陶瓷胶体成型工艺

合集下载

陶瓷胶态注射成型技术

陶瓷胶态注射成型技术

陶瓷胶态注射成型技术摘要:结合注射成型和凝胶注模成型技术的优点,发明了陶瓷胶态注射成型技术,实现了水基非塑性浆料的注射成型。

经过研究表明:通过调节工艺中的各项参数和添加适当的助剂,可以实现陶瓷浆料的可控固化;加入应力缓释剂调节高分子网络结构,能有效降低坯体中的内应力,制备出大尺寸陶瓷部件;利用胶态注射成型技术与设备,不仅能实现规模化大批量生产,而且产品具有较高的可靠性,具有广阔的应用前景。

关键词:胶态注射成型;水基非塑性浆料;可控固化;内应力;应力缓释剂Colloidal Injection Molding of CeramicsAbstract:Colloidal injection molding of ceramics(CIMC) is a new ceramic forming technique,which combines the advantages of gel-casting and injection molding, to achieve a non-plastic water-based slurry injection.After the study show that;all kinds of lectors which effect solidification of slurry is studied and then we can control solidification course.Internal stress of green body is also studied and large-size ceramic component can be got by adding moderator.So high performance ceramics with complex shape is manufactured by CIMC technique with high reliability,high automation and low cost.Key words:colloidal injection molding;injection molding;controllable solidification;stress;stress release agent引言随着技术的进步,高性能陶瓷以其优异的耐高温、高强度、耐磨损、耐腐蚀等性能和优点被广泛地应用于工业、国防、机械、石油、汽车、家用电器等各个领域的候选材料。

陶瓷成型技术

陶瓷成型技术

陶瓷成型技术摘要: 成型技术是制备陶瓷材料的一个重要环节。

陶瓷制造经历数千年历史,直到20世纪中叶因为烧结理论的创立获得了飞速发展。

上世纪七八十年代关于超细粉体制备和表征的发展,促使陶瓷工艺第二次大发展。

当前阻碍陶瓷材料进一步发展的关键之一是成型工艺技术没有突破.压力成型不能满足形状复杂性和密度均匀性的要求。

本文评述了国内外陶瓷现代成型技术,讨论了上述成型方法的基本原理和特点。

关键词:陶瓷, 成型, 技术,进展一引言成型工艺是陶瓷材料制备过程的重要环节之一,在很大程度上影响着材料的微观组织结构,决定了产品的性能、应用和价格[1]。

过去,陶瓷材料学家比较重视烧结工艺,而成型工艺一直是个薄弱环节,不被人们所重视。

现在,人们已经逐渐认识到在陶瓷材料的制备工艺过程中,除了烧结过程之外,成型过程也是一个重要环节。

在成型过程中形成的某些缺陷(如不均匀性等)仅靠烧结工艺的改进是难以克服的,成型工艺已经成为制备高性能陶瓷材料部件的关键技术,它对提高陶瓷材料的均匀性、重复性和成品率,降低陶瓷制造成本具有十分重要的意义。

本文简单回顾了陶瓷成型方法的发展及技术特点。

二成型方法1 胶态浇注成型[2]胶态浇注成型是将具有流动性的浆料制成可自我支撑形状的一种成型方法。

该法利用浆料的流动性,使物料干燥并固化后得到一定形状的成型体。

主要包括以下几种方法:①注浆成型(Slip Casting)是将浆料注入具有渗透性的多孔模具(如石膏)中,模具内部的形状即为所需要的素坯形状,利用多孔模具的毛细管力而使液体排除,从而固化。

注浆成型的模具要具有一定的强度,吸水性好,吸水速度适中。

注浆成型工艺成本低,过程简单,易于操作和控制,但成型形状粗糙,注浆时间较长,坯体密度、强度也不高。

80年代中期,人们在传统注浆成型的基础上,相继发展产生了新的压滤成型(Pressure Filtration)和离心注浆成型(Centrifugal Casting),借助于外加压力和离心力的作用,来提高素坯的密度和强度,而且几乎不需要使用有机添加剂,因而避免了注射成型中复杂的脱脂过程,但由于坯体均匀性差,因而不能满足制备高性能高可靠性陶瓷材料的要求②流延成型(Tape Casting)〔1-2〕也称带式浇注,或刀片法(Doctor-blade)。

陶瓷凝胶注模成型

陶瓷凝胶注模成型

凝胶注模成型工艺研究夏培(天津大学材料科学与工程学院,教育部先进陶瓷与加工重点实验室,天津300072)摘要:凝胶注模成型是一种优于传统成型工艺的先进陶瓷成型方法,为净尺寸高性能复杂形状陶瓷的制备提供了有效的技术途径。

