+平面向量共线的坐标表示

合集下载

第二章 平面向量共线的坐标表示

第二章 平面向量共线的坐标表示
答案:4ab=1
人教A版必修四· 新课标· 数学
版块导航
规 律 归 纳 涉及本节知识点的试题基本上以共线向量的坐标运算为 主, 另外还会与解析几何知识相结合, 以综合题的形式出现.
人教A版必修四· 新课标· 数学
版块导航
4 (2010· 陕西高考)已知向量 a=(2, -1), b=(-1, m), c=(-1,2),若(a+b)∥c,则 m=________.
人教A版必修四· 新课标· 数学
版块导航
三点共线问题 → → → 【例 2】 向量PA=(k,12),PB=(4,5),PC=(10,k), 当 k 为何值时,A、B、C 三点共线?
→ → 思路分析:A、B、C 三点要共线,则必有BA∥CA.
人教A版必修四· 新课标· 数学
版块导航
→ → → 解:BA=PA-PB=(k,12)-(4,5)=(k-4,7). → → → CA=PA-PC=(k,12)-(10,k)=(k-10,12-k). → → ∵A、B、C 三点共线,∴BA∥CA, 即(k-4)(12-k)-7(k-10)=0, 整理得 k2-9k-22=0,解得 k=-2 或 11, ∴当 k=-2 或 11 时,A、B、C 三点共线.
人教A版必修四· 新课标· 数学
版块导航
自测自评
1.已知向量 a=(2,4),b=(-3,-6),则 a 和 b( A.共线且方向相同 C.是相反向量 B.共线且方向相反 D.不共线 )
2 2 解析:a=- b 且- <0,∴a 和 b 共线且方向相反. 3 3
答案:B
人教A版必修四· 新课标· 数学
人教A版必修四· 新课标· 数学
版块导航
→ → → 2 已知向量OA=(k,12)、OB=(4,5)、OC= (-k,10),且 A、B、C 三点共线,则 k=________.

平面向量共线的坐标表示解析

平面向量共线的坐标表示解析

由平面几何知A识G得 2:AD
B
3
2(x1 x3 2x1 , y1 y3 2y1)
3
2
2
OGOA AG
D
A
G
(x1,
y1)
(
x2
x3 3
2x1
,
y2
y3 3
2y1
)
C
(x2 x3 x1 , y2 y3 y1 )
O
X
3
3
G (x1x2x3,y1y2y3)
3
3
rr a 2b
1.已知a (2,4),b (1,2),则a与b的关系是(.D...).
(1)当点P是线段P1P2的中点时,求点P的坐标; (2)当点P是线段P1P2的一个三等分点时,求点P的坐标。
解:(2)
法二:设Px, y
y P2
x P1 Px1,y 12 Py P1 2,1 2x2x,y2y
P1
P

x y
x1 y1
1 2 1 2
x2 y2
x y
O
解P 有 点坐 2x1标 x2,2y1y2
A.30...............B.60............C.45..............D.75
4.设向量a32、b不13平行s,in求证co:s向量a b和向量a b不平行。
4.向量a,b不平行,求证:向量 a – b 与a + b不平行。
证明:设向量 a – b 与a + b平行。
rr rr
设 ab r( ab )r r
( 1 ) a ( 1 ) b 0
1 1
0 0
显然,上述方程没有实数解。
∴ 向量 a – b 与a + b平行。

平面向量共线的坐标表示

平面向量共线的坐标表示

解:∵a=(1,0),b=(2,1), ∴ka-b=k(1,0)-(2,1)=(k-2,-1), a+3b=(1,0)+3(2,1)=(7,3). 由两向量平行得 3(k-2)-7×(-1)=0. 1 ∴k=-3.
7 此时,ka-b=- ,-1 3
1 1 =-3(7,3)=-3(a+3b). ∴它们是反向的.
• 2.3.4 平面向量共线的坐标表示
• 1.通过实例了解如何用坐标表示两个共线向量,以及两直 线平行和两向量共线的判定的区别.(易混点) • 2.理解用坐标表示的平面向量共线的条件 ,并能会应 用.(重点) • 3.会根据平面向量的坐标判断向量是否共线.(难点)
• 两向量平行的条件

