八年级下数学期末复习(一)

合集下载

江西省南昌市2022-2023学年下学期八年级期末数学复习试卷(含答案)

江西省南昌市2022-2023学年下学期八年级期末数学复习试卷(含答案)

2022-2023学年江西省南昌市八年级(下)期末数学复习试卷一、选择题(本大题共6小题,共18.0分)1. ― 2的倒数是( )A. ― 2B. 2C. ― 22 D. 222. 以下列各组数为边,能构成直角三角形的是( )A. 1,1,2B. 2, 7, 3C. 4,6,8D. 5,12,113. 下列命题中,属于真命题的是( )A. 内错角相等B. 相等的角是对顶角C. 同位角互补,两直线平行D. 在同一平面内,过一点有且只有一条直线与已知直线垂直4. 在一次函数y =2x +1的图象上的一个点的坐标是( )A. (2,1)B. (―2,1)C. (2,12)D. (12,2)5. 小明在计算一组数据的方差时,列出的公式如下s 2=1n [(7――x )2+(8――x )2+(8――x )2+(8――x )2+(9――x )2],根据公式信息,下列说法中,错误的是( )A. 数据个数是5B. 数据平均数是8C. 数据众数是8D. 数据方差是156. 如图,将一圆柱形铁块固定在圆柱形大烧杯的杯底中央,现沿着大烧杯内壁匀速注水,注满后停止注水.则大烧杯水面的高度y(cm)与注水时间x(s)之间的函数图象大致是( )A. B.C. D.二、填空题(本大题共6小题,共18.0分)7. 若2a―8有意义,则实数a的取值范围为______ .8. 若一组数据2,2,3,3,4、4、x的平均数是3,则这组数据的众数是______ .9. 如果直线y=(2m+1)x―2+m经过第一、三、四象限,那么则m的取值范围是______ .10. 如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是.11. 如图,E是矩形ABCD的边CD上一点,将△ADE沿AE折叠,使点D落在BC边上的点F处.若AD=10,CF=4,则DE的长为______ .12. 把a,b两个数中较小的数记为min{a,b},直线y=kx+2k与函数y=min{―x+2,2x+1}的图象只有一个公共点,则k的取值范围是_________.三、计算题(本大题共1小题,共6.0分)13. 计算:2×10+45+5.4四、解答题(本大题共9小题,共78.0分)14. (6.0分)已知y―2是x的正比例函数,且当x=1时,y=―6.(1)求y与x之间的函数关系式;(2)若点(m,10)在这个函数图象上,求m的值.15. (8.0分)如图,四边形ABCD中,∠ABC=90°,AB=BC=2,CD=4,AD=26,(1)求四边形ABCD的面积;(2)求∠BCD的大小.16. (8.0分)已知直线y=kx+4经过点P(1,m),且平行于直线y=―2x+1,它与x轴相交于点A,求△OPA的面积.17. (8.0分)如图,在菱形ABCD中,对角线AC、BD相交于点O,DE//AC,DE=OC.(1)求证:四边形AODE是矩形;(2)若AB=8,∠ABC=60°,求四边形ACDE的面积.18. (8.0分)如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等.(1)E站应建在A站多少km处?(2)求两村与土特产品收购站围成的三角形的面积.19. (9.0分)某校为了解学生对共青团的认识,组织七、八年级全体学生进行了“团史知识”竞赛,为了解竞赛成绩,现从该校七、八年级中各随机抽取10名学生的竞赛成绩(满分100分,90分及90分以上为优秀)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100,下面给出了部分信息:七年级抽取的10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82;八年级抽取的10名学生的竞赛成绩在C组中的数据是:94,90,91;七,八年级抽取的学生竞赛成绩统计表:年级平均数中位数众数方差七年级9293c52八年级92b10050.4根据以上信息,解答下列问题:(1)图表中a=______ ,b=______ ,c=______ ;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握团史知识较好?请说明理由(一条理由即可);(3)该校七年级有450人,八年级有500人参加了此次“团史知识”竞赛,估计参加竞赛活动成绩优秀的学生人数是多少?20. (9.0分)如图,在四边形ABCD中,AD//BC,AD=9cm,BC=12cm,动点P、Q分别从A、C同时出发,点P以1cm/s的速度由A向D运动,点Q以3cm/s的速度由C向B运动,其中一动点到达终点时,另一动点随之停止运动,设运动时间为t 秒.(1)AP=______ ,CQ=______ (分别用含有t的式子表示);(2)当四边形ABQP的面积与四边形PQCD面积相等时,求出t的值;(3)当点P、Q与四边形ABCD的任意两个顶点所组成的四边形是平行四边形时,请直接写出t的值.21. (10.0分)某同学在解决问题:已知a=12+3,求2a2―8a+1的值.她是这样分析与解的:a=12+3=2―3(2+3)(2―3)=2―3,∴a=2―3,∴(a―2)2=3,a2―4a+4=3,∴a2―4a=―1,∴2a2―8a+1=2(a2―4a)+1=2×(―1)+1=―1.请你根据小芳的分析过程,解决如下问题:(1)计算:12+1+13+2+14+3+…+12022+2021(2)若a=12―1.①求4a2―8a―1的值;②求3a3―12a2+9a―12的值.22. (12.0分)如图,直线l1:y=k1x+m1经过A(0,a),B(b,0)两点,直线l2:y= k2x+m2经过C(0,c),D(d,0)两点,l1,l2相交于点P.(1)求直线l1的解析式(用含a,b的式子表示),直接写出l2的解析式(用含c,d的式子表示);(2)若△OAB≌△ODC,求证:k1⋅k2=1;(3)若P(1,1),S△OAB=S△OCD,求证:AB=CD.答案1.C2.B3.D4.D5.D6.D7.a ≥48.39.―12<m <210.4.811.512.k =57或k >2或k ≤―113.解:原式=2 5+3 5+ 52=5 5+ 52=11 52.14.解:(1)设y ―2=kx ,把x =1,y =―6代入得―6―2=k ,∴k =―8,∴y ―2=―8x ,∴函数解析式是y =―8x +2;(2)∵点(m,10)在这个函数图象上,∴―8m +2=10,解得m =―1,∴m 的值为―1.15.解:(1)连接AC ,∵∠ABC =90°,AB =BC =2,∴AC 2=AB 2+AC 2=8,∵CD 2=42=16,AD 2=(2 6)2=24,∴AC 2+CD 2=AD 2,∴△ACD 是直角三角形,∴∠ACD =90°,∵△ABC 的面积=12AB ⋅BC =12×2×2=2,△ACD 的面积=12CD ⋅AC =12×4×2 2=4 2,∴四边形ABCD的面积=△ABC的面积+△ACD的面积=2+42.(2)∵△ABC是等腰直角三角形,∴∠ACB=45°,∵∠ACD=90°,∴∠BCD=∠ACB+∠ACD=135°.16.解:∵直线y=kx+4经过点P(1,m),且平行于直线y=―2x+1,∴k=―2,∴一次函数解析式为y=―2x+4,把x=1,y=m代入上式得m=2,∴P(1,2),A(2,0),×2×2=2.∴S△OPA=1217.(1)证明:∵DE//AC,∴∠EDA=∠DAC,∵菱形ABCD,∴DE=OC,AC⊥BD,∴∠AOD=90°,在△EAD和△AOD中,ED=OC∠EDA=∠DAC,AO=ED∴△EAD≌△AOD(ASA),∴AE=OD,∴四边形AODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOD=90°,∴四边形AODE是矩形;(2)解:∵四边形ABCD是菱形,∴AD=AB=BC=8,OA=OC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=8,∴OA=12AC=4,在Rt△AOD中,由勾股定理得:OD=AD2―OA2=82―42=43,由(1)得:四边形AODE是矩形,∴四边形ACDE的面积=(DE+AC)×AE×12=(4+8)×43×12=243.18.解:(1)∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2=BE2+BC2,设AE=x,则BE=AB―AE=(25―x),∵DA=15km,CB=10km,∴x2+152=(25―x)2+102,解得:x=10,∴AE=10km,(2)∵△DAE≌△EBC,∴∠DEA=∠ECB,∠ADE=∠CEB,∠DEA+∠D=90°,∴∠DEA+∠CEB=90°,∴∠DEC=90°,∵DE=152+102=513,∴两村与土特产品收购站围成的三角形的面积为:12×DE×EC=3252平方千米.19.解:(1)C所占的百分比是:×100%=30%,a%=1-30%-20%-10%=40%,即a=40;∵共有10个数,中位数是第5、第6个数的平均数,∴中位数b==92.5;∵99出现了3次,出现的次数最多,∴众数c=99.故答案为:40;92.5;99;(2)八年级学生掌握团史知识较好,理由如下:因为两个年级的平均数相同,而八年级的成绩的众数大于七年级,方差小于七年级.(3)根据题意得:450×+500×(30%+40%)=270+350=620(人),答:估计参加竞赛活动成绩优秀的学生人数是620人.20.解:(1)∵点P以1cm/s的速度由A向D运动,点Q以3cm/s的速度由C向B运动,∴AP=t cm,CQ=3t cm,故答案为:t cm,3t cm;(2)设点A到BC的距离为h cm,∵四边形PQCD的面积是四边形ABQP面积的2倍,∴×(9-t+3t)×h=×(t+12-3t)×h,∴t=;(3)分情况讨论:①若四边形APQB是平行四边形,则AP=BQ,∴t=12-3t,∴t=3;②若四边形PDCQ是平行四边形,则PD=CQ,∴9-t=3t,∴t=;③若四边形APCQ是平行四边形,则AP=CQ,∴t=3t,∴t=0(不合题意舍去);④若四边形PDQB是平行四边形,则PD=BQ,∴9-t=12-3t,∴t=;综上所述:当t的值为或3或时,点P、Q与四边形ABCD的任意两个顶点所形成的四边形是平行四边形.21.解:(1)12+1+13+2+14+3+…+12022+2021=2―1+3―2+4―3+...+2022―2021=2022―1;(2)①∵a=12―1=2+1,∴4a2―8a―1=4a2―8a+4―4―1=4(a2―2a+1)―5=4(a―1)2―5 =4×(2+1―1)2―5=4×2―5=3.∴4a2―8a―1的值为3.②a=12―1=2+1,a―1=2,3a3―12a2+9a―12=(3a3―3a2)―(9a2―9a)―12=3a2(a―1)―9a(a ―1)―12=32a2―92a―12=32a(a―1)―62a―12=6a―62a―12=6a(1―2)―12=6(1+2)(1―2)―12=―6―12=―18,∴3a3―12a2+9a―12的值为―18.22.解:(1)∵直线l1:y=k1x+m1经过A(0,a),B(b,0)两点,∴k1b+m1=0m1=a.解得k1=―ab m1=a,∴l1:y=―abx+a.同理可得:l2:y=―cdx+c;(2)∵△OAB≌△ODC,∴a=d,b=c.∴k1⋅k2=―ab ⋅(―cd)=ab⋅ba=1;(3)将点P(1,1)代入l1,l2中可得:1=―ab +a,1=―cd+c.∴ab=a+b,cd=c+d.∴(ab)2=(a+b)2=a2+b2+2ab.∴(2S△OAB)2=AB2+4S△OAB,同理可得(2S△OCD)2=CD2+4S△OCD.∵S△OAB=S△OCD,∴AB=CD.。

