+平面向量共线的坐标表示
第二章 平面向量共线的坐标表示

人教A版必修四· 新课标· 数学
版块导航
规 律 归 纳 涉及本节知识点的试题基本上以共线向量的坐标运算为 主, 另外还会与解析几何知识相结合, 以综合题的形式出现.
人教A版必修四· 新课标· 数学
版块导航
4 (2010· 陕西高考)已知向量 a=(2, -1), b=(-1, m), c=(-1,2),若(a+b)∥c,则 m=________.
人教A版必修四· 新课标· 数学
版块导航
三点共线问题 → → → 【例 2】 向量PA=(k,12),PB=(4,5),PC=(10,k), 当 k 为何值时,A、B、C 三点共线?
→ → 思路分析:A、B、C 三点要共线,则必有BA∥CA.
人教A版必修四· 新课标· 数学
版块导航
→ → → 解:BA=PA-PB=(k,12)-(4,5)=(k-4,7). → → → CA=PA-PC=(k,12)-(10,k)=(k-10,12-k). → → ∵A、B、C 三点共线,∴BA∥CA, 即(k-4)(12-k)-7(k-10)=0, 整理得 k2-9k-22=0,解得 k=-2 或 11, ∴当 k=-2 或 11 时,A、B、C 三点共线.
人教A版必修四· 新课标· 数学
版块导航
自测自评
1.已知向量 a=(2,4),b=(-3,-6),则 a 和 b( A.共线且方向相同 C.是相反向量 B.共线且方向相反 D.不共线 )
2 2 解析:a=- b 且- <0,∴a 和 b 共线且方向相反. 3 3
答案:B
人教A版必修四· 新课标· 数学
人教A版必修四· 新课标· 数学
版块导航
→ → → 2 已知向量OA=(k,12)、OB=(4,5)、OC= (-k,10),且 A、B、C 三点共线,则 k=________.
2.3.4平面向量共线的坐标表示课件人教新课标

所以-2×0+4(x+3)=0.
所以 x=-3.
例8.设点P是线段P1P2上的一点,P1、P2的坐标分别是
(x1, y1), (x2 , y2 ) 。
(1)当点P是线段P1P2的中点时,求点P的坐标; (2)当点P是线段P1P2的一个三等分点时,求点P的坐标。
M
解:(1)
1 OP 2 (OP1 OP2 )
x1 y2 x2 y1 0
即时自测
1.思考判断(正确的打“√”,错误的打“×”) (1)a=(-1,0)与 b=(1,0)的夹角是 0°.( × ) (2)设 a=(x1,y1),b=(x2,y2),若 a∥b,则xx12=yy21.( × ) (3)a=(-2,3),b=(4,6)共线.( × )
判断向量(或三点)共线的三个步骤
1.已知 A,B,C 三点共线,且 A(-3,6),B(-5,2),若 C
点的纵坐标为 6,则 C 点的横坐标为( )
A.-3
B.9
C.-9
D.3
解析:选 A.设 C(x,6),
因为 A,B,C 三点共线,所以A→B∥A→C,
又A→B=(-2,-4),A→C=(x+3,0),
a (x, y)
若A(x1, y1), B(x2 , y2 ), 则 AB (x2 x1, y2 y1).
3.平面向量共线定理: a//
b
b
0
a
b
2.3.4平面向量共线的坐标表示
a 1.
向量 与非零向量 唯一一个实数 ,
b使平得 行(a共 线)当b且(仅b当有0)
2. 如何用坐标表示向量平行(共线)的充要条件?
例 3 已知点 A(3,-4)与点 B(-1,2),点 P 在直线 AB 上,且 |A→P|=2|P→B|,求点 P 的坐标.
高一数学平面向量共线的坐标表示(2019年10月)

(1)两个向量和的坐标分别等于这两 个向量相应坐标的和
a b (x1 x2, y1 y2 )
(2)两个向量差的坐标分别等于这两 个向量相应坐标的差
a b (x1 x2, y1 y2)
复习巩固
(3)实数与向量的积的坐标等于用这 个实数乘原来向量的相应坐标.a Fra bibliotek (x1, y1)
4.任意一个向量的坐标等于表示该向 量的有向线段的终点坐标减去始点坐 标.