本文对陶瓷凝胶注模成型的原理、工艺、成型体系、特点等进行了简单的概论介绍,综述了目前凝胶注模成型的研究现状、存在的问题和应用情况并展望了发展趋势。

关键词:凝胶注模;研究现状;问题与展望Study on the gel-castingXIA Pei(Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, college of Material Science and Engineering, Tianjin University, Tianjin300072, Tianjin, China)Abstract: Gel-casting process is an advanced manufacturing technology for ceramic forming, which is superior to the traditional one, and has provided an effective approach to prepare high performance net size ceramics with complicated shapes. The principles,procedures,forming system and character of gel-casting are simply discussed in this paper, moreover, the present research process,problems as well as applications are also included. Finally, the tendency of this technology is forecasted in a dialectical way.Key words: gel-casting; present research; problems and prospects1.引言随着当代科学技术的发展,国防、工业等技术领域对结构材料的要求越来越高,耐高温、耐腐蚀、高硬度和综合力学性能好的结构材料的开发和研究已经变得十分重要。

陶瓷凝胶注模成型技术

陶瓷凝胶注模成型技术


单体聚合程度越高,则固化后陶瓷坯体 强度越高。单体聚合的诱导期太短,无 法保证凝胶注模工艺所需的操作时间; 诱导期太长,则在固化过程中陶瓷浆体 容易产生沉降。这两种情况都会造成固 化后陶瓷坯体不均匀或产生缺陷。因而 研究时对单体聚合的速度、聚合程度的 测量及表征是十分重要的。
单体聚合的程度可以用单体聚合的转化率来表征。 单体聚合的转化率定义为:在某一反应时间f时, 已聚合的单体与初始单体的质量比,即 at=mt/m0 (1) 其中:at为单体聚合的转化率;mt为已聚合的单体 质量;mo为初始单体质量。在某一反应时间f时, 单体聚合速度R r可以用单体聚合转化率随时间变 化的快慢来表征,即 Rt=dat/dt

(2)单体和交联剂的稀溶液形成的凝胶应具 有一定的强度,这样才能起到原位定型的 作用,并能保证有足够的脱模强度。 (3)不影响浆料的流动性,若单体和交联剂 会降低浆料的流动性,那么高固相、低粘 度的陶瓷浆料就难以制备。

陶瓷粉末在三维网状聚合物中的 分布
丙烯酰胺单体聚合原理
凝胶注模成型工艺通常采用丙烯酰胺(AM)作 为有机单体;N,N’—亚甲基双丙烯酰胺 (methylene bisacry-lamide,MBAM)作为交 联剂 催化剂: N,N;四甲基乙二胺(TEMED)加速剂 引发剂;过硫酸铵 分散剂;聚丙烯酰胺作为通过单体自由基聚合 实现对陶瓷悬浮体的原位固化成型。
பைடு நூலகம்
悬浮颗粒的静电稳定机制
图3 位能E0逐渐减小
b)悬浮颗粒的(电)空间稳定机制

为了改善陶瓷浆料的流动性,提高浆料的固相 含量,一般需向陶瓷浆料中加入少量的高分子 聚合物作为分散剂。这一做法也是凝胶注模成 型工艺中制备高固相、低粘度陶瓷浆料的常用 方法。当颗粒表面吸附上有机聚合物后,其稳 定机制已不同于单一的静电稳定机制。这时稳 定的主要因素是聚合物吸附层,而不是双电层 的静电斥力。吸附的高聚合物层对颗粒稳定影 响有三点:

陶瓷原位凝固胶态成形基本原理及工艺过程

陶瓷原位凝固胶态成形基本原理及工艺过程

陶瓷原位凝固胶态成形基本原理及工艺过程陶瓷作为一种重要的结构和功能材料,被广泛应用于化工、冶金、电子、机械、航空、航天、生物等各个领域。

陶瓷材料成型是为了得到内部均匀和高密度的坯体,提高成型技术是制备高性能陶瓷材料的关键步骤。

不同形态的陶瓷粉体应用不同的成型方法。

如何选择适宜的成型方法,主要取决于对陶瓷材料的性能要求和陶瓷粉体的自身性质(如颗粒尺寸、分布、表面积),下面小编简要介绍几种陶瓷材料成型工艺。

陶瓷材料成型工艺主要分为胶态成型工艺、固体无模成型工艺、气相成型工艺等。

认识陶瓷材料成型工艺一、胶态成型工艺1、挤压成型挤压成型是指将陶瓷粉体、粘结剂、润滑剂等与水均匀混合,然后将塑性物料挤压出刚性模具即可得到管状、柱状、板状以及多孔柱状成型体。