专题07 八年级下册期末模拟试卷一(解析版)-2020-2021学年八年级数学期末复习特训(人教版)

专题07 八年级下册期末模拟试卷一(解析版)-2020-2021学年八年级数学期末复习特训(人教版)

专题07 八年级下册期末模拟试卷一(解析版)一.选择题(共10小题,满分30分,每小题3分)1.(3分)在▱ABCD中,AB=6,AD=4,则▱ABCD的周长为()A.10B.20C.24D.12【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=6,AD=BC=4,∴▱ABCD的周长为:2×(AB+AD)=2×(6+4)=20,故选:B.2.(3分)下列二次根式中,是最简二次根式的是()A.B.C.D.【解答】解:A.,故本选项不合题意;B.,故本选项不合题意;C.是最简二次根式,故本选项符合题意;D.,故本选项不合题意.故选:C.3.(3分)若甲、乙、丙、丁四人参加跳远比赛,经过几轮初赛,他们的平均成绩相同,方差分别是:=0.34,S乙2=0.21,S丙2=0.4,S丁2=0.45.你认为最应该派去的是()A.甲B.乙C.丙D.丁【解答】解:∵=0.34,S乙2=0.21,S丙2=0.4,S丁2=0.45,∴S乙2<<S丙2<S丁2,∴乙的成绩更加稳定,故选:B.4.(3分)下列计算正确的是()A.÷=B.﹣=C.+=D.×=【解答】解:A、原式==,所以A选项错误;B、与不能合并,所以B选项错误;C、与不能合并,所以C选项错误;D、原式==,所以D选项正确.故选:D.5.(3分)下列线段不能构成直角三角形的是()A.5,12,13B.2,3,C.4,7,5D.1,,【解答】解:A、52+122=169=132,故是直角三角形,不符合题意;B、22+()2=9=32,故是直角三角形,不符合题意;C、42+52=41≠72,故不是直角三角形,符合题意;C、12+()2=()2,故是直角三角形,不符合题意.故选:C.6.(3分)下列各曲线中不能表示y是x的函数的是()A.B.C.D.【解答】解:当x取一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.选项A中的曲线,当x取一个值时,y的值可能有2个,不满足对于自变量的每一个确定的值,函数值有且只有一个值与之对.故A中曲线不能表示y是x的函数,故选:A.7.(3分)数学老师为了判断小颖的数学成绩是否稳定,对小颖在中考前的6次模拟考试中的成绩进行了统计,老师应最关注小颖这6次数学成绩的()A.方差B.中位数C.平均数D.众数【解答】解:由于方差反映数据的波动大小,故老师最关注小颖这6次数学成绩的稳定性,就是关注这6次数学成绩的方差.故选:A.8.(3分)在下列给出的条件中,能判定四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AD∥BC,AD=BC D.AB=AD,CD=BC【解答】解:A.由AB∥CD,AD=BC,不能判定四边形ABCD是平行四边形,故本选项不合题意;B.由∠A=∠B,∠C=∠D,不能判定四边形ABCD是平行四边形,故本选项不合题意;C.由AD∥BC,AD=BC,能判定四边形ABCD是平行四边形,故本选项符合题意;D.由AB=AD,CD=BC,不能判定四边形ABCD是平行四边形,故本选项不合题意;故选:C.9.(3分)如图,一次函数y1=x+b与一次函数y2=kx+4的图象相交于点P(2,﹣2),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2B.x<﹣2C.x<2D.x>2【解答】解:∵一次函数y1=x+b与一次函数y2=kx+4的图象相交于点P(2,﹣2),∴当x>2时,x+b>kx+4,即关于x的不等式x+b>kx+4的解集是x>2.故选:D.10.(3分)将一张正方形纸片按如图的步骤,通过折叠得到④,再沿虚线剪去一个角,展开平铺后得到⑤,其中FM、GN为折痕,若正方形EFGH与五边形MCNGF的面积之比为4:5,则的值为()A.B.C.D.【解答】解:如图,连接HF,直线HF与AD交于点P,∵正方形EFGH与五边形MCNGF的面积之比为4:5,设正方形EFGH与五边形MCNGF的面积为4x2,5x2,∴GF2=4x2,∴GF=2x,∴HF==2x,由折叠可知:正方形ABCD的面积为:4x2+4×5x2=24x2,∴PM2=24x2,∴PM=2x,∴FM=PH=(PM﹣HF)=(2x﹣2x)=(﹣)x,∴==.故选:A.二.填空题(共6小题,满分18分,每小题3分)11.(3分)若二次根式有意义,则x的取值范围是x≥.【解答】解:∵二次根式有意义,∴2x﹣1≥0,解得:x≥.故答案为:x≥.12.(3分)如图,在校园内有两棵树相距12米,一棵树高14米,另一棵树高9米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞13米.【解答】解:如图所示,AB,CD为树,且AB=14米,CD=9米,BD为两树距离12米,过C作CE⊥AB于E,则CE=BD=12,AE=AB﹣CD=5,在直角三角形AEC中,AC===13.答:小鸟至少要飞13米.故答案为:13.13.(3分)已知a,b,c,d的平均数是3,则2a﹣1,2b﹣1,2c﹣1,2d﹣1的平均数是5.【解答】解:∵a,b,c,d的平均数是3,∴a+b+c+d=12,∴[(2a﹣1)+(2b﹣1)+(2c﹣1)+(2d﹣1)]÷4=(2a﹣1+2b﹣1+2c﹣1+2d﹣1)÷4=[2(a+b+c+d)﹣4]×=﹣1=﹣1=6﹣1=5,故答案为:5.14.(3分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的面积分别是3、5、2、3,则正方形E的边长是.【解答】解:设中间两个正方形的边长分别为x、y,正方形E的边长为z,则由勾股定理得:x2=3+5=8,y2=2+3=5,z2=x2+y2=13;即最大正方形E的面积为:z2=13.则正方形E的边长是.故答案为:.15.(3分)已知直线y=kx+b,若k+b+kb=0,且kb>0,那么该直线不经过第一象限.【解答】解:∵k+b+kb=0,且kb>0,∴k+b=﹣kb<0,k和b同号,∴k<0,b<0,∴直线y=kx+b经过第二、三、四象限,不经过第一象限,故答案为:一.16.(3分)已知三角形一边上的中线,与三角形三边有如下数量关系:三角形两边的平方和等于第三边一半的平方与第三边中线平方之和的2倍.即:如图1,在△ABC中,AD是BC边上的中线,则有AB2+AC2=2(BD2+AD2).请运用上述结论,解答下面问题:如图2,点P为矩形ABCD外部一点,已知P A=PC=3,若PD=1,则AC的取值范围为﹣1≤AC<2.【解答】解:如图,连接BD交AC于O,连接PO,∵四边形ABCD是矩形,∴AC=BD,AO=CO=BO=DO,∵PO是△ACP的中线,也是△PBD的中线,∴P A2+PC2=2(AO2+PO2),PB2+PD2=2(PO2+OD2),∴P A2+PC2=PB2+PD2,∴9+9=1+PB2,∴PB=,在△PBD中,﹣1≤BD≤+1,∴﹣1≤AC≤+1,当点P在AD上时,CD===2,∴AC===2,故答案为:﹣1≤AC<2.三.解答题(共8小题,满分72分)17.(6分)计算:(1)﹣+;(2)(+1)(﹣1)+÷.【解答】解:(1)原式=3﹣4+=0;(2)原式=()2﹣1+=2﹣1+=1+.18.(8分)如图,在△ABC中,点D、E、F分别是BC、AC、AB边上的中点.(1)求证:四边形BDEF是平行四边形;(2)若AB=BC,连接BE、DF.请判断BE与DF的位置关系,并说明理由.