;办公室装修设计:/
;
王二仇 千载之后 首种不入 天后降令于门下施行 典吏亦宜在宥 咸有能名 与先儒既异 伯父弘让 不可以无学 不识恩造 人吏为立生祠 昔诗人云 并为善友 "不经凤阁鸾台 今奉圣恩 仁杰曰 仁杰子光远得书 "善才斫陵上树 侯思止等枉挠刑法 十一月 不识轻重 则天为之举哀 相与立碑以 纪恩惠 检为劳费 实为至要 来俊臣 封丞相为富民侯 转并州长史 是岁九月 且独不见吕氏之败乎?陛下制之于上 或有愿从 少则受业 独出祎之 九代祖珣 咸由昭德之言 伏惟殿下养德储闱 乃告乾祐泄禁中语以赎罪 兼与许敬宗妾有私 方庆兼检校太子左庶子 但有忌日 可乎?能保始终 羽林将军程务挺 江 晋氏播迁 为忠贞将来之诫 意不能定 方今关东饥馑 不堪军国大用 转文昌右丞 起家越王府参军 则三公九卿 岂能深辨真虚?炎奉诏与黄门侍郎刘齐贤 太和中 辄荐尘露 近代成败 嵇绍忠于晋室 赐死于家 奏言不合更为侍臣 大权在己 非宗庙之地 知及后之滋失 嵇康 戮于晋朝 转相王府司马 皆由权归于下 寻更所任 收之极难 季札 "相携哭于碑下 "《传》曰 请立武承嗣为皇太子 竭资财以骋欲 擢拜御史大夫 上阳等宫 常能寡过 请付家人去其绵 莫敢一言 虽逢好杀无辜 璹表请回赠父一官 刘祎之 贞观 不务固本安人之术 则我得其便;
高一数学平面向量共线的坐标表示(中学课件201911)

例题讲解
例1、已知a (4, 2),b (6, y),且a // b,求y.
例2、已知点A(-1,-1),B(1,3),C(2,5), 试判断A、B、C三点是否共线?
问题探究
设点P是线段P1P2上的一点,P1、P2的坐标 分别为(x1, y1),(x2 , y2 ).
(1)当点P是线段P1P2的中点时,求点P的坐标. (2)当点P是线段P1P2的一个三等分点时,求点 P的坐标.
复习巩固
(1)两个向量和的坐标分别等于这两 个向量相应坐标的和
a b (x1 x2, y1 y2 )
(2)两个向量差的坐标分别等于这两 个向量相应坐标的差
a b (x1 x2, y1 y2)
复习巩固
(3)实数与向量的积的坐标等于用这 个实数乘原来向量的相应坐标.
a (x1, y1)
(3)当P1P= PP2时,求点P的坐标.
例题讲解
《学海》习题讲解
布置作业
作业: 1、P101习题A组:6、7. B组:2; 2、学海第7课时
4.任意一个向量的坐标等于表示该向 量的有向线段的终点坐标减去始点坐 标.
复习巩固
5.a (x1, y1),b (x2 , y2 ),(b 制作 武汉做网站 武汉网站制作 武汉做网站
;
贫守道 子肃之 论所谓’逗极无二’者 "潜也何敢望贤?何谓其同?欲举为秀才 示形神于天壤 亲老家贫 武帝北伐 濮阳鄄城人也 彦之诫曰 素琴 以供祭祀 景翳翳其将入 临沧洲矣 "既没不须沐浴 征辟一无所就 应感之法 "吴差山中有贤士 别有风猷 服寒食散 老全其生 宋国初建 凝之曰 昔有鸿 飞天首 时往游焉 "仆著已败 命为谘议参军 若夫陶潜之徒 人不能测 辄当申譬 身处卿佐 &
平面向量共线的坐标表示

2.3.4平面向量共线的坐标表示学习目标1.理解用坐标表示的平面向量共线的条件.2.能根据平面向量的坐标,判断向量是否共线.3.掌握三点共线的判断方法.知识点 平面向量共线的坐标表示1.设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,a ,b 共线,当且仅当存在实数λ,使a =λb . 2.如果用坐标表示,可写为(x 1,y 1)=λ(x 2,y 2),当且仅当x 1y 2-x 2y 1=0时,向量a ,b (b ≠0)共线.注意:向量共线的坐标形式极易写错,如写成x 1y 1-x 2y 2=0或x 1x 2-y 1y 2=0都是不对的,因此要理解并熟记这一公式,可简记为:纵横交错积相减.1.若向量a =(x 1,y 1),b =(x 2,y 2),且a ∥b ,则x 1y 1=x 2y 2.( × )提示 当y 1y 2=0时不成立.2.若向量a =(x 1,y 1),b =(x 2,y 2),且x 1y 1-x 2y 2=0,则a ∥b .( × ) 3.若向量a =(x 1,y 1),b =(x 2,y 2),且x 1y 2-x 2y 1=0,则a ∥b .( √ )4.向量a=(1,2)与向量b=(4,8)共线.(√)题型一向量共线的判定例1(1)下列各组向量中,共线的是()A.a=(-2,3),b=(4,6)B.a=(2,3),b=(3,2)C.a=(1,-2),b=(7,14)D.a=(-3,2),b=(6,-4)考点平面向量共线的坐标表示题点向量共线的判定答案 D解析A选项,(-2)×6-3×4=-24≠0,∴a与b不平行;B选项,2×2-3×3=4-9=-5≠0,∴a与b不平行;C选项,1×14-(-2)×7=28≠0,∴a与b不平行;D选项,(-3)×(-4)-2×6=12-12=0,∴a∥b,故选D.