如果两个非零向量共线,你能通过它们的坐标判断它们 同向还是反向吗? • 提示:当两个向量的对应坐标同号或同为零时,同向.当 两个向量的对应坐标异号或同为零时,反向. • 例如:向量(1,2)与(-1,-2)反向;向量(1,0)与(3,0)同向; • 向量(-1,2)与(-3,6)同向;向量(-1,0)与(3,0)反向等.
→ → → 【典例】 已知向量AB=(6,1),BC=(x,y),CD=(-2, → → -3),当BC∥DA时,求实数 x,y 应满足的关系.
→ → → → → 【错误解答】DA=-AD=-(AB+BC+CD) =-[(6,1)+(x,y)+(-2,-3)]=(-x-4,-y+2). → → → BC=(x,y),当BC∥DA时,x(-x-4)-y(-y+2)=0 即 x2-y2+4x+2y=0.
→ BC=(1,0)+m(0,1)=(1,m). → → 而AB、BC共线,∴1×m-1×(-2)=0. ∴m=-2,∴当 m=-2 时, A、B、C 三点共线.

平面向量共线的坐标表示

平面向量共线的坐标表示
对于两个向量a和b,如果a=(x1,y1),b=(x2,y2),则向量a和b共线的条件是 x1/x2=y1/y2。
向量共线的应用
向量共线可以用于解决一些实际问题,例如物理 学中的力合成、物理学中的速度合成等。
向量共线也可以用于解析几何中的图形变换、线 性变换等。
在向量研究中,向量共线还可以用于证明一些定 理和推导一些公式。
向量共线的坐标表示
向量共线定理
如果两个向量$\overrightarrow{AB}$和 $\overrightarrow{CD}$共线,那么存在实数 $\lambda$使得 $\overrightarrow{AB}=\lambda\overrightarrow{C D}$。
坐标表示
设$\overrightarrow{AB}=(x_1,y_1)$, $\overrightarrow{CD}=(x_2,y_2)$,如果 $\overrightarrow{AB}=\lambda\overrightarrow{C D}$,则有$\left\{\begin{matrix} x_1=\lambda x_2 \\ y_1=\lambda y_2 \end{matrix}\right.$。
向量共线的代数表示
总结词
如果两个向量$\overset{\longrightarrow}{a}$和 $\overset{\longrightarrow}{b}$共线,那么存在一个 非零实数$\lambda$,使得 $\overset{\longrightarrow}{b} = \lambda\overset{\longrightarrow}{a}$。

向量共线的性质
要点一
向量共线的性质包括
交换律、结合律、分配律等。这些性质可以用来简化向 量的运算,并用于解决实际问题。

2.3.4平面向量共线的坐标表示

2.3.4平面向量共线的坐标表示

本节课到此结束,请同学们课后再 做好复习与作业。谢谢!
作业:课本P101习题2.3.4:6、7 B组1~4
《聚焦课堂》
再见!
聚焦作业手册P80: 8T
已知A(2,3)、B(5,4)、C(7,10),若AP=AB+λAC (λ∈R),试求λ为何值时,点P在第三象限内? 解:设P(x,y). AP =(x-2,y-3), AB =(3, 1), x-2=3+5λ y-3=1+7λ AC =(5, 7), (x-2, y-3) =(3, 1)+λ(5, 7) =(3+5λ, 1+7λ) x=5+5λ <0 y=4+7λ <0
∴只能有:
(1)k 1 : ke1 e2 e 1 ke2 ,同向共线. (2)k 1 : ke1 e2 (e 1 ke2 ) ,反向共线.
{ k 1 0
k 0
λ 1 k 1.
a ( x1 , y1 ), b ( x2 , y2 ).
B( x 2 , y 2 )
x1=x2,且y1=y2
( x2 x1 , y2 y1 )
A( x1 , y1 )
探究:
向量平行的坐标表示
向量平行的向量表示
设a=(x1,y1), b=(x2,y2), 其中a≠0, b // a b = λa (x2,y2) =λ(x1,y1) = (λx1,λy1)
(x , y ) λa 3.两个结论 AB ( x2 x1 , y2 y1 ) a b x1=x2,且y1=y2 4.共线向量的充要条件:(a≠0) x1y2-x2y1=0 向量a与b共线 b=λa
a b ( x 1 x 2 , y1 y2 ), a b ( x 1 x 2 , y1 y2 ),