【解答】(1)证明:∵D、E、F分别是BC、AC、AB的中点,∴DE是△CAB的中位线,EF是△ABC的中位线,∴DE∥AB,EF∥BC,∴四边形BDEF是平行四边形;(2)解:BE与DF的位置关系为:BE⊥DF,如图所示,理由如下:由(1)得:DE是△CAB的中位线,EF是△ABC的中位线,∴DE=AB,EF=BC,∵AB=BC,∴DE=EF,∵四边形BDEF是平行四边形,∴四边形BDEF是菱形,∴BE⊥DF.19.(8分)已知一次函数y=(m﹣3)x+m+1的图象经过点(1,2).(1)求此一次函数解析式,并画出函数图象;(2)求此一次函数图象与坐标轴围成图形的面积.【解答】解:(1)把x=1,y=2代入一次函数解析式,得(m﹣3)+m+1=2.解得m=2.所以一次函数解析式为:y=﹣x+3.函数图象见右图.(2)当x=0时,y=3;当y=0时,x=﹣3.所以直线和x、y轴围成的三角形的面积为:×3×3=.20.(8分)某校九年级的一次数学小测试由20道选择题构成,每题5分.共100分.为了了解本次测试中同学们的成绩情况,某调查小组从中随机调查了部分同学,并根据调查结果绘制了如下尚不完整的统计图:请根据以上信息解答下列问题:(1)本次调查的学生人数为50人;(2)调查的学生中,该次测试成绩的中位数是90分;(3)调查的学生中,该次测试成绩的众数为95分;(4)补全条形统计图;(5)若测试成绩80分或80分以上为“优秀”,则估计该校九年级800名学生中,本次测试成绩达到“优秀”的人数是多少?【解答】解:(1)本次调查的学生有:5÷10%=50(人),故答案为:50;(2)∵3+18=21,21+12=33,∴这组数据的中位数是(90+90)÷2=90(分),故答案为:90;(3)85分的学生有50﹣(2+5+12+18+3)=10(人),故这组数据的众数是95分,故答案为:95;(4)由(3)知,85分的学生有10人,补全的条形统计图如右图所示;(5)800×=768(人),即该校九年级800名学生中,本次测试成绩达到“优秀”的人数是768人.21.(8分)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,将△DCE沿DE翻折,使点C落在点A处.(1)设BD=x,在Rt△ABC中,根据勾股定理,可得关于x的方程62+x2=(8﹣x)2;(2)分别求DC、DE的长.【解答】解:(1)∵将△DCE沿DE翻折,使点C落在点A处.∴AD=CD,AE=EC,设BD=x,则DC=AD=8﹣x,∵AB2+BD2=AD2,∴62+x2=(8﹣x)2,故答案为:62+x2=(8﹣x)2;(2)由(1)得62+x2=(8﹣x)2,解得x=,∴BD=,∴DC=BC﹣BD=8﹣=.∵AB=6,BC=8,∴AC===,∴CE=AC=5,∴DE===.22.(10分)甲、乙两名同学沿直线进行登山,甲、乙沿相同的路线同时从山脚出发到达山顶.甲同学到达山顶休息1小时后再沿原路下山.他们离山脚的距离S(千米)随时间t(小时)变化的图象如图所示.根据图象中的有关信息回答下列问题:(1)分别求出甲、乙两名同学上山过程中S与t的函数解析式;(2)若甲同学下山时在点F处与乙同学相遇,此时点F与山顶的距离为0.75千米;①求甲同学下山过程中S与t的函数解析式;②相遇后甲、乙两名同学各自继续下山和上山,求当乙到山顶时,甲离乙的距离是多少千米?【解答】解:(1)设甲、乙两同学登山过程中,路程s(千米)与时间t(时)的函数解析式分别为S甲=k1t,S=k2t乙由题意,得2=4k1,2=6k2∴k1=,k2=,∴解析式分别为S甲=t,S乙=t;(2)①当y=4﹣0.75时,,解得t=,∴点F(,),甲到山顶所用时间为:4=8(小时)由题意可知,点D坐标为(9,4),设甲同学下山过程中S与t的函数解析式为s=kt+b,则:,解答,∴甲同学下山过程中S与t的函数解析式为s=﹣t+13;②乙到山顶所用时间为:(小时),当x=12时,s=﹣12+13=1,当乙到山顶时,甲离乙的距离是:4﹣1=3(千米).23.(12分)已知菱形ABCD的边长为2,∠ABC=60°,对角线AC、BD相交于点O.点M从点B向点C运动(到点C时停止),点N为CD上一点,且∠MAN=60°,连接AM交BD于点P.(1)求菱形ABCD的面积;(2)如图1,过点D作DG⊥AN于点G,若BM=4﹣2,求NG的长;(3)如图2,点E是AN上一点,且AE=AP,连接BE、OE.试判断:在运动过程中,BE+OE是否存在最小值?若存在,请求出;若不存在,请说明理由.【解答】解:(1)如图1中,∵四边形ABCD是菱形,∴AB=BC=CD=AD=2,∠ABC=∠ADC=60°,AC⊥BD,∴△ABC,△ACD都是等边三角形,∵∠AOB=90°,∠ABO=∠CBO=30°,∴OA=AB=1,OB=OA=,∴AC=2AO=2,BD=2OB=2,∴S菱形ABCD=•BD•AC=×2×2=2.(2)如图1中,过点A作AT⊥CD于T.∵△ABC,△ACD都是等边三角形,∴∠ACN=∠ABM=60°,AB=AC,∵∠MAN=∠BAC=60°,∴∠BAM=∠CAN,∴△BAM≌△ACN(ASA),∴BM=CN=4﹣2,∵AC=AD,AT⊥CD,∴CT=DT=1,AT=,∴TN=CT﹣CN=1﹣(4﹣2)=2﹣3,∴AN===3﹣,∵S△ADN=•AN•DG=•DN•AT,∴DG==,∴GN===2﹣.(3)如图2中,取CD的中点G,连接BG,CE,EG,过点G作GH⊥BD于H.∵∠BAC=∠P AE=60°,∴∠BAP=∠CAE,∵AB=AC,AP=AE,∴△BAP≌△CAE(SAS),∴∠ABP=∠ACE=30°,∵∠ACD=60°,∴∠OCE=∠GCE,∵∠COD=90°,∠ODC=∠ADC=30°,∴CD=2OC,∵CG=GD,∴OC=CG,∵CE=CE,∴△OCE≌△GCE(SAS),∴OE=EG,∴BE+OE=BE+EG≥BG,在Rt△BGH中,∵∠GHB=90°,GH=DG=,BH=,∴BG===,∴BE+OE≥,∴BE+OE的最小值为.24.(12分)如图,在平面直角坐标系xOy中,已知直线l1:y=x﹣2和直线l2:y=2x﹣4相交于点A.(1)已知点P(1﹣t,9﹣3t),求证:无论t为何值,点P总在直线y=3x+6上;(2)直线y=3x+6分别与x轴、y轴交于B、C两点,平移线段BC,使点B、C的对应点M、N分别落在直线l1和l2上,请你判断四边形BMNC的形状,并说明理由;(3)在(2)问的条件下,已知直线y=mx﹣6m+8 把四边形BMNC的面积分成1:3两部分,求m的值.【解答】(1)证明:对于直线y=3x+6,当x=1﹣t时,y=3(1﹣t)+6=﹣3t+9,∴P(1﹣t,9﹣3t)在直线y=3x+6上.(2)解:∵直线y=3x+6分别与x轴、y轴交于B、C两点,∴B(﹣2,0),C(0,6),∵线段MN是由线段BC平移得到,∴可以假设M(t,t﹣2),N(t+2,t﹣2+6),即N(t+2,t+4),∵N(t+2,t+4)在直线y=2x﹣4上,∴t+4=2(t+2)﹣4,解得t=4,∴M(4,2),N(6,8),∴BM==2,BC==2,∴BM=BC,∵BC=MN,BC∥MN,∴四边形BMNC是平行四边形,∵BC=BM,∴四边形BMNC是菱形.(3)∵直线y=mx﹣6m+8,∴x=6时,y=8,∴直线y=mx﹣6m+8经过定点(6,8),∴直线y=mx﹣6m+8经过点N(6,8),∵直线y=mx﹣6m+8把四边形BMNC的面积分成1:3两部分,∴直线y=mx﹣6m+8经过BC的中点G或经过BM的中点H,∵G是BC的中点,H是BM的中点,∴G(﹣1,3),H(1,1),把G(﹣1,3)代入y=mx﹣6m+8得到m=,把H(1,1)代入y=mx﹣6m+8得到m=,综上所述,满足条件的m的值为或.。