挤压成型优点是:工艺过程简单、适合工业化生产。

缺点是:物料强度低、容易变形,并可能产生表面凹坑和起泡、开裂以及内部裂纹等缺陷。

挤压成型广泛应用于传统耐火材料如炉管、护套管以及一些电子材料的成型生产。

2、压延成型压延成型是指将陶瓷粉体、添加剂和水混合均匀,然后将塑性物料经两个相向转到滚柱压延,而成为板状素坯的成型方法。

压延法成型优点是:密度高,适于片状、板状物件的成型。

3、注射成型陶瓷注射成型是借助高分子聚合物在高温下熔融、低温下凝固的特性来进行成型的,成型之后再把高聚物脱除。

注射成型优点是:可成型形状复杂的部件,并且具有高的尺寸精度和均匀的显微结构。

缺点是:模具设计加工成本和有机物排除过程中的成本比较高。

目前,注射成型新技术主要有水溶液注射成型和气相辅助注射成型。

(1)水溶液注射成型水溶液注射成型采用水溶性的聚合物作为有机载体,很好的解决了脱脂问题。

水溶液注射成型技术优点是:自动化控制水平高,而且成本低。

(2)气体辅助注射成型气体辅助注射成型是把气体引入聚合物熔体中而使成型过程更容易进行。

适合于腐蚀性流体和高温高压下流体的陶瓷管道成型。

4、注浆成型注浆成型工艺是利用石膏模具的吸水性,将制得的陶瓷粉体浆料注入多孔质模具,由模具的气孔把浆料中的液体吸出,而在模具中留下坯体。

陶瓷成型工艺原理及方法

陶瓷成型工艺原理及方法
2.干燥区 典型干燥区温度分布: 温度区(1): 80℃, 温度区(2): 60 ℃, 温 度区(3): 40℃
流延膜片的表征

流延膜片表怔 1) 表面特征:颗粒尺寸、粘合剂分布、团聚程度、孔
洞、裂纹(光学显微镜、电子显微镜)
2) 柔韧性:手工反复折叠 3) 强度:拉力仪 4) 厚度:测厚仪 5) 密度:阿基米德定律测量
厚 膜: 刮刀口间隙↑料浆液面↑载体线速↓料浆粘度↓
薄 膜: 相反
Hale Waihona Puke 瓷流延带的干燥开始时失重(蒸发速率保持恒定),在临界点之后开始第二个干燥阶 段,其特征是蒸发速率下降 主要的物理过程
Tape weight
Water LNT particle
1.浆料内部的液体移动到表面 2.表面溶剂挥发 3.蒸汽从接近浆料表面的区域被带走
羧酸盐:硬脂酸钠、丙烯酸共聚物 阴离子型
颗粒表面带正电的 中性或弱碱性料浆
磺酸盐:烷基磺酸钠、木质素磺酸盐 磷酸酯盐:高级醇磷酸酯二钠 硫酸酯盐:十二烷基硫酸钠 伯(仲、叔)胺盐:RNH3Cl, R(CH3)NH2X 、R(R’)2NHX 季胺盐:RN(R’)3X 砒啶盐:R(C5H5N)X 氨基酸:十二烷基氨基丙烯酸钠 甜菜碱:十八烷基二甲基甜菜碱 咪唑啉:R-[CNH(CH2)2N+]-CH2COO聚氧乙烯:脂肪醇聚氧乙烯醚
其沸点应该高于200℃

增塑剂量一般大于粘合剂,但加入塑性剂会使素坯膜的强度降低 玻璃化转变温度(Tg)就是聚合物的性能产生明显变化时的温度, 高于 这个温度聚合物转变成橡胶态, 低于这个温度聚合物转变成玻璃态。玻 璃化转变温度是高分子聚合物的特征温度之一
流延成型的粘合剂和增塑剂的选择
粘合剂 乙基纤维素 PVA PVAc+PVC PVB 塑性剂 二乙基草酸酯 甘油,三乙烯乙二醇 邻苯二甲酸二丁酯(DBP),聚乙二醇 聚乙二醇, 邻苯二甲酸二辛酯(DOP),邻苯二甲 酸二丁酯(DBP),己 烷 邻苯二甲酸二辛酯,邻苯二甲酸二丁酯, 聚乙二醇 邻苯二甲酸二丁酯,聚乙二醇,甘 油

胶态成型的工艺和原理

胶态成型的工艺和原理

胶态成型的工艺和原理
胶态成型是一种材料加工技术,其工艺和原理如下:
1. 工艺:将陶瓷粉体、溶剂、粘接剂、增塑剂的混合浆料通过刮刀浇筑在一个平面基体上,均匀铺展、溶剂挥发后,形成具有一定强度和柔韧性的陶瓷坯片(生片)。