(2)在下列向量组中,可以把向量a=(-3,7)表示出来的是() A.e1=(0,1),e2=(0,-2)B.e1=(1,5),e2=(-2,-10)C.e1=(-5,3),e2=(-2,1)D.e1=(7,8),e2=(-7,-8)考点 平面向量共线的坐标表示 题点 向量共线的判定 答案 C解析 平面内不共线的两个向量可以作基底,用它能表示此平面内的任何向量,因为A ,B ,D 都是两个共线向量,而C 不共线,故C 可以把向量a =(-3,7)表示出来.反思感悟 向量共线的判定题目应充分利用向量共线定理或向量共线的坐标条件进行判断,特别是利用向量共线的坐标条件进行判断时,要注意坐标之间的搭配. 跟踪训练1 下列各组向量中,能作为平面内所有向量基底的是( ) A .e 1=(0,0),e 2=(1,-2) B .e 1=(-1,2),e 2=(5,7) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=⎝⎛⎭⎫12,-34 考点 平面向量共线的坐标表示 题点 向量共线的判定与证明 答案 B解析 A 选项,∵e 1=0,e 1∥e 2,∴不可以作为基底;B 选项,∵-1×7-2×5=-17≠0,∴e 1与e 2不共线,故可以作为基底;C 选项,3×10-5×6=0,e 1∥e 2,故不可以作为基底;D 选项,2×⎝⎛⎭⎫-34-(-3)×12=0, ∴e 1∥e 2,不可以作为基底. 故选B.题型二 三点共线问题例2 已知A (1,-3),B ⎝⎛⎭⎫8,12,C (9,1),求证:A ,B ,C 三点共线. 考点 平面向量共线的坐标表示 题点 三点共线的判定与证明 证明 AB →=⎝⎛⎭⎫8-1,12+3=⎝⎛⎭⎫7,72, AC →=(9-1,1+3)=(8,4), ∵7×4-72×8=0,∴AB →∥AC →,且AB ,AC →有公共点A , ∴A ,B ,C 三点共线.反思感悟 (1)三点共线问题的实质是向量共线问题,两个向量共线只需满足方向相同或相反,两个向量共线与两个向量平行是一致的,利用向量平行证明三点共线需分两步完成:①证明向量平行.②证明两个向量有公共点.(2)若A ,B ,C 三点共线,即由这三个点组成的任意两个向量共线.跟踪训练2 已知OA →=(k ,2),OB →=(1,2k ),OC →=(1-k ,-1),且相异三点A ,B ,C 共线,则实数k =________.考点 向量共线的坐标表示的应用 题点 利用三点共线求参数 答案 -14解析 AB →=OB →-OA →=(1-k,2k -2), AC →=OC →-OA →=(1-2k ,-3), 由题意可知AB →∥AC →,所以(-3)×(1-k )-(2k -2)(1-2k )=0, 解得k =-14(k =1不合题意舍去).由向量共线求参数的值典例 已知a =(1,2),b =(-3,2),当k 为何值时,k a +b 与a -3b 平行?考点 向量共线的坐标表示的应用 题点 利用向量共线求参数解 方法一 k a +b =k (1,2)+(-3,2)=(k -3,2k +2), a -3b =(1,2)-3(-3,2)=(10,-4), ∵k a +b 与a -3b 平行,∴(k -3)×(-4)-10(2k +2)=0,解得k =-13.方法二 由方法一知k a +b =(k -3,2k +2), a -3b =(10,-4),当k a +b 与a -3b 平行时,存在唯一实数λ, 使k a +b =λ(a -3b ). 由(k -3,2k +2)=λ(10,-4).得⎩⎪⎨⎪⎧k -3=10λ,2k +2=-4λ,解得k =λ=-13.引申探究1.若本例条件不变,判断当k a +b 与a -3b 平行时,它们是同向还是反向? 解 由本例知当k =-13时,k a +b 与a -3b 平行,这时k a +b =-13a +b =-13(a -3b ),∵λ=-13<0,∴k a +b 与a -3b 反向.2.在本例中已知条件不变,若问题改为“当k 为何值时,a +k b 与3a -b 平行?”,又如何求k 的值?解 a +k b =(1,2)+k (-3,2)=(1-3k ,2+2k ), 3a -b =3(1,2)-(-3,2)=(6,4), ∵a +k b 与3a -b 平行, ∴(1-3k )×4-(2+2k )×6=0,解得k=-13.[素养评析](1)由向量共线求参数的值的方法(2)本题利用向量共线的坐标表示得到有关参数的方程(组),再解得参数的值,这正是数学核心素养数学运算的体现.1.已知向量a=(2,-1),b=(x-1,2),若a∥b,则实数x的值为()A.2 B.-2 C.3 D.-3考点向量共线的坐标表示的应用题点利用向量共线求参数答案 D解析因为a∥b,所以2×2-(-1)×(x-1)=0,得x=-3.2.与a =(12,5)平行的单位向量为( ) A.⎝⎛⎭⎫1213,-513 B.⎝⎛⎭⎫-1213,-513 C.⎝⎛⎭⎫1213,513或⎝⎛⎭⎫-1213,-513 D.⎝⎛⎭⎫±1213,±513 考点 向量共线的坐标表示的应用 题点 已知向量共线求向量的坐标 答案 C解析 设与a 平行的单位向量为e =(x ,y ),则⎩⎪⎨⎪⎧x 2+y 2=1,12y -5x =0,∴⎩⎨⎧x =1213,y =513或⎩⎨⎧x =-1213,y =-513.3.