8年级下数学期末总复习第一章的副本

8年级下数学期末总复习第一章的副本

太原市鲁艺中学校:八年级数学命题人:薛梅审核人:王海文班级:____姓名:__________作业评价:__________日期:___________第一章三角形的证明复习题一、填空题1、如图,在△MON中,以点O为圆心,任意长为半径作弧,分别交射线OM,ON于点A,B,再分别以点A,B为圆心,OA的长为半径作弧,两弧在△MON的内部交于点C,作射线OC.若OA=5,AB=6,则点B到AC的距离为______第1题第2题2、如图,在△ABC中,BD平分△ABC,过点C作CD⊥BD于点D,E是边AC的中点,连接DE.若DE=2,BC=10,则AB的长为______3、如图,在Rt△ABC中,AC=4,BC=33,将Rt△ABC以点A为中心,逆时针旋转60°得到△ADE,则线段BE的长度_____第3题第4题4、如图2,在△ABC中,AB=2,∠BAC=60°,D是边BC的中点,点E在边AC上运动.若DE平分△ABC的周长,则DE的长是_____5、如图,将△ABC绕点B逆时针旋转60°,得到△EBD,点C的对应点为点D,连接AD,AE.若AB=5,AD=4,∠DAB=30°,则AC的长为_______第5题第6题6、将连接四边形对边中点的线段称为“中对线”.如图,凸四边形ABCD的对角线AC=BD=4,且两条对角线的夹角为60°,则该四边形较短的“中对线”的长度为______7、如图,在平行四边形纸片ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=4,将纸片沿对角线AC 对折,使得点B落在点B的位置,连接DB,则DB的长为_____8、如图,在Rt△ABC中,∠BAC=90°,∠B=60°,AB=2,点P为BC边上任意一点,连接PA,以PA、PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为_______第8题第9题9、如图,在平行四边形ABCD中,∠B=60°,点E,F分别是边BC,AB上的点,且DF垂直平分AE.若BF=1,EF⊥AB,则线段AD的长为_____二、解答题1、如图,已知点A,B,C,D在一条直线上,BF,CE相交于点O,AE=DF,∠E=∠F,OB=OC.(1)求证:△ACE≅△DBF;(2)如果把△DBF沿AD折翻折,使点F落在点G处,连接BE和CG.求证:四边形BGCE是平行四边形.太原市鲁艺中学校:八年级数学命题人:薛梅审核人:王海文班级:____姓名:__________作业评价:__________日期:___________ 2、阅读下面材料,按要求完成任务.小明遇到这样一个问题:如图1,在△ABC中,DE//BC分别交AB于点D,交AC于点E.已知CD⊥BE,CD=3,BE=4,求BC+DE的值.小明发现,过点E作EF//DC,交BC延长线于点F,构造△BEF,经过推理和计算能够使问题得到解决(如图2).(1)请按照上述思路完成小明遇到的这个问题;(2)参考小明思考问题的方法,解决问题:如图3,已知平行四边形ABCD和平行四边形ABEF,连接AC,AE,DF,且AC与DF交于点G.若AC=AE=DF,求△DGC的度数.3、如图①,在平行四边形ABCD中,AD=BD=2,BD⊥AD,点E为对角线AC上一动点,连接DE,将DE绕点D 逆时针旋转“90°得到DF,连接BF.(1)求证BF=AE;(2)若BF所在的直线交AC于点M,求OM的长度;(3)如图②,当点F落在△OBC的外部,构成四边形DEMF时,求四边形DEMF的面积.(4)如图③,若点F恰好落在AC上,请直接写出EF的长.4、综合与探究【问题情境】数学活动课上,老师带领同学们一起探索旋转的奥秘,老师出示了一个问题:如图1,在△ABC中,AB=AC,∠BAC=90°,D是边BC上一点(0<BD<12BC),连接AD,将△ABD绕着点A按逆时针方向旋转,使AB与AC 重合,得到△ACE.【操作探究】(1)试判断△ADE的形状,并说明理由;【深入探究】(2)希望小组受此启发,如图2,在线段CD上取一点F,使得∠DAF=45°,连接EF,发现EF和DF有一定的关系,猜想两者的数量关系,并说明理由;(3)智慧小组在图2的基础上继续探究,发现线段CF,FD,DB之间也有一定的数量关系.当CF=3,BD=2时,直接写出DF的长.太原市鲁艺中学校:八年级数学命题人:薛梅审核人:王海文班级:____姓名:__________作业评价:__________日期:___________ 5、综合与实践:问题情境:数学课上,老师带领同学们“玩转直角三角形”的探究活动,老师将两张全等的直角三的形纸片(Rt△ABC,Rt△FDE)按如图1所示的方式在同一平面内摆放,点A与点F重合,点C点E重合,已知Rt△ABC≅Rt△FDE,∠ACB=∠FED=90°,∠BAC=∠DFE=30°,BC=DE=2.初步探究:(1)“勤思小组”进行了如下操作:Rt△ABC保持不动,将Rt△FDE绕点A顺时针旋转,如图2所示,旋转角度为a(0°<a<180°”),直线DE与直线BC相交于点G,在旋转过程中,发现始终有△ABE≅△ADC,请你帮他们写出证明过程;深入探究:(2)“敏学小组”在“勤思小组”的操作方式下继续探究,提出问题.①如图2,若连接AG,CE,请判断线段AG与CE的关系,并说明理由;②如图3,当旋转角度a=60°时,Rt△DEF的边DF与边AB重合,则△BCE的面积为_____6、如图1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,点B在线段AE上,点C在线段AD上.(1)请直接写出线段BE与线段CD的关系:__________(2)如图2,将图1中的△ABC绕点A顺时针旋转a(0<a<360°).①请判断(1)中的结论是否成立.若成立,请利用图2证明;若不成立,请说明理由;②当AC=ED时,探究在△ABC旋转的过程中,是否存在这样的a,使以A,B,C,D四点为顶点的四边形是平行四边形?若存在,请直接写出a的度数;若不存在,请说明理由.7、阅读材料:如图1,点A是直线MN上一点,在MN上方的四边形ABCD中,∠ABC=140°,延长BC至点E,若2∠ECD=∠MAD+∠ADC,请探究∠ECD与∠MAB的数量关系,并证明.小白的想法是:“作∠ECF=∠ECD(如图2),通过推理可以得到CF//MN,从而得出结论·任务一:(1)请按照小白的想法完成解答;任务二:(2)保留原题条件不变,CG平分∠ECD,反向延长CG,交∠MAB的平分线于点H(如图3),设∠MAB=a,请直接写出∠H的度数(用含a的式子表示).太原市鲁艺中学校:八年级数学命题人:薛梅审核人:王海文班级:____姓名:__________作业评价:__________日期:___________ 8、下面是某数学兴趣小组探究120°特殊角在多边形计算中运用的片段,请仔细阅读,并完成相应的任务.任务:(1)请补充完整材料中的解题过程;(2)如图(3),六边形ABCDEF的每一个内角都为120°,其中AB=4,BC=1,CD=8,DE=2,求六边形ABCDEF 的周长.9、综合与实践问题情境:活动课上,同学们以等腰三角形为背景展开有关图形旋转的探究活动.如图1,在△ABC中,AB=AC,∠B=40.将△ABC从图1的位置开始绕点A逆时针旋转,得到△ADE(点字D,E分别是点B,C的对应点),旋转角为a(0°<a<100°),设线段AD与BC相交于点M,线段意DE分别交BC,AC于点0,N.特例分析:(1)如图2,当旋转到AD⊥BC时,旋转角a的度数为_____探究规律:(2)如图3,在△ABC绕点A逆时针旋转的过程中,“求真”小组的同学发现线段AM始终等于线段AN,请证明这一结论;拓展延伸:(3)A.直接写出当△DOM是等腰三角形时旋转角a的度数.B.在图3中,作直线BD,CE交于点P.请补全图形,并直接写出当△DPE是直角三角形时旋转角a的度数.太原市鲁艺中学校:八年级数学命题人:薛梅审核人:王海文班级:____姓名:__________作业评价:__________日期:___________10、综合与实践问题情境:数学课上,同学们以等腰直角三角形为背景探究图形变化中的数学问题.如图1,将两张等腰直角三角形纸片重叠摆放在桌面,其中∠BAC=∠EDF=90°,AB=AC,DE=DF,点A,D在EF的同侧,点B,C在线段EF上,连接DA并延长DA交EF于点O,已知DO⊥EF.将△DEF从图1中的位置开始,绕点O顺时针旋转(△ABC保持不动),旋转角为a.数学思考:(1)“求索小组”的同学发现图1中BE=CF,请证明这个结论;操作探究:(2)如图2,当0°<a<180°时,“笃行小组”的同学连接线段AD,BE.①猜想AD,BE满足的数量关系,并说明理由;②若OE=AB=2,请直接写出当α=45°时,C,E两点间的距离;③若OE=AB=2,请直接写出当点F落在AC延长线时,C,F两点间的距离.11如图1,△ABC和△AED是等腰直角三角形,∠BAC=∠EAD=90°,点B在段AE上,点C在线段AD上. (1)请直接写出线段BE与线段CD的关系:(2)如图2,将图1中的△ABC绕点A顺时针旋转角a(0<a<360°),①(1)中的结论是否成立?若成立,请利用图2证明;若不成立,请说明理由;②当AC=。