平面向量共线的坐标表示29371

平面向量共线的坐标表示29371

复习 平面向量基本定理:
(1)我们把不共线向量e1,e2 叫做表示 这一平面内所有向量的一组 基底 .
(2)基底不惟一,关键是不共线;
复习
平面向量基本定理:
(1)我们把不共线向量e1,e2 叫做表示 这一平面内所有向量的一组 基底 .
(2)基底不惟一,关键是不共线;
(3)由定理可将任一向量a在给出基底 e1、e2的条件下进行分解;
1. 消去时能不能两式相除?
不能 两式相除, y1, y2有可能为 0, 又b 0, x2 , y2中至少有一个不为0 .
2. 能不能写成 y1 y2 ? x1 x2
3. 向量共线有哪两种形式?
探究:
1. 消去时能不能两式相除?
不能 两式相除, y1, y2有可能为 0, 又b 0, x2 , y2中至少有一个不为0 .
特别地, i (1, 0),
j (0, 1), (0, 0).
a
j
Oi
x
平面向量的坐标运算
a a
a
b
(
x1
x2,y1
b ( x1 x2,y1
(x,y)
y2 y2
) )
两个向量和与差的坐标分别等于这 两个向量相应坐标的和与差.
实数与向量的积的坐标等于用这个 实数乘原来向量的相应坐标.
讲解范例
例5. 设点P是线段P1P2上的一点,P1、 P2的坐标分别是(x1, y1),(x2, y2). (1)当点P是线段P1P2的中点时,求点
P的坐标; (2)当点P是线段P1P2的一个三等分点
时,求点P的坐标.
讲解范例
例5. 设点P是线段P1P2上的一点,P1、 P2的坐标分别是(x1, y1),(x2, y2). (1)当点P是线段P1P2的中点时,求点