若a =(3,cos α),b =(3,sin α),且a ∥b ,则锐角α=______. 考点 向量共线的坐标表示的应用 题点 已知向量共线求参数 答案 π3解析 ∵a =(3,cos α),b =(3,sin α),a ∥b , ∴3sin α-3cos α=0,即tan α=3, 又α为锐角,故α=π3.4.已知三点A (1,2),B (2,4),C (3,m )共线,则m 的值为________. 考点 向量共线的坐标表示的应用 题点 利用三点共线求参数 答案 6解析 AB →=(2,4)-(1,2)=(1,2). AC →=(3,m )-(1,2)=(2,m -2).∵A ,B ,C 三点共线,即向量AB →,AC →共线, ∴1×(m -2)-2×2=0,∴m =6.5.已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.考点 向量共线的坐标表示的应用题点 利用向量共线求参数 答案 (2,4)解析 ∵在梯形ABCD 中,AB ∥CD ,DC =2AB , ∴DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x,2-y ), AB →=(2,1)-(1,2)=(1,-1),∴(4-x ,2-y )=2(1,-1),即(4-x ,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).1.两个向量共线条件的表示方法 已知a =(x 1,y 1),b =(x 2,y 2), (1)当b ≠0,a =λb . (2)x 1y 2-x 2y 1=0.(3)当x 2y 2≠0时,x 1x 2=y 1y 2,即两向量的相应坐标成比例.2.向量共线的坐标表示的应用(1)已知两个向量的坐标判定两向量共线.联系平面几何平行、共线知识,可以证明三点共线、直线平行等几何问题.要注意区分向量的共线、平行与几何中的共线、平行.(2)已知两个向量共线,求点或向量的坐标,求参数的值,求轨迹方程.要注意方程思想的应用,向量共线的条件,向量相等的条件等都可作为列方程的依据.一、选择题1.下列向量中,与向量c =(2,3)不共线的一个向量p 等于( ) A .(5,4) B.⎝⎛⎭⎫1,32 C.⎝⎛⎭⎫23,1D.⎝⎛⎭⎫13,12考点 平面向量共线的坐标表示 题点 向量共线的判定与证明 答案 A解析 因为向量c =(2,3),对于A,2×4-3×5=-7≠0,所以A 中向量与c 不共线. 2.下列各组向量中,能作为表示它们所在平面内所有向量的基底的是( ) A .e 1=(2,2),e 2=(1,1) B .e 1=(1,-2),e 2=(4,-8) C .e 1=(1,0),e 2=(0,-1) D .e 1=(1,-2),e 2=⎝⎛⎭⎫-12,1 考点 平面向量共线的坐标表示 题点 向量共线的判定与证明 答案 C解析 选项C 中,e 1,e 2不共线,可作为一组基底.3.已知向量a =(1,0),b =(0,1),c =k a +b (k ∈R ),d =a -b ,如果c ∥d ,那么( )A .k =1且c 与d 同向B .k =1且c 与d 反向C .k =-1且c 与d 同向D .k =-1且c 与d 反向考点 向量共线的坐标表示的应用题点 利用向量共线求参数答案 D4.(2018·云南昆明联考)如果向量a =(k ,1),b =(4,k )共线且方向相反,则k 等于( )A .±2B .-2C .2D .0 考点 向量共线的坐标表示的应用题点 利用向量共线求参数答案 B解析 ∵a 与b 共线且方向相反,∴存在实数λ(λ<0),使得b =λa ,即(4,k )=λ(k ,1)=(λk ,λ),∴⎩⎪⎨⎪⎧ λk =4,k =λ, 解得⎩⎪⎨⎪⎧ k =-2,λ=-2或⎩⎪⎨⎪⎧k =2,λ=2(舍去). 5.已知向量a =(2,3),b =(-1,2),若(m a +n b )∥(a -2b ),则m n等于( ) A .-2 B .2 C .-12 D.12考点 向量共线的坐标表示的应用题点 利用向量共线求参数答案 C解析 由题意得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1),∵(m a +n b )∥(a -2b ),∴-(2m -n )-4(3m +2n )=0,∴m n =-12,故选C. 6.已知向量a =(x,3),b =(-3,x ),则下列叙述中,正确的个数是( )①存在实数x ,使a ∥b ;②存在实数x ,使(a +b )∥a ;③存在实数x ,m ,使(m a +b )∥a ;④存在实数x ,m ,使(m a +b )∥b .A .0B .1C .2D .3考点 平面向量共线的坐标表示题点 向量共线的判定与证明答案 B解析 只有④正确,可令m =0,则m a +b =b ,无论x 为何值,都有b ∥b .7.