新人教版八年级数学(下册)期末复习题及答案

新人教版八年级数学(下册)期末复习题及答案

新人教版八年级数学(下册)期末复习题及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩6.如果2a a 2a 1-+,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或715 )A.点P B.点Q C.点M D.点N8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a-=__________.21a+8a=__________.3x2-x的取值范围是________.4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组22{20x m xx+----<<的解集为________.5.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= _________度。

新人教版八年级下册数学期末知识点复习提纲

新人教版八年级下册数学期末知识点复习提纲

八年级数学下册知识点总结第十六章 二次根式1.二次根式:式子a (a ≥0)叫做二次根式。

2.二次根式有意义的条件: 大于或等于0。

3.二次根式的双重非负性:a :①0≥a ,②0≥a 附:具有非负性的式子:①0≥a ;②0≥a ;③02≥a4.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

5.同类二次根式:二次根式化成最简二次根式后,若被 相同,则这几个二次根式就是同类二次根式。

6.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 2 7.二次根式的运算:(1)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (2)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.=·(a≥0,b ≥0);(b ≥0,a>0). (3)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质 例1下列各式1), 其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1)x x --+315; (2)22)-(xab a b b ba a=22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+(>0)(<0)0 (=0);例3、 在根式1) ,最简二次根式是( ) A.1) 2) B .3) 4) C.1) 3) D.1) 4) 例4、已知:的值。

求代数式22,211881-+-+++-+-=x yy x xy y x x x y例5、 (2009龙岩)已知数a ,b ,若=b -a,则 ( )A. a >bB. a <bC. a≥bD. a≤b 2、二次根式的化简与计算 例1. 将根号外的a移到根号内,得 ( ) A.; B. -; C . -; D.例2. 把(a-b)错误!未定义书签。

初中数学八年级下期末知识点复习(含答案解析)(1)

初中数学八年级下期末知识点复习(含答案解析)(1)

一、选择题1.(0分)[ID :10229]如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,√3),则点C 的坐标为( )A .(-√3,1)B .(-1,√3)C .(√3,1)D .(-√3,-1)2.(0分)[ID :10227]若63n 是整数,则正整数n 的最小值是( )A .4B .5C .6D .73.(0分)[ID :10222]一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥4.(0分)[ID :10218]某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm 2323.5 24 24.5 25 销售量/双 1 3 3 6 2 则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( )A .24.5,24.5B .24.5,24C .24,24D .23.5,245.(0分)[ID :10211]一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >6.(0分)[ID :10209]估计()-⋅1230246的值应在( ) A .1和2之间 B .2和3之间 C .3和4之间 D .4和5之间7.(0分)[ID :10147]正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是( )A .B .C .D .8.(0分)[ID :10191]在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )A .众数B .平均数C .中位数D .方差9.(0分)[ID :10186]如图,在△ABC 中,D ,E ,F 分别为BC ,AC ,AB 边的中点,AH ⊥BC 于H ,FD =8,则HE 等于( )A.20B.16C.12D.810.(0分)[ID:10181]若一个直角三角形的两边长为12、13,则第三边长为()A.5B.17C.5或17D.5或√313 11.(0分)[ID:10175]函数y=x√x+3的自变量取值范围是( )A.x≠0B.x>﹣3C.x≥﹣3且x≠0D.x>﹣3且x≠0 12.(0分)[ID:10173]如图,长方形纸片ABCD中,AB=4,BC=6,点E在AB边上,将纸片沿CE折叠,点B落在点F处,EF,CF分别交AD于点G,H,且EG=GH,则AE的长为( )A.23B.1C.32D.213.(0分)[ID:10172]如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.-2B.﹣1+2C.﹣1-2D.1-214.(0分)[ID:10170]如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法不一定成立的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD15.(0分)[ID:10159]将根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,设筷子露在杯子外面的长度hcm,则h的取值范围是( )A .h 17cm ≤B .h 8cm ≥C .7cm h 16cm ≤≤D .15cm h 16cm ≤≤二、填空题16.(0分)[ID :10325]将一次函数y=3x ﹣1的图象沿y 轴向上平移3个单位后,得到的图象对应的函数关系式为__.17.(0分)[ID :10321]如图,在▱ABCD 中,∠D =120°,∠DAB 的平分线AE 交DC 于点E ,连接BE.若AE =AB ,则∠EBC 的度数为_______.18.(0分)[ID :10316]45与最简二次根式321a -是同类二次根式,则a =_____.19.(0分)[ID :10311]若2(3)x -=3-x ,则x 的取值范围是__________.20.(0分)[ID :10299]已知y 关于x 的函数图象如图所示,则当y <0时,自变量x 的取值范围是______.21.(0分)[ID :10286]一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.22.(0分)[ID :10268]在三角形ABC 中,点,,D E F 分别是,,BC AB AC 的中点,AH BC ⊥于点H ,若50DEF ∠=,则CFH ∠=________.23.(0分)[ID :10256]已知一次函数y=kx+b 的图象如图,则关于x 的不等式kx+b >0的解集是______.24.(0分)[ID :10249]如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是_______25.(0分)[ID :10247]已知数据:﹣1,4,2,﹣2,x 的众数是2,那么这组数据的平均数为_____.三、解答题26.(0分)[ID :10408]如图,在平面直角坐标系中,直线4y x =-+过点(6,m)A 且与y 轴交于点B ,把点A 向左平移2个单位,再向上平移4个单位,得到点C .过点C 且与3y x =平行的直线交y 轴于点D .(1)求直线CD 的解析式;(2)直线AB 与CD 交于点E ,将直线CD 沿EB 方向平移,平移到经过点B 的位置结束,求直线CD 在平移过程中与x 轴交点的横坐标的取值范围.27.(0分)[ID :10383]已知正方形 ABCD 的对角线 AC ,BD 相交于点 O .(1)如图 1,E ,G 分别是 OB ,OC 上的点,CE 与 DG 的延长线相交于点 F . 若 DF ⊥CE ,求证:OE =OG ;(2)如图 2,H 是 BC 上的点,过点 H 作 EH ⊥BC ,交线段 OB 于点 E ,连结DH 交 CE 于点 F ,交 OC 于点 G .若 OE =OG ,①求证:∠ODG =∠OCE ;②当 AB =1 时,求 HC 的长.28.(0分)[ID:10342]已知:如图,在▱ABCD中,设BA=a,BC=b.(1)填空:CA=(用a、b的式子表示)(2)在图中求作a+b.(不要求写出作法,只需写出结论即可)29.(0分)[ID:10339]如图,四边形ABCD的对角线AC⊥BD,垂足为O,点E,F,G,H 分别是AB,BC,CD,DA的中点.求证:四边形EFGH是矩形.∆中,D是BC边上一点,E是AD的中点,过30.(0分)[ID:10335]如图所示,ABC=,连接BF.点A作BC的平行线交CE的延长线于F,且AF BD(1)求证:D是BC的中点;=,试判断四边形AFBD的形状,并证明你的结论.(2)若AB AC【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.D3.A4.A5.B6.B7.B8.D9.D10.D11.B12.B13.D14.D15.C二、填空题16.y=3x+2【解析】【详解】将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后可得y=3x﹣1+3=3x+2故答案为y=3x+217.45°【解析】【分析】由平行四边形的性质得出∠ABC=∠D=108°AB∥CD得出∠BAD =180°﹣∠D=60°由等腰三角形的性质和三角形内角和定理求出∠ABE=75°即可得出∠EBC的度数【详解18.3【解析】【分析】先将化成最简二次根式然后根据同类二次根式得到被开方数相同可得出关于的方程解出即可【详解】解:∵与最简二次根式是同类二次根式∴解得:故答案为:【点睛】本题考查了最简二次根式的化简以及19.【解析】试题解析:∵=3﹣x∴x-3≤0解得:x≤320.﹣1<x<1或x>2【解析】【分析】观察图象和数据即可求出答案【详解】y<0时即x轴下方的部分∴自变量x的取值范围分两个部分是−1<x<1或x>2【点睛】本题考查的是函数图像熟练掌握图像是解题的关键21.①③④【解析】【分析】根据y1=kx+b和y2=x+a的图象可知:k<0a<0所以当x>3时相应的x的值y1图象均低于y2的图象【详解】根据图示及数据可知:①k<0正确;②a<0原来的说法错误;③方22.80°【解析】【分析】先由中位线定理推出再由平行线的性质推出然后根据直角三角形斜边上的中线等于斜边的一半得到HF=CF最后由三角形内角和定理求出【详解】∵点分别是的中点∴(中位线的性质)又∵∴(两直23.【解析】【分析】直接利用一次函数图象结合式kx+b>0时则y的值>0时对应x的取值范围进而得出答案【详解】如图所示:关于x的不等式kx+b>0的解集是:x<2故答案为:x<2【点睛】此题主要考查了一24.—1【解析】【分析】首先根据勾股定理计算出AC的长进而得到AE的长再根据A点表示-1可得E点表示的数【详解】∵AD长为2AB长为1∴AC=∵A点表示-1∴E点表示的数为:-1故答案为-1【点睛】本题25.【解析】试题分析:数据:﹣142﹣2x的众数是2即的2次数最多;即x=2则其平均数为:(﹣1+4+2﹣2+2)÷5=1故答案为1考点:1众数;2算术平均数三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A 作AD ⊥x 轴于D ,过点C 作CE ⊥x 轴于E ,根据同角的余角相等求出∠OAD=∠COE ,再利用“角角边”证明△AOD 和△OCE 全等,根据全等三角形对应边相等可得OE=AD ,CE=OD ,然后根据点C 在第二象限写出坐标即可.∴点C 的坐标为(-,1)故选A .考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质. 2.D解析:D【解析】【分析】 63n 63n 273n ⨯7n 7n 是完全平方数,满足条件的最小正整数n 为7.【详解】 63n 273n ⨯7n 7n∴7n 7n 是完全平方数;∴n 的最小正整数值为7.故选:D .【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.a b ab =b b a a=.解题关键是分解成一个完全平方数和一个代数式的积的形式. 3.A解析:A【解析】【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤.故选:A .【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键.4.A解析:A【分析】根据众数和中位数的定义进行求解即可得.【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5, 故选A .【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.5.B解析:B【解析】【分析】根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断【详解】∵将直线1l 向下平移若干个单位后得直线2l ,∴直线1l ∥直线2l ,∴12k k =,∵直线1l 向下平移若干个单位后得直线2l ,∴12b b >,∴当x 5=时,12y y >故选B .【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.6.B解析:B【解析】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.【详解】(==2,而,所以2<2<3,所以估计(2和3之间,故选B.【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.7.B解析:B【解析】【分析】=的函数值y随x的增大而增大判断出k的符号,再根据一次函数先根据正比例函数y kx的性质进行解答即可.【详解】解:正比例函数y kx=的函数值y随x的增大而增大,>,<,∴-k k00=-的图象经过一、三、四象限.∴一次函数y x k故选B.【点睛】本题考查的知识点是一次函数的图象与正比例函数的性质,解题关键是先根据正比例函数的性质判断出k的取值范围.8.D解析:D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。