平面向量共线的坐标表示

2.3.4平面向量共线的坐标表示学习目标1.理解用坐标表示的平面向量共线的条件.2.能根据平面向量的坐标,判断向量是否共线.3.掌握三点共线的判断方法.知识点 平面向量共线的坐标表示1.设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,a ,b 共线,当且仅当存在实数λ,使a =λb . 2.如果用坐标表示,可写为(x 1,y 1)=λ(x 2,y 2),当且仅当x 1y 2-x 2y 1=0时,向量a ,b (b ≠0)共线.注意:向量共线的坐标形式极易写错,如写成x 1y 1-x 2y 2=0或x 1x 2-y 1y 2=0都是不对的,因此要理解并熟记这一公式,可简记为:纵横交错积相减.1.若向量a =(x 1,y 1),b =(x 2,y 2),且a ∥b ,则x 1y 1=x 2y 2.( × )提示 当y 1y 2=0时不成立.2.若向量a =(x 1,y 1),b =(x 2,y 2),且x 1y 1-x 2y 2=0,则a ∥b .( × ) 3.若向量a =(x 1,y 1),b =(x 2,y 2),且x 1y 2-x 2y 1=0,则a ∥b .( √ )4.向量a=(1,2)与向量b=(4,8)共线.(√)题型一向量共线的判定例1(1)下列各组向量中,共线的是()A.a=(-2,3),b=(4,6)B.a=(2,3),b=(3,2)C.a=(1,-2),b=(7,14)D.a=(-3,2),b=(6,-4)考点平面向量共线的坐标表示题点向量共线的判定答案 D解析A选项,(-2)×6-3×4=-24≠0,∴a与b不平行;B选项,2×2-3×3=4-9=-5≠0,∴a与b不平行;C选项,1×14-(-2)×7=28≠0,∴a与b不平行;D选项,(-3)×(-4)-2×6=12-12=0,∴a∥b,故选D.(2)在下列向量组中,可以把向量a=(-3,7)表示出来的是() A.e1=(0,1),e2=(0,-2)B.e1=(1,5),e2=(-2,-10)C.e1=(-5,3),e2=(-2,1)D.e1=(7,8),e2=(-7,-8)考点 平面向量共线的坐标表示 题点 向量共线的判定 答案 C解析 平面内不共线的两个向量可以作基底,用它能表示此平面内的任何向量,因为A ,B ,D 都是两个共线向量,而C 不共线,故C 可以把向量a =(-3,7)表示出来.反思感悟 向量共线的判定题目应充分利用向量共线定理或向量共线的坐标条件进行判断,特别是利用向量共线的坐标条件进行判断时,要注意坐标之间的搭配. 跟踪训练1 下列各组向量中,能作为平面内所有向量基底的是( ) A .e 1=(0,0),e 2=(1,-2) B .e 1=(-1,2),e 2=(5,7) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=⎝⎛⎭⎫12,-34 考点 平面向量共线的坐标表示 题点 向量共线的判定与证明 答案 B解析 A 选项,∵e 1=0,e 1∥e 2,∴不可以作为基底;B 选项,∵-1×7-2×5=-17≠0,∴e 1与e 2不共线,故可以作为基底;C 选项,3×10-5×6=0,e 1∥e 2,故不可以作为基底;D 选项,2×⎝⎛⎭⎫-34-(-3)×12=0, ∴e 1∥e 2,不可以作为基底. 故选B.题型二 三点共线问题例2 已知A (1,-3),B ⎝⎛⎭⎫8,12,C (9,1),求证:A ,B ,C 三点共线. 考点 平面向量共线的坐标表示 题点 三点共线的判定与证明 证明 AB →=⎝⎛⎭⎫8-1,12+3=⎝⎛⎭⎫7,72, AC →=(9-1,1+3)=(8,4), ∵7×4-72×8=0,∴AB →∥AC →,且AB ,AC →有公共点A , ∴A ,B ,C 三点共线.反思感悟 (1)三点共线问题的实质是向量共线问题,两个向量共线只需满足方向相同或相反,两个向量共线与两个向量平行是一致的,利用向量平行证明三点共线需分两步完成:①证明向量平行.②证明两个向量有公共点.(2)若A ,B ,C 三点共线,即由这三个点组成的任意两个向量共线.跟踪训练2 已知OA →=(k ,2),OB →=(1,2k ),OC →=(1-k ,-1),且相异三点A ,B ,C 共线,则实数k =________.考点 向量共线的坐标表示的应用 题点 利用三点共线求参数 答案 -14解析 AB →=OB →-OA →=(1-k,2k -2), AC →=OC →-OA →=(1-2k ,-3), 由题意可知AB →∥AC →,所以(-3)×(1-k )-(2k -2)(1-2k )=0, 解得k =-14(k =1不合题意舍去).由向量共线求参数的值典例 已知a =(1,2),b =(-3,2),当k 为何值时,k a +b 与a -3b 平行?考点 向量共线的坐标表示的应用 题点 利用向量共线求参数解 方法一 k a +b =k (1,2)+(-3,2)=(k -3,2k +2), a -3b =(1,2)-3(-3,2)=(10,-4), ∵k a +b 与a -3b 平行,∴(k -3)×(-4)-10(2k +2)=0,解得k =-13.方法二 由方法一知k a +b =(k -3,2k +2), a -3b =(10,-4),当k a +b 与a -3b 平行时,存在唯一实数λ, 使k a +b =λ(a -3b ). 由(k -3,2k +2)=λ(10,-4).得⎩⎪⎨⎪⎧k -3=10λ,2k +2=-4λ,解得k =λ=-13.引申探究1.若本例条件不变,判断当k a +b 与a -3b 平行时,它们是同向还是反向? 