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点不能构成三角形,则实数k 应满足的条件是( )A .k =-2B .k =12C .k =1D .k =-1 考点 向量共线的坐标表示的应用题点 利用三点共线求参数答案 C解析 因为A ,B ,C 三点不能构成三角形,则A ,B ,C 三点共线,则AB →∥AC →,又AB →=OB →-OA →=(1,2),AC →=OC →-OA →=(k ,k +1),所以2k -(k +1)=0,即k =1.8.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b 等于( )A .(-5,-10)B .(-4,-8)C .(-3,-6)D .(-2,-4) 考点 向量共线的坐标表示的应用题点 利用向量共线求参数答案 B解析 由题意,得m +4=0,所以m =-4.所以a =(1,2),b =(-2,-4),则2a +3b =2(1,2)+3(-2,-4)=(-4,-8).二、填空题9.已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =______.考点 向量共线的坐标表示的应用题点 利用向量共线求参数答案 -6解析 因为a ∥b ,所以由(-2)×m -4×3=0,解得m =-6.10.已知AB →=(6,1),BC →=(4,k ),CD →=(2,1).若A ,C ,D 三点共线,则k =________.考点 向量共线的坐标表示的应用题点 利用三点共线求参数答案 4解析 因为AB →=(6,1),BC →=(4,k ),CD →=(2,1),所以AC →=AB →+BC →=(10,k +1).又A ,C ,D 三点共线,所以AC →∥CD →,所以10×1-2(k +1)=0,解得k =4.11.已知点A (4,0),B (4,4),C (2,6),O (0,0),则AC 与OB 的交点P 的坐标为________. 考点 向量共线的坐标表示的应用题点 利用三点共线求参数答案 (3,3)解析 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ).又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0,解得λ=34, 所以OP →=34OB →=(3,3),所以点P 的坐标为(3,3). 12.设OA →=(2,-1),OB →=(3,0),OC →=(m ,3),若A ,B ,C 三点能构成三角形,则实数m 的取值范围是________.考点 向量共线的坐标表示的应用题点 利用三点共线求参数答案 {m |m ∈R 且m ≠6}解析 ∵A ,B ,C 三点能构成三角形,∴AB →,AC →不共线.又∵AB →=(1,1),AC →=(m -2,4),∴1×4-1×(m -2)≠0.解得m ≠6.∴m 的取值范围是{m |m ∈R 且m ≠6}.三、解答题13.平面上有A (2,-1),B (1,4),D (4,-3)三点,点C 在直线AB 上,且AC →=12BC →,连接DC 延长至E ,使|CE →|=14|ED →|,求点E 的坐标. 解 ∵AC →=12BC →,∴A 为BC 的中点,AC →=BA →, 设C (x C ,y C ),则(x C -2,y C +1)=(1,-5),∴x C =3,y C =-6,∴C 点的坐标为(3,-6),又|CE →|=14|ED →|,且E 在DC 的延长线上, ∴CE →=-14ED →,设E (x ,y ), 则(x -3,y +6)=-14(4-x ,-3-y ), 得⎩⎨⎧ x -3=-14(4-x ),y +6=-14(-3-y ),解得⎩⎪⎨⎪⎧x =83,y =-7. 故点E 的坐标是⎝⎛⎭⎫83,-7.14.如图所示,已知在△AOB 中,A (0,5),O (0,0),B (4,3),OC →=14OA →,OD →=12OB →,AD 与BC相交于点M ,求点M 的坐标.考点 向量共线的坐标表示的应用 题点 利用向量共线求点的坐标解 ∵OC →=14OA →=14(0,5)=⎝⎛⎭⎫0,54, ∴C ⎝⎛⎭⎫0,54. ∵OD →=12OB →=12(4,3)=⎝⎛⎭⎫2,32,∴D ⎝⎛⎭⎫2,32. 设M (x ,y ),则AM →=(x ,y -5),AD →=⎝⎛⎭⎫2-0,32-5=⎝⎛⎭⎫2,-72. ∵AM →∥AD →,∴-72x -2(y -5)=0,即7x +4y =20.① 又∵CM →=⎝⎛⎭⎫x ,y -54,CB →=⎝⎛⎭⎫4,74,CM →∥CB →, ∴74x -4⎝⎛⎭⎫y -54=0, 即7x -16y =-20.②联立①②,解得x =127,y =2, 故点M 的坐标为⎝⎛⎭⎫127,2.。
2.3.4__平面向量共线的坐标表示

【方法总结】
利用向量平行证明三点共线需分两步完
成:(1)证明向量平行;(2)证明两个向量有公共点.