第19章 一次函数性质考察(一)期末复习练习 2020-2021学年 人教版八年级数学下册

2020-2021学年八年级数学人教版下册期末复习:一次函数性质考察(一)1.如图,平面直角坐标系中,点O为坐标原点,直线AB分别与x轴、y轴交于点A(5,0),B(0,5),动点P的坐标为(a,a﹣1).(1)求直线AB的函数表达式;(2)连接AP,若直线AP将△AOB的面积分成相等的两部分,求此时P点的坐标.2.已知直线a过点M(﹣1,﹣4.5),N(1,﹣1.5).(1)求此直线的函数解析式;(2)求出此函数图象与x轴、y轴的交点A,B的坐标;(3)若直线a与b相交于点P(4,n),a,b与x轴围成的△PAC的面积为6,求出点C的坐标.3.已知一次函数y=kx+b的图象经过点A(0,2)和点B(﹣a,3)且点B在正比例函数y=﹣3x的图象上.(1)求a的值.(2)求一次函数的解析式.(3)若P(m,y1),Q(m﹣1,y2)是这个一次函数图象上的两点,试比较y1与y2的大小.4.学习完一次函数后,某班同学在数学老师的指导下,继续对函数y=|x﹣1|的图象和性质进行探究.同学们在研究的过程中发现,这个函数的自变量x的取值范围是全体实数,他们将x与y 的几组对应值列表(如下表),并画出了函数图象的一部分(如图).x…﹣3 ﹣2 ﹣1 0 1 2 3 4 5 …y…m 3 2 1 0 1 2 3 4 …请你完成以下的研究问题:(1)表中的m=.(2)根据上表的数据,画出函数图象的另一部分.(3)请你根据函数y=|x﹣1|的图象判断以下两种说法(在相应的空内填“对”或“错”).①当x<1时,y随x的增大而增大;②函数图象一定经过点(﹣5,6).5.已知函数,y=kx(k为常数且k≠0);(1)当x=1,y=2时,则函数解析式为;(2)当函数图象过第一、三象限时,k;(3)k,y随x的增大而减小;(4)如图,在(1)的条件下,点A在图象上,点A的横坐标为1,点B(2,0),求△OAB的面积.6.如图,已知点A位于第一象限,且在直线y=2x﹣3上,过点A做AB⊥x轴垂足为点B,AC⊥y轴垂足为点C,BC=.(1)求点A坐标;(2)如果点E位于第四象限,且在直线y=2x﹣3上,点D在y轴上,坐标平面内是否存在点F,使得四边形ADEF是正方形,如果存在,请求出点E的坐标;如果不存在,请说明理由.7.如图,直线y=﹣x+b与x轴,y轴分别交于A,B两点,点A的坐标为(6,0).在x轴的负半轴上有一点C(﹣4,0),直线AB上有一点D,且CD=OD.(1)求b的值及点D的坐标;(2)在线段AB上有一个动点P,点P的横坐标为a,作点P关于y轴的对称点Q,当点Q落在△CDO内(不包括边界)时,求a的取值范围.8.如图,已知四边形ABCD是正方形,点B,C分别在两条直线y=2x和y=kx上,点A,D是x轴上两点.(1)若此正方形边长为2,k=;(2)若此正方形边长为a,k的值是否会发生变化?若不会发生变化说明理由;若会发生变化,试求出a的值.9.如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(a,0)、(a,b)、(c,b),且a,b,c满足|a﹣14|++(c﹣4)2=0,OC=5,点P、Q 同时从原点出发作匀速运动.其中,点P沿OA向终点A运动,速度为每秒1个单位,点Q沿OC、CB向终点B运动.当这两点中有一点到达自己的终点时,另一点也停止运动.(1)求点A、B、C的坐标;(2)如果点Q的速度为每秒2个单位,求出发运动5秒时,P、Q两点的坐标;(3)在(2)的条件下:经过多长时间,线段PQ恰好将梯形OABC的面积分成相等的两部分,并求这时Q点的坐标.10.如图,直线y=kx+6与x轴y轴分别相交于点E,F.点E的坐标(8,0),点A的坐标为(6,0).点P(x,y)是第一象限内的直线上的一个动点(点P不与点E,F重合).(1)求k的值;(2)在点P运动的过程中,求出△OPA的面积S与x的函数关系式.(3)若△OPA的面积为,求此时点P的坐标.11.如图,直线y=kx+8分别与x轴,y轴相交于A,B两点,O为坐标原点,A点的坐标为(4,0)(1)求k的值;(2)过线段AB上一点P(不与端点重合)作x轴,y轴的垂线,垂足分别为M,N.当长方形PMON的周长是10时,求点P的坐标.12.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求△AOB的面积;(2)过B点作直线BP与x轴相交于P,△ABP的面积是,求点P的坐标.13.已知直线y=x+3.(1)若点(﹣1,a)和(,b)都在该直线上,比较a和b的大小;(2)在平面直角坐标系中,求该直线与两坐标轴的交点坐标;(3)求该直线上到x轴的距离等于2的点的坐标.14.如图,在平面直角坐标系xOy中,直线l1经过点A(0,1)、B(2,2).将直线l1向下平移m个单位得到直线l2,已知直线l2经过点(﹣1,﹣2),且与x轴交于点C.(1)求直线l1的表达式;(2)求m的值与点C的坐标;(3)点D为直线l2上一点,如果A、B、C、D四点能构成平行四边形,求点D的坐标.15.如图,在平面直角坐标系中,直线l1:y1=k1x+b经过点(,)和(1,3),直线l2:y2=k2x经过点(m,m).(1)分别求出两直线的解析式;(2)填空:①当y1>y2时,自变量x的取值范围是;②将直线l1向上平移2个单位,则平移后的直线与直线l2和x轴围成的区域内有个整数点(横、纵坐标都为整数的点叫整数点,不包括边界上的整数点).16.如图,直线:y=﹣2x+2与坐标轴交于A、B两点,点C、D的坐标分别为(0,﹣3),(6,0).(1)求直线CD:y=kx+b与AB交点E的坐标;(2)直接写出不等式﹣2x+2≥kx+b的解集是;(3)求四边形OBEC的面积.参考答案1.解:(1)设抛物线的解析式为y=kx+b,把点A(5,0),B(0,5)代入上式,得,解得:,∴直线AB的函数表达式为y=﹣x+5;(2)∵直线AP将△AOB的面积分成相等的两部分,∴直线AP经过OB的中点(0,),设直线AP的解析式为y=mx+n,把A(5,0),(0,)代入上式,得,解得,∴直线AP的解析式为y=﹣,把p(a,a﹣1)代入y=﹣中,得,解得:a=,∴点P的坐标为(,).2.解:(1)设直线a的解析式为y=kx+b,把M(﹣1,﹣4.5),N(1,﹣1.5)代入得:,解得:,则直线解析式为y=1.5x﹣3;(2)令x=0,得到y=﹣3;令y=0,得到x=2,则A(2,0),B(0,﹣3);(3)把P(4,n)代入y=1.5x﹣3得:n=3,即P(4,3),设C的横坐标是m,∵a,b与x轴围成的△PAC的面积为6,∴|m﹣2|×3=6,解得:m=﹣2,或m=6.则C的坐标是:(﹣2,0)或(6,0).3.解:(1)把B(﹣a,3)代入y=﹣3x得﹣3×(﹣a)=3,解得a=1;(2)把A(0,2),B(﹣1,3)分别代入y=kx+b得,解得,所以一次函数解析式为y=﹣x+2,(3)因为一次函数y=﹣x+2中,k=﹣1<0,所以y随x的增大而减小,∵m>m﹣1,所以y1<y2.4.