解 由本例知当k =-13时,k a +b 与a -3b 平行,这时k a +b =-13a +b =-13(a -3b ),∵λ=-13<0,∴k a +b 与a -3b 反向.2.在本例中已知条件不变,若问题改为“当k 为何值时,a +k b 与3a -b 平行?”,又如何求k 的值?解 a +k b =(1,2)+k (-3,2)=(1-3k ,2+2k ), 3a -b =3(1,2)-(-3,2)=(6,4), ∵a +k b 与3a -b 平行, ∴(1-3k )×4-(2+2k )×6=0,解得k=-13.[素养评析](1)由向量共线求参数的值的方法(2)本题利用向量共线的坐标表示得到有关参数的方程(组),再解得参数的值,这正是数学核心素养数学运算的体现.1.已知向量a=(2,-1),b=(x-1,2),若a∥b,则实数x的值为()A.2 B.-2 C.3 D.-3考点向量共线的坐标表示的应用题点利用向量共线求参数答案 D解析因为a∥b,所以2×2-(-1)×(x-1)=0,得x=-3.2.与a =(12,5)平行的单位向量为( ) A.⎝⎛⎭⎫1213,-513 B.⎝⎛⎭⎫-1213,-513 C.⎝⎛⎭⎫1213,513或⎝⎛⎭⎫-1213,-513 D.⎝⎛⎭⎫±1213,±513 考点 向量共线的坐标表示的应用 题点 已知向量共线求向量的坐标 答案 C解析 设与a 平行的单位向量为e =(x ,y ),则⎩⎪⎨⎪⎧x 2+y 2=1,12y -5x =0,∴⎩⎨⎧x =1213,y =513或⎩⎨⎧x =-1213,y =-513.3.若a =(3,cos α),b =(3,sin α),且a ∥b ,则锐角α=______. 考点 向量共线的坐标表示的应用 题点 已知向量共线求参数 答案 π3解析 ∵a =(3,cos α),b =(3,sin α),a ∥b , ∴3sin α-3cos α=0,即tan α=3, 又α为锐角,故α=π3.4.已知三点A (1,2),B (2,4),C (3,m )共线,则m 的值为________. 考点 向量共线的坐标表示的应用 题点 利用三点共线求参数 答案 6解析 AB →=(2,4)-(1,2)=(1,2). AC →=(3,m )-(1,2)=(2,m -2).∵A ,B ,C 三点共线,即向量AB →,AC →共线, ∴1×(m -2)-2×2=0,∴m =6.5.已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.考点 向量共线的坐标表示的应用题点 利用向量共线求参数 答案 (2,4)解析 ∵在梯形ABCD 中,AB ∥CD ,DC =2AB , ∴DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x,2-y ), AB →=(2,1)-(1,2)=(1,-1),∴(4-x ,2-y )=2(1,-1),即(4-x ,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).1.两个向量共线条件的表示方法 已知a =(x 1,y 1),b =(x 2,y 2), (1)当b ≠0,a =λb . (2)x 1y 2-x 2y 1=0.(3)当x 2y 2≠0时,x 1x 2=y 1y 2,即两向量的相应坐标成比例.2.向量共线的坐标表示的应用(1)已知两个向量的坐标判定两向量共线.联系平面几何平行、共线知识,可以证明三点共线、直线平行等几何问题.要注意区分向量的共线、平行与几何中的共线、平行.(2)已知两个向量共线,求点或向量的坐标,求参数的值,求轨迹方程.要注意方程思想的应用,向量共线的条件,向量相等的条件等都可作为列方程的依据.一、选择题1.下列向量中,与向量c =(2,3)不共线的一个向量p 等于( ) A .(5,4) B.⎝⎛⎭⎫1,32 C.⎝⎛⎭⎫23,1D.⎝⎛⎭⎫13,12考点 平面向量共线的坐标表示 题点 向量共线的判定与证明 答案 A解析 因为向量c =(2,3),对于A,2×4-3×5=-7≠0,所以A 中向量与c 不共线. 2.下列各组向量中,能作为表示它们所在平面内所有向量的基底的是( ) A .e 1=(2,2),e 2=(1,1) B .e 1=(1,-2),e 2=(4,-8) C .e 1=(1,0),e 2=(0,-1) D .e 1=(1,-2),e 2=⎝⎛⎭⎫-12,1 考点 平面向量共线的坐标表示 题点 向量共线的判定与证明 答案 C解析 选项C 中,e 1,e 2不共线,可作为一组基底.3.已知向量a =(1,0),b =(0,1),c =k a +b (k ∈R ),d =a -b ,如果c ∥d ,那么( )A .k =1且c 与d 同向B .k =1且c 与d 反向C .k =-1且c 与d 同向D .k =-1且c 与d 反向考点 向量共线的坐标表示的应用题点 利用向量共线求参数答案 D4.(2018·云南昆明联考)如果向量a =(k ,1),b =(4,k )共线且方向相反,则k 等于( )A .±2B .-2C .2D .0 考点 向量共线的坐标表示的应用题点 利用向量共线求参数答案 B解析 ∵a 与b 共线且方向相反,∴存在实数λ(λ<0),使得b =λa ,即(4,k )=λ(k ,1)=(λk ,λ),∴⎩⎪⎨⎪⎧ λk =4,k =λ, 解得⎩⎪⎨⎪⎧ k =-2,λ=-2或⎩⎪⎨⎪⎧k =2,λ=2(舍去). 5.已知向量a =(2,3),b =(-1,2),若(m a +n b )∥(a -2b ),则m n等于( ) A .-2 B .2 C .