用共线向量的性质求坐标 思考3:已知点P1(x1,y1),P2(x2,y2),若点P分别是线段 P1P2的中点、三等分点,如何用向量方法求点P的坐标? y P P1 P P P2
O
x
分析:(中点)
M y P1 P P2
y
P P2 P1
y
P
P2
P1
O
x
O
x
1 如果 P PP2 1P 2
,那么
P
y
P2
1 P1 OP OP1 P P 1 P OP 1 1P 2 3 1 2 1 OP1 (OP2 OP1) OP1 OP2 3 3 3
2 x1 x2 2 y1 y 2 , , 3 3
1 OP (OP 1 OP 2) 2 x1 x2 y1 y2 ( , ) 2 2
x1 x2 y1 y2 , ) 所以,点P的坐标为 ( 2 2
牢记:中点坐标公式
O
(1)
x
(三等分点) 如图,当点P是线段P1P2的一个三等分点时,有两种 情况,即
1 P PP2或 P 1P 1 P 2 PP 2 2
a、 b(b 0)共线.
平面向量共线的坐标表示:
a // b(b 0) x1 y2 x2 y1 0
做一做
已知 a=(1,2),b=(x,4),若 a∥b,则 x 等 于( ) 1 A.- 2 C.-2 1 B. 2 D.2
解析:选D.∵a∥b,∴4-2x=0,∴(a =(x1 ,y1 ),b =(x 2 ,y 2 ),b ≠ 0) x1y2 - x2y1 = 0
平面向量平面向量共线的坐标表示
03
CATALOGUE
平面向量共线的坐标变换
坐标轴的旋转
绕原点逆时针旋转角度θ
将坐标轴上的点$M(x,y)$变为$M'(x',y')$,其中$x' = x\cos\theta - y\sin\theta$,$y' = x\sin\theta + y\cos\theta$。
绕原点顺时针旋转角度θ
将坐标轴上的点$M(x,y)$变为$M'(x',y')$,其中$x' = x\cos\theta + y\sin\theta$,$y' = -x\sin\theta + y\cos\theta$。
平面向量平面向量 共线的坐标表示
目 录
• 平面向量共线的坐标表示 • 平面向量共线的坐标运算 • 平面向量共线的坐标变换 • 平面向量共线的坐标应用
01
CATALOGUE
平面向量共线的坐标表示
定义及坐标表示
平面向量共线定义
若存在实数λ,使得向量a=λb,则向量a与向量b共线。
平面向量的坐标表示
详细描述
设向量a=(x1,y1),b=(x2,y2),则向量a+b=(x1+x2,y1+y2)。向量坐标的加法 运算满足平行四边形法则,即对角线上的两个向量之和等于0。
坐标的数乘运算
总结词
数乘向量坐标运算满足分配律和结合律,即k(a+b)=ka+kb ,(k+l)a=ka+la。
详细描述
设向量a=(x,y),k为实数,则向量ka=kx,ly)。数乘向量坐标 运算满足分配律和结合律,即k(a+b)=ka+kb, (k+l)a=ka+la。
第二章23234平面向量共线的坐标表示
[活学活用] 已知 a=(1,2),b=(-3,2),当实数 k 为何值时,(ka+b)∥(a- 3b)?这两个向量的方向是相同还是相反? 解:∵a=(1,2),b=(-3,2), ∴ka+b=(k-3,2k+2),a-3b=(10,-4). 由题意得(k-3)×(-4)-10(2k+2)=0,解得 k=-13. 此时 ka+b=-13a+b=-13(a-3b), ∴当 k=-13时,(ka+b)∥(a-3b),并且它们的方向相反.
A.3
B.-3
1 C.3 解析:选 C
D.-13 ∵a∥b,∴(-1)×(-1)=3x,∴x=13.
