 向量的坐标运算(加、减、数乘)
2.向量AB的坐标如何求? 3.如何用向量的坐标求向量的模?
y
P
P2
P1 P P
O
㈤.三角形中位线定理xAAM 1 AB AC 2
B
M
C
思考4:一般地,若点P1(x1,y1),
P2(x2,y2),点P是直线P1P2上一点,
且 P1P PP2 ,那么点P的坐标有何计算
公式? y
P
P2
P1
O
x
㈥定比分点坐标 P( x1 x2 , y1 y2 ) 1 1