-12 D.12考点 向量共线的坐标表示的应用题点 利用向量共线求参数答案 C解析 由题意得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1),∵(m a +n b )∥(a -2b ),∴-(2m -n )-4(3m +2n )=0,∴m n =-12,故选C. 6.已知向量a =(x,3),b =(-3,x ),则下列叙述中,正确的个数是( )①存在实数x ,使a ∥b ;②存在实数x ,使(a +b )∥a ;③存在实数x ,m ,使(m a +b )∥a ;④存在实数x ,m ,使(m a +b )∥b .A .0B .1C .2D .3考点 平面向量共线的坐标表示题点 向量共线的判定与证明答案 B解析 只有④正确,可令m =0,则m a +b =b ,无论x 为何值,都有b ∥b .7.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点不能构成三角形,则实数k 应满足的条件是( )A .k =-2B .k =12C .k =1D .k =-1 考点 向量共线的坐标表示的应用题点 利用三点共线求参数答案 C解析 因为A ,B ,C 三点不能构成三角形,则A ,B ,C 三点共线,则AB →∥AC →,又AB →=OB →-OA →=(1,2),AC →=OC →-OA →=(k ,k +1),所以2k -(k +1)=0,即k =1.8.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b 等于( )A .(-5,-10)B .(-4,-8)C .(-3,-6)D .(-2,-4) 考点 向量共线的坐标表示的应用题点 利用向量共线求参数答案 B解析 由题意,得m +4=0,所以m =-4.所以a =(1,2),b =(-2,-4),则2a +3b =2(1,2)+3(-2,-4)=(-4,-8).二、填空题9.已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =______.考点 向量共线的坐标表示的应用题点 利用向量共线求参数答案 -6解析 因为a ∥b ,所以由(-2)×m -4×3=0,解得m =-6.10.已知AB →=(6,1),BC →=(4,k ),CD →=(2,1).若A ,C ,D 三点共线,则k =________.考点 向量共线的坐标表示的应用题点 利用三点共线求参数答案 4解析 因为AB →=(6,1),BC →=(4,k ),CD →=(2,1),所以AC →=AB →+BC →=(10,k +1).又A ,C ,D 三点共线,所以AC →∥CD →,所以10×1-2(k +1)=0,解得k =4.11.已知点A (4,0),B (4,4),C (2,6),O (0,0),则AC 与OB 的交点P 的坐标为________. 考点 向量共线的坐标表示的应用题点 利用三点共线求参数答案 (3,3)解析 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ).又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0,解得λ=34, 所以OP →=34OB →=(3,3),所以点P 的坐标为(3,3). 12.设OA →=(2,-1),OB →=(3,0),OC →=(m ,3),若A ,B ,C 三点能构成三角形,则实数m 的取值范围是________.考点 向量共线的坐标表示的应用题点 利用三点共线求参数答案 {m |m ∈R 且m ≠6}解析 ∵A ,B ,C 三点能构成三角形,∴AB →,AC →不共线.又∵AB →=(1,1),AC →=(m -2,4),∴1×4-1×(m -2)≠0.解得m ≠6.∴m 的取值范围是{m |m ∈R 且m ≠6}.三、解答题13.平面上有A (2,-1),B (1,4),D (4,-3)三点,点C 在直线AB 上,且AC →=12BC →,连接DC 延长至E ,使|CE →|=14|ED →|,求点E 的坐标. 解 ∵AC →=12BC →,∴A 为BC 的中点,AC →=BA →, 设C (x C ,y C ),则(x C -2,y C +1)=(1,-5),∴x C =3,y C =-6,∴C 点的坐标为(3,-6),又|CE →|=14|ED →|,且E 在DC 的延长线上, ∴CE →=-14ED →,设E (x ,y ), 则(x -3,y +6)=-14(4-x ,-3-y ), 得⎩⎨⎧ x -3=-14(4-x ),y +6=-14(-3-y ),解得⎩⎪⎨⎪⎧x =83,y =-7. 故点E 的坐标是⎝⎛⎭⎫83,-7.14.如图所示,已知在△AOB 中,A (0,5),O (0,0),B (4,3),OC →=14OA →,OD →=12OB →,AD 与BC相交于点M ,求点M 的坐标.考点 向量共线的坐标表示的应用 题点 利用向量共线求点的坐标解 ∵OC →=14OA →=14(0,5)=⎝⎛⎭⎫0,54, ∴C ⎝⎛⎭⎫0,54. ∵OD →=12OB →=12(4,3)=⎝⎛⎭⎫2,32,∴D ⎝⎛⎭⎫2,32. 设M (x ,y ),则AM →=(x ,y -5),AD →=⎝⎛⎭⎫2-0,32-5=⎝⎛⎭⎫2,-72. ∵AM →∥AD →,∴-72x -2(y -5)=0,即7x +4y =20.① 又∵CM →=⎝⎛⎭⎫x ,y -54,CB →=⎝⎛⎭⎫4,74,CM →∥CB →, ∴74x -4⎝⎛⎭⎫y -54=0, 即7x -16y =-20.②联立①②,解得x =127,y =2, 故点M 的坐标为⎝⎛⎭⎫127,2.。