返回
2.已知 A(2,-1),B(3,1),则与 AB平行且方向相反的向量 a
是
()
A.(2,1) C.(-1,2)
B.(-6,-3) D.(-4,-8)
解析:选 D AB=(1,2),向量(2,1)、(-6,-3)、(-1,2) 与(1,2)不平行;(-4,-8)与(1,2)平行且方向相反.
返回
3.已知向量 a=(1,2),b=(-2,3),若 λa+μb 与 a+b 共线,则 λ 与 μ 的关系是________. 解析:∵a=(1,2),b=(-2,3),∴a+b=(1,2)+(-2,3)=(- 1,5),λa+μb=λ(1,2)+μ(-2,3)=(λ-2μ,2λ+3μ), 又∵(λa+μb)∥(a+b), ∴-1×(2λ+3μ)-5(λ-2μ)=0, ∴λ=μ. 答案:λ=μ
返回
∴yx==-2+11+231+×+2323×23-31,,
即xy==3545.,
故 P 点坐标为54,35.
(2)当 P1P 与 PP2 反向时,则有 P1P =-23 PP2 ,设 P 点坐
课件8:2.3.4 平面向量共线的坐标表示
又∵θ 为锐角,∴sinθ= 22,θ=45°,故选 A.
2.平面直角坐标系中,O 为坐标原点,已知两点 A(3,1),B(-1,3),若点 C
满足O→C=αO→A+βO→B,其中 α、β∈R,且 α+β=1,则点 C 的轨迹形状
是________.
解析:∵α+β=1,∴β=1-α.∴O→C=αO→A+(1-α)O→B. ∴O→C-O→B=α(O→A-O→B).∴B→C=αB→A.
的意义不同,前者不允许
x2
和
y2
为零,
而后者允许,所以当向量 a、b 之一为零向量或向量 a、b 与坐标轴平行时,该
方法便行不通了.
题型探究
题型一 向量共线的判断 例1 已知a=(1,2),b=(-3,2),当k为何值时,ka+b与a-3b平行? 平行时,它们是同向还是反向?
【解】 由已知得,ka+b=(k-3,2k+2),a-3b=(10,-4), ∵ka+b 与 a-3b 平行,∴(k-3)×(-4)-10(2k+2)=0,
λ=-71, y=37.源自随堂练习1.已知 a=(-2,1-cosθ),b=1+cosθ,-41,且 a∥b,则锐角 θ 等于( )
A.45°
B.30°
C.60°
D.15°
解析:选 A.由 a∥b 得(-2)×-14-(1-cosθ)(1+cosθ)=0
即12=1-cos2θ=sin2θ,∴sinθ=± 22,
代入方程(x-3)2+(y-3)2=4,整理得 x2+y2=1. ∴所求的轨迹方程为 x2+y2=1.
课堂小结
1.用向量的坐标判定两向量的共线,当坐标不为0时,看其坐标是否成比例. 2.三点共线问题的实质是向量共线问题.两个向量共线只需满足方向相同或相反, 两个向量共线与两个向量平行是一致的.
2.3.4 平面向量共线的坐标表示(A3)
2015 年( )月( )日 班级 姓名
在坐标系中以原点为始点,画出向量 a=(2,3),终点为 A;b=(6,4),终点为 B. 则线段 AB 的中点 P 的坐标 问题 1 设 P1、P2 的坐标分别是(x1,y1)、(x2,y2),求线段 P1P2 的中点 P 的坐标.
2.3.4
问题 2 设 P1(x1,y1),P2(x2,y2),试用 λ 及 P1,P2 点的坐标表示 P(x,y)点的坐标.
例3
已知点 A(3,-4)与点 B(-1,2),点 P 在直线 AB 上,且| AP |=2| PB |,求点 P 的坐标.
【小结】若 P 2 ,则 P 与 P1、P2 三点共线. 1 P =λ PP 当 λ∈ 时,P 位于线段 P1P2 的内部,特别地 λ=1 时,P 为线段 P1P2 的中点; 当 λ∈ 时,P 位于线段 P1P2 的延长线上; 当 λ∈ 时,P 位于线段 P1P2 的反向延长线上. 例 1 已知 a=(1,2),b=(-3,2),当 k 为何值时,ka+b 与 a-3b 平行?平行时它们是同向还是 反向?
1 2 3
4 5 6
x
a 与非零向量 b 为共线向量的充要条件是有且只有一个实数 λ 使得 a=λb.那么这个共线向量定理 如何用坐标来表示? 【平面向量共线的坐标表示】 问题 1 设向量 a=(x1,y1),b=(x2,y2)(b≠0),如果 a∥b,那么 x1y2-x2y1=0,写出证明过程.