解:(1)把x=﹣3代入y=|x﹣1|得,y=4,∴m=4,故答案为:4;(2)函数图象如下:(3)根据第二问的函数图象可知,①当x<1时,y随x的增大而减小,故错误,②函数图象一定经过点(﹣5,6),故正确;故答案为:错,对.5.解:(1)当x=1,y=2时,2=k,∴y=2x,故答案为y=2x;(2)∵函数图象过第一、三象限,∴k>0,故答案为>0;(3)∵y随x的增大而减小,∴函数图象经过第二、四象限,∴k<0,故答案为<0;(4)∵y=2x,点A的横坐标为1,∴A(1,2),∵B(2,0),∴OB=2,∴△OAB的面积=×2×2=2.6.解:(1)设点A的坐标为(a,2a﹣3),∵AB⊥x轴,AC⊥y轴,∴OB=a,OC=2a﹣3,∵BC=,∠BOC=90°,∴5=a2+(2a﹣3)2,∴a=2或a=,∴点A的坐标为(2,1)或(,﹣)∵点A在第一象限,∴点A的坐标为(2,1);(2)如图,分别过点A、点E作AH⊥y轴于H、EG⊥y轴于G,∵∠HAD+∠ADH=90°,∠EDG+∠ADH=90°,∴∠HAD=∠EDG,在△HAD与EDG中,,∴△HAD≌GDE(AAS),∴AH=DG=2,DH=GE,根据E在第四象限且在直线y=2x﹣3上,设E(m,2m﹣3),则GE=DH=m,OG=3﹣2m,∴OG+OH=DH+DG=3﹣2m+1=2+m,∴m=,∴E的坐标为(,﹣).7.解:(1)将点A的坐标为(6,0)代入y=﹣x+b,解得b=3.y=﹣x+3,∵CD=OD,点C坐标为(﹣4,0),∴点D横坐标为﹣2,当x=﹣2时,y=4,∴点D坐标为(﹣2,4).(2)∵点P所在直线解析式为:y=﹣x+3(0≤x≤6),点P关于y轴的对称点Q,且点Q落在△CDO内(不包括边界),∴点Q所在直线解析式为:y=x+3(﹣6<x<0).设CD所在直线解析式为:y=kx+b,将C(﹣4,0),D(﹣2,4)代入解析式得k =2,b=8,即y=2x+8.设OD所在直线解析式为:y=mx,将D(﹣2,4)代入解析式得m=﹣2,即y=﹣2x.联立方程,解得.联立方程,解得.∵点Q横坐标为﹣a,∴﹣<﹣a<﹣,解得<a<.8.解:(1)∵正方形边长为2,∴AB=2,在直线y=2x中,当y=2时,x=1,∴OA=1,OD=1+2=3,∴C(3,2),将C(3,2)代入y=kx,得2=3k,∴k=;故答案为:;(2)k的值不会发生变化,理由:∵正方形边长为a,∴AB=a,在直线y=2x中,当y=a时,x=,∴OA=,OD=,∴C(,a),将C(,a)代入y=kx,得a=k×,∴k=.9.解:(1)∵|a﹣14|++(c﹣4)2=0,∴a﹣14=0,3﹣b=0,c﹣4=0,解得a=14,b=3,c=4,∴A、B、C的坐标分别为(14,0),(14,3),(4,3).(2)点Q运动路程为2×5=10,∴BQ=OC+BC﹣10=5+14﹣4﹣10=5,∴点Q横坐标为14﹣5=9,∴Q(9,3),∵OP=1×5=5,∴P(5,0).(3)设运动时间为t,则AP=14﹣t,BQ=15﹣2t(t≥),∴梯形PABQ的面积为(BQ+AP)•AB=﹣t,∵梯形OABC的面积为(BC+OA)•AB=36,∴当﹣t=36时满足题意,解得t=,∴BQ=15﹣2t=,∴点Q横坐标为14﹣=,∴点Q坐标为(,3).10.解:(1)∵直线y=kx+6与x轴交于点E,且点E的坐标(8,0)∴8k+6=0,解得k=﹣,∴y=﹣x+6;(2)过点P作PD⊥OA于点D,∵点P(x,y)是第一象限内的直线上的一个动点∴PD=﹣x+6.∵点A的坐标为(6,0)∴S=×6×(﹣x+6)=﹣x+18;(3)∵△OPA的面积为,∴﹣x+18=,解得x=,将x=代入y=﹣x+6得y=,∴P(,).11.解:(1)∵直线y=kx+8经过A(4,0)∴0=4k+8,∴k=﹣2.(2)∵点P在直线y=﹣2x+8上,设P(t,﹣2t+8),∴PN=t,PM=﹣2t+8,∵四边形PNOM是长方形,∴C=(t﹣2t+8)×2=10,解得t=3,∴点P的坐标为(3,2).12.解:(1)由x=0得:y=3,即:B(0,3).由y=0得:2x+3=0,解得:x=﹣,即:A(﹣,0),∴OA=,OB=3,∴△AOB的面积:×3×=;(2)由B(0,3)、A(﹣,0)得:OB=3,OA=,∵S△ABP=AP•OB=,∴AP=,解得:AP=3.∴P点坐标为(1.5,0)或(﹣4.5,0).13.解:(1)∵一次函数y=﹣x+3中,k=﹣<0,∴y随x的增大而减小,∵﹣1<,∴a>b;(2)∵令y=0,则x=6;令x=0,则y=3,∴直线与x、y轴的交点坐标分别为:(6,0)、(0,3);(3)该直线上到x轴的距离等于2的点的坐标为(x,﹣x+3),∵|﹣x+3|=2,∴﹣x+3=2或﹣x+3=﹣2,解得x=2或x=10,当x=2时,﹣x+3=(﹣)×2+3=2;当x=10时,﹣x+3=(﹣)×10+3=﹣2;∴该直线上到x轴的距离等于2的点的坐标为:(2,2)或(10,﹣2).14.解:(1)设直线l1的表达式为y=kx+b,∵直线l1经过点A(0,1)、B(2,2),∴,解得,∴设直线l1的表达式为y=x+1;(2)将直线l1向下平移m个单位得到直线l2,则直线l2为y=x+1﹣m,∵直线l2经过点(﹣1,﹣2),∴﹣2=+1﹣m,解得m=,∴直线l2为y=x﹣,令y=0,则求得x=3,∴点C的坐标为(3,0);(3)由题意可知AB∥CD,当A、B、C、D四点构成平行四边形ABDC时,∵A(0,1)、B(2,2),C(3,0),∴点A向右平移3个单位,再向下平移1个单位与C点重合,∴点B向右平移3个单位,再向下平移1个单位与D点重合,此时D的坐标为(5,1);∵AB∥CD,当A、B、C、D四点构成平行四边形ABCD时,∵A(0,1)、B(2,2),C(3,0),∴点B向右平移1个单位,再向下平移2个单位与C点重合,∴点A向右平移1个单位,再向下平移2个单位与D点重合,此时D的坐标为(1,﹣1);综上,如果A、B、C、D四点能构成平行四边形,点D的坐标为(5,1)或(1,﹣1).15.解:(1)∵直线l1:y1=k1x+b经过点(,)和(1,3),∴,解得,∴直线l1:y1=﹣x+4;∵直线l2:y2=k2x经过点(m,m),∴m=mk2,∴k2=1,∴直线l2:y2=x;(2)①由图象可知,当y1>y2时,自变量x的取值范围是x<2;②将直线l1向上平移2个单位,则平移后的直线为y=﹣x+6,与x轴的交点为(6,0),由解得,∴交点为(3,3),∴平移后的直线与直线l2和x轴围成的区域内的整点有(2,1),(3,1),(3,2),(4,1)共4个,故答案为①x<2;②4.16.解:(1)∵点C、D的坐标分别为(0,﹣3),(6,0).∴,解得,∴直线CD为y=x﹣3,解得,∴点E的坐标为(2,﹣2);(2)观察图象,不等式﹣2x+2≥kx+b的解集是x≤2;故答案为x≤2;(3)由直线y=﹣2x+2可知,B(1,0),∴BD=5,∴四边形OBEC的面积=S△COD﹣S△BED=3×6﹣=4.。

人教版2023年八年级下册数学期末复习专题:以弦图为背景的计算题(1)