平面向量平面向量共线的坐标表示


03
CATALOGUE
平面向量共线的坐标变换
坐标轴的旋转
绕原点逆时针旋转角度θ
将坐标轴上的点$M(x,y)$变为$M'(x',y')$,其中$x' = x\cos\theta - y\sin\theta$,$y' = x\sin\theta + y\cos\theta$。
绕原点顺时针旋转角度θ
将坐标轴上的点$M(x,y)$变为$M'(x',y')$,其中$x' = x\cos\theta + y\sin\theta$,$y' = -x\sin\theta + y\cos\theta$。
平面向量平面向量 共线的坐标表示
目 录
• 平面向量共线的坐标表示 • 平面向量共线的坐标运算 • 平面向量共线的坐标变换 • 平面向量共线的坐标应用
01
CATALOGUE
平面向量共线的坐标表示
定义及坐标表示
平面向量共线定义
若存在实数λ,使得向量a=λb,则向量a与向量b共线。
平面向量的坐标表示
详细描述
设向量a=(x1,y1),b=(x2,y2),则向量a+b=(x1+x2,y1+y2)。向量坐标的加法 运算满足平行四边形法则,即对角线上的两个向量之和等于0。
坐标的数乘运算
总结词
数乘向量坐标运算满足分配律和结合律,即k(a+b)=ka+kb ,(k+l)a=ka+la。
详细描述
设向量a=(x,y),k为实数,则向量ka=kx,ly)。数乘向量坐标 运算满足分配律和结合律,即k(a+b)=ka+kb, (k+l)a=ka+la。