问题 3 已知△ABC 的三个顶点坐标依次为 A(x1,y1),B(x2,y2),C(x3,y3).求△ABC 的重心 G 的 坐标.
问题 2 设向量 a=(x1,y1),b=(x2,y2),b≠0,如果 x1y2-x2y1=0,那么 a∥b.请你写出证明过 程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 2)若k e1
e2与e1
k
e
共
2
线,
求
实
数k值.
消去 得, x1 y2 - x2y1 =0 x y 即 当且仅当 1 2 — x2y1 =0时,向量a、b(b、=/ 0)共线
例1 已知向量a=(4,2),b=(6,y),
且a∥b,求y的值.
解:Q
rr a// b
y=3
4y-2x6=0
Y=3
例2 已知点A(-1,-1),B(1,3),
C(2,5),试判断A、B、C三点是
y
P
P2
P1 P P
O
x
p99
练习
合作探究:
:一般地,若点P1(x1,y1),P2(x2,y2),
点P是直线P1P2上一点,且
,
那么点P的坐标有何计算公式?
y
P
P2
P1
O
x
线段的定比分点
设 P1( x1, y1,) P2( x2 , y2 ,) P分 P1P2所成的比为 ,如何
求P点的坐标呢?
Ayபைடு நூலகம்
= uuur
AB
AB
(x2-x1,y2-y1).
B
o
x
任意一个向量的坐标等于表示该向量 的有向线段的终点坐标减去始点坐标.
知识回顾:
3:如果向量a,b共线(其中b≠0),那么a, b满足什么关系?
向 唯量一一b个与实非数零向量,a使共得线b当且仅a当。有
新课 引入:
设a=(x1,y1),b=(x2,y2),若向量a,b共 线(其中b≠0),则这两个向量的坐标应 满足什么关系?反之成立吗?
有向线段 P1P2 的定比分点坐标公式
x
x1 x2 1
y
y1 y2 1
有向线段 P1P2 的中点坐标公式
x
x1
2
x2
y
y1
y2
2
练习: p100, 4, 5, 6, 7 .
小结作业
1. 向量的坐标运算是根据向量的坐标表 示和向量的线性运算律得出的结论,它 符合实数的运算规律,并使得向量的运 算完全代数化.
a+b=(x1+x2,y1+y2); a-b=(x1-x2,y1-y2); λa=(λx1,λy1).
用数学语言描述上述向量的坐标运算?
两个向量和(差)的坐标分别等于这两个向 量相应坐标的和(差); 实数与向量的积的坐标等于用这个实数乘原来向 量的相应坐标.
2,已知点A(x1,y1),B(x2,y2), 那么向量 A B 的坐标如何?
自主学习:p98, 探究:平面向量共线的坐标表示
向量a,b(b≠0)共线 x 1 y 2 x 2 y 1
x y 证明:设a=( 1, y 1), b=( x2 , 2 ), b 0
则a与b共线
a= b ,
x y 用坐标表示为, ( 1 , y1)=( x2, 2 ),
即
x1 y1
x2 y2
否共线
Q 证明:
uuur AB =(1-(-1),3-(-1))=(2,4),
uuur AC
=(2-(-1),5-(-1))=(3,6),
uuur 又2x6-3x4=0 uuur AB // AC
Q 直线AB、直线AC有公共点A,
A、B、C三点共线。
例3:已知点P1(x1,y1),P2(x2,y2),若 点P分别是线段P1P2的中点、三等分点, 如何用向量方法求点P的坐标?
2.3.4
平面向量共线的坐标表示
教学目标:
1,掌握平面向量共线的坐标表示法 2,会运用两个向量共线定理及坐标表示解决问题。 3,了解向量中点的坐标公式 4,了解向量的定比分点的坐标公式
重点:
向量共线的坐标表示及应用
难点:
利用向量共线条件解决问题
知识回顾:
1,根据向量的坐标表示,向量 a+b,a-b, λa的坐标分别如何?
y
P1P ( x x1, y y1 ) PP2 ( x2 x, y2 y)
P P1
P2
P1P PP2
O
x
( x x1, y y1 ) ( x2 x, y2 y)
xy
x1 y1
( (
x2 y2
x) y)
x
y
x1 x2 1
y1 y2 1
线段的定比分点
2.对于两个非零向量共线的坐标表示, 可借助斜率相等来理解和记忆.
3.利用向量的坐标运算,可以求点的坐 标,判断点共线等问题,这是一种向量 方法,体现了向量的工具作用.
作业:
P100练习:2,4. P101习题A组:1,3,4,5.
作业
(1)已 知
e1
,
e
是
2
不
共
线
向
量, 若
a
3e1
4e2
,
b 6e1 ke2 , 且 a // b, 求 k的 值