人教版2022-2023学年八年级下册数学期末复习专题以弦图为背景的计算题姓名班级1.如图是单位长度为1的正方形网格.(1)在图1中画出一条长度为10的线段AB;(2)在图2中画出一个以格点为顶点,面积为5的正方形.2.(1)教材在探索平方差公式时利用了面积法,面积法可以帮助我们直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c2,也可以表示为4×12ab+(a-b)2,所以4×12ab+(a-b)2=c2,即a2+b2=c2.由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c2.图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.(2)试用勾股定理解决以下问题:如果直角三角形ABC的两直角边长为3和4,则斜边上的高为.(3)试构造一个图形,使它的面积能够解释(a-2b)2=a2-4ab+4b2,画在上面的网格中,并标出字母a,b所表示的线段.3.如图所示,以Rt ABC∆的三边为直径分别向外作三个半圆,已如以AC为直径的半圆的面积为1S,以BC为直径的半圆的面积为2S,以AB为直径的半国的面积为S.(1)求证:12=+;S S S(2)若将图中半圆改为分别以三边为斜边的等腰直角三角形,如图所示,探究(1)中的结论是否仍成立?4.(1)四年一度的国际数学家大会于2002年8月20日在北京召开,大会会标如图1,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5,求中间小正方形的面积.(2)现有一张长为6.5cm,宽为2cm的纸片,如图2,请你将它分割成6块,再拼合成一个正方形.(要求:先在图2中画出分割线,再画出拼成的正方形并标明相应数据)5.教材第九章中探索乘法公式时,设置由图形面积的不同表示方法验证了乘法公式.我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个大的正方形(如图①),这个图形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边a、b 与斜边c满足关系式a2+b2=c2,称为勾股定理.(1)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图②),也能验证这个结论,请你帮助小明完成验证的过程.(2)小明又把这四个全等的直角三角形拼成了一个梯形(如图③),利用上面探究所得结论,求当a=3,b=4时梯形ABCD的周长.(3)如图④,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.请在图中画出△ABC的高BD,利用上面的结论,求高BD的长.6.中国古代对勾股定理有深刻的认识.(1)三国时代吴国数学家赵爽第一次对勾股定理加以证明:用四个全等的图1所示的直角三角形拼成一个图2所示的大正方形,中间空白部分是一个小正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边分别为a ,b ,求(a +b)2的值;(2)清朝的康熙皇帝对勾股定理也很有研究,他著有《积求勾股法》:用现代的数学语言描述就是:若直角三角形的三边长分别为3,4,5的整数倍,设其面积为S ,则求其边长的方法为:第一步6S =m ;第二步:m =k ;第三步:分别用3,4,5乘k ,得三边长.当面积S 等于150时,请用“积求勾股法”求出这个直角三角形的三边长.7.如图,图中所有的三角形都是直角三角形,四边形都是正方形,已知正方形A ,B ,C ,D 的面积分别是12,16,9,12,求最大正方形E 的面积.答案。

数学知识点苏科版初中数学八年级下册全册教案及各章练习题(1)-总结

初中数学、数学课件、数学综合练习题、数学教学教案、试卷数学阜宁县陈集中学八年级期末复习(1)第七章第七章 一元一次不等式一元一次不等式复习目标与要求:复习目标与要求:(1)了解不等式的意义,掌握不等式的基本性质。

(2)会解一元一次不等式(组),能正确用轴表示解集。

(3)能够根据具体问题中的数量关系,用一元一次不等式(组),解决简单的问题。

知识梳理:知识梳理:(1)不等式及基本性质;)不等式及基本性质;(2)一元一次不等式(组)及解法与应用;(3)一元一次不等式与一元一次方程与一次函数。

基础知识练习:基础知识练习:1、用适当的符号表示下列关系:(1)X 的2/3与5的差小于1; (2)X 与6的和不大于9 (3)8与Y 的2倍的和是负数倍的和是负数 2. 已知a <b,b,用“<”或“>”号填空:用“<”或“>”号填空:用“<”或“>”号填空:①a-3 b-3 ②6a 6b ③-a -b ④a-b 0 3. 当0<<a x 时,2x 与ax 的大小关系是的大小关系是 4. 如果121<<x ,则()()112--x x _______05. 63->x 的解集是的解集是___________,___________,x 41-≤-8的解集是的解集是_________________________________。

6. 函数xx y 21-=中自变量x 的取值范围是(的取值范围是() A 、x ≤21且x ≠0 B 、x 21->且x ≠0 C 、x ≠0 D 、x 21<且x ≠07. 三个连续自然数的和小于1515,这样的自然数组共有(,这样的自然数组共有(,这样的自然数组共有() A 、6组 B 、5组 C 、4组 D 、3组 8. 当x 取下列数值时,能使不等式01<+x ,02>+x 都成立的是(都成立的是( ) A 、-2.5 B 、-1.5 C 、0 D 、1.51.5 典型例题分析:典型例题分析:例1. 解下列不等式(组),并将结果在数轴上表示出来:(1) 634123+£-+x x (2). ïïîïíì-<--+£--).3(3)3(232,521123x x x x x例2. 已知关于x 的方程3k -5x =-9的解是非负数,求k 的取值范围。

北师大版八年级下册数学期末知识点复习

北师大版八年级下册数学期末知识点复习八年级下册数学考试知识点复第一章证明(二)一、全等三角形的判定及性质全等三角形的性质是对应相等,即对应的角相等,对应的边相等。

判定全等三角形有五种方法:SSS(分别相等的三边)、SAS(分别相等的两边和它们夹角的正弦值相等)、ASA(分别相等的两角和夹角中间的边)、AAS(分别相等的两角和它们夹角的正弦值相等)、HL(分别相等的斜边和一个直角边的长度)。

等腰三角形的性质是两个底角相等,即等边对等角。

判定等腰三角形有一个角等于另一个角,即等角对等边。

等腰三角形还有一个推论是互相重合,即两个等腰三角形的两个底边相等,两个等腰角也相等。

等边三角形的性质是三个角都相等,每个角都等于60度,是轴对称图形,有一条对称轴。

判定等边三角形有两个方法:有一个角是60度的等腰三角形是等边三角形,三个角都相等的三角形是等边三角形。

直角三角形的勾股定理是直角边的平方和等于斜边的平方,逆定理是如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

含30度的直角三角形的边的性质是如果一个锐角等于30度,那么它所对的斜边等于另一条直角边的一半。

直角三角形斜边上的中线等于斜边的一半。

线段的垂直平分线的性质是线段垂直平分线上的点到线段两端点的距离相等。

判定线段垂直平分线的方法是到一条线段两个端点距离相等的点在这条线段的中垂线上。

三角形三边的垂直平分线相交于一点,这一点到三个顶点的距离相等。

角平分线的性质是角平分线上的点到角的两边距离相等。

判定角平分线的方法是到一个角的内部,且到角的两边距离相等的点在这个角的平分线上。

三角形的三条角平分线相交于一点,这一点到三条边的距离相等,叫做内心。

二、一元一次不等式和一元一次不等式组不等关系是数学中的一种关系,包括大于、小于、大于等于、小于等于四种形式。

一元一次不等式是形如ax+b>c的不等式,其中a、b、c都是实数,且a不等于0.解一元一次不等式可以用图像法或代数法,将不等式变形为x>或x<的形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.选择题
1.不等式ax <b 的解集是x >a
b ,那么a 的取值范围是 ( ) A .a >0 B.a<0 C.a ≤0 D.a ≥0
2.若分解因式x 2
-2x-15=(x+3)(x+n ),则n 的值为( )
A.-5
B.5
C.-2
D.2
3.若x 16)3(22+-+x m 是完全平方式,则m 的值是( )
A .-5 B. 7 C.-1 D.2
4.当分式3
4922+--x x x 的值为零时,x 的值为 ( ) A. 3 B.-3 C. 0 D. 3或-3
5.)()(2x y y x ---因式分解的结果是( )
A.(y-x )(x-y )
B.(x-y )(x-y-1)
C.(y-x )(y-x-1)
D.(x-y )(y-x-1)
6.如果ab=bc ,那么下列比例中错误的是( ) A.
d b c a = B.b a d c = C.b d c a = D.c d a b =
7.如果点C 为线段AB 的黄金分割点,且AC>BC,则下列各式不正确的是( )
A 、A
B :AC=A
C :BC B 、AC=
AB 215- C 、AB=AC 2
15+ D 、BC ≈0.618AB
8.关于x 的不等式2x-a ≤-1的解集如图1所示,则a 的取值为( )
A.0
B.-3
C.-2
D.-1
9.某校有两块相似的多边形草坪,其面积比为9:4,其中一块多边形草坪的周长是36
米,
则另一块草坪的周长是( )
A.24米
B.54米
C.24米或54米
D.36米或54米
二.十字相乘法 形如()ab x b a x +++2=()()b a a x ++
利用十字交叉来分解系数,把二次三项式分解因式的方法叫做十字相乘法。

232++x x 652+-x x 2082
-+x x
1452--x x 3522--x x
181252+-x x
三.分解因式
3224-a 1222++-a b a
b b a a 2222--+
已知2=+b a ,求代数式b b a 422+-的值; 已知32=y x ,求y x y x +-32的值
四.化简
x x x x x 2124222+⋅⎪⎪⎭
⎫ ⎝⎛-+-. 11121122-÷⎪⎭⎫ ⎝⎛-++-x x x x x
3.若方程x m x x -=--223无解,求m 的值 4.若关于x 的分式方程2344m x x =+--有增根,求m 的值
解答题
1.甲、乙两地相距360km ,新修的高速公路开通后,在甲、乙两地间行驶的长途客运车平均
车速提高了50%,而从甲地到乙地的时间缩短了2h,求原来的平均速度。

2.某轿车制造厂根据市场需求,计划生产A、B两种型号的轿车共100台,该厂所筹生产资金不少于2240万元,但不超过2250万元,且所筹资金全部用于生产,所生产的这两种型号的轿车可全部售出,生产的成本和售价如右表所示:
(1)请问该厂对这两种型号轿车有哪几种生产方案?
(2)请你帮助该厂设计一种生产方案,使获得的利润最大?最大利润是多少?。

相关文档
最新文档