平面向量共线的坐标表示

向量的坐标
向量$\overset{\longrightarrow}{AB}$的坐标是$(x_2 - x_1,y_2 - y_1)$,其中 $(x_1,y_1)$和$(x_2,y_2)$分别是点A和点B的坐标。
坐标表示法的应用
向量加法
向量数乘
对于两个向量 $\overset{\longrightarrow}{AB}$和 $\overset{\longrightarrow}{CD}$
向量$\overset{\longrightarrow}{AB}$的长度称为向量的模,用符号 $|\overset{\longrightarrow}{AB}|$表示,其大小是线段$MN$的长度。
向量的方向
向量$\overset{\longrightarrow}{AB}$的方向是从点A指向点B,与线段AB的方向一致。
详细描述
设$\overset{\longrightarrow}{a} = (x_1, y_1)$和 $\overset{\longrightarrow}{b} = (x_2, y_2)$是同一 直线上的两个向量。$t$为任意实数
向量的分解与合成
总结词
平面向量的分解与合成是指将一个向量分解为若干个 向量的和,或将若干个向量的和合成一个向量。
03
向量共线定理的证明
向量共线的定义
两个向量共线
两个向量共线是指它们的方向相同或相反,即它们的角度为0 度或180度。
坐标表示
平面向量的坐标表示是利用两个实数来表示向量的起点和终 点,即$(x_{1}, y_{1})$和$(x_{2}, y_{2})$。
向量共线定理的证明方法
方法一
利用向量的坐标表示证明
对于一个实数$\lambda$和一个向量 $\overset{\longrightarrow}{AB}$

平面向量共线的坐标表示 课件


(1)
uuur AB
2,1
2①,3
4, 4
,
uuur CD
7,
4
1,①4
……8,…8… …, …………2分
∵4×(-8)-4×(-8)=0②,

uuur AB
P
CuuDur,即AuuBur与CuuD…ur共…线…. ……………4分
(2)∵a∥b,∴6(x2-2x)-3m×2=0②, ……………………6分
由向量共线求参数的值
【技法点拨】
由向量共线求参数的值的方法

根据题意求出有关向量的坐标.
利用向量共线的坐标表示得到有 列
关参数的方程(组).

解得参数的值.
【典例训练】
1.(2011·广东高考)已知向量a=(1,2),b=(1,0),
c=(3,4).若λ为实数,(a+λb)∥c,则λ=( )
(A)
【典例训练】 1.(2012·汕头高一检测)若A(-1,-2),B(4,8),C(5,x) 且A,B,C三点共线,则x=________. 2.若三点A(-2,-2),B(0,m),C(n,0)(mn≠0)共线,则 1 +1 的值为__________.
mn
3.已知A(-1,-1),B(1,3),C(2,5),求证: A,B,C三点 共线.
所以e1=(0,0)与e2=(1,-2)不能作为平面内所有向量的基底.
对于B,因为(-1)×7-5×2=-17≠0,所以e1与e2不共线,
所以e1=(-1,2)与e2=(5,7)能作为平面内所有向量的基底.
对于C,因为3×10-6×5=0,所以e1∥e2,
所以e1=(3,5)与e2=(6,10)不能作为平面内所有向量的基底.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档