2. 原理:胶态成型利用浆料的流变学性质,在一定条件下使浆料形成稳定的悬浮体系或黏弹性胶体,再通过固化或干燥过程实现成型。

这种工艺可以使材料在分子尺度上重新排列,以达到制备高性能、高精度、高一致性产品的目的。

在胶态成型中,浆料的流变特性对成型过程和产品质量有重要影响。

了解和控制这些因素,可以提高产品性能和减少生产成本。

以上内容仅供参考,建议查阅胶态成型相关书籍获取更多专业信息。

陶瓷干压成型心得

陶瓷干压成型心得

陶瓷干压成型心得
干压成型又称模压成型,是最常用的成型方法之一。

干压成型是将经过造粒后流动性好,颗粒级配合适的粉料,装入金属模腔内,通过压头施加压力,压头在模腔内位移,传递压力,使模腔内粉体颗粒重排变形而被压实,形成具有一定强度和形状的陶瓷素坯。

1. 工艺原理
干压成型的实质是在外力作用下,颗粒在模具内相互靠近,并借助内摩擦力牢固地把各颗粒联系起来,保持一定形状。

这种内摩擦力作用在相互靠近的颗粒外围结合剂薄层上。

随着压力增大,坯料将改变外形,相互滑动,间隙减少,逐步加大接触,相互贴紧。

由于颗粒进一步靠近,使胶体分子与颗粒间的作用力加强因而坯体具有一定的机械强度。

2. 影响因素
影响干压成型的主要因素有:
粉体性质:粒度、粒度分布、流动性、含水率等;
粘结剂和润滑剂的选择;
模具设计;
压制过程中压制力、加压方式、加压速度与保压时间。

综上,如果坯料颗粒级配合适,结合剂使用正确,加压方式合理,干压法也可以得到比较理想的坯体密度。

3.干压成型的优点:
工艺简单,操作方便,周期短,效率高,便于实行自动化生产。

坯体密度大,尺寸精确,收缩小,机械强度高,电性能好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点击添加相关标题文字
ADD RELATED TITLE WORDS
范德华力,静电力可用 相关函数公式计算
静电力可以通过在悬浮的陶瓷 颗粒的表面上产生足够大的相 同电荷来控制水性胶体系统的 稳定性。
空间稳定化提供了一种控制胶体稳定 性的替代途径,可用于水性和非水性 体系。在该方法中,利用吸附的有机 分子(通常是聚合物)来诱导空间排 斥。为了有效,吸附层必须具有足够 的厚度和密度,以克服颗粒之间的 vdW吸引力并防止桥接絮凝。这些物 种应牢固锚固,以避免在颗粒碰撞过 程中解吸
2011年7月,英国研究人员开发出世界上第一台3D巧克力打印机。 2011年8月,南安普敦大学的工程师们开发出世界上第一架3D打印的飞机。 2012年11月,苏格兰科学家利用人体细胞首次用3D打印机打印出人造肝脏组织。 [5] 2013年10月,全球首次成功拍卖一款名为“ONO之神”的3D打印艺术品。 2013年11月,美国德克萨斯州奥斯汀的3D打印公司“固体概念”(SolidConcepts)设计 制造出3D打印金属手枪。 [6] 2018年8月1日起,3D打印枪支将在美国合法,3D打印手枪的设计图也将可以在互 联网上自由下载。 [7] 2018年12月10日,俄罗斯宇航员利用国际空间站上的3D生物打印机,设法在零重力 下打印出了实验鼠的甲状腺
汇报人:好素材铺Report Person: 好素材铺
主要胶体系统
ADD RELATED TITLE WORDS
粘土 - 水系统 当悬浮在极性溶剂如水中时,粘土颗粒具有通常由带负电的面和带正电的边缘 组成的板状形态。这些颗粒容易经历阳离子交换反应,溶胀,吸附,甚至有机 物质的嵌入,以改变它们的表面电荷,化学和晶体结构.粘土基陶瓷的加工具
有固有的塑性特性,可提供出色的成型能力
接凝固铸造和添加剂制造
陶瓷胶体成型回顾及发展
1986年,美国科学家Charles Hull开发了第一台商业3D印刷机。 1993年,麻省理工学院获3D印刷技术专利。 1995年,美国ZCorp公司从麻省理工学院获得唯一授权并开始开发3D打印机。 2005年,市场上首个高清晰彩色3D打印机Spectrum Z510由ZCorp公司研制成功。 2010年11月,美国Jim Kor团队打造出世界上第一辆由3D打印机打印而成的汽车Urbee 问世。 [3] 2011年6月6日,发布了全球第一款3D打印的比基尼。
1986年,美国科学家Charles Hull开发了第一台商业3D印刷机
胶体成型发展
公元时期
1700年代和19世纪
公元前7000年的手工陶器 3500年的手抛陶器
传统成型方法:粉浆浇铸,挤出, 过滤压榨和干压
21世纪 20世纪初期
了解粘土基体系的行为和 陶瓷晶体结构的特征。
开发了悬浮胶体 相互作用模型的 理论框架
胶体成型工艺未来发展趋势
挑战及方向
必须调整颗粒间力,悬浮液流变性,固结和 干燥行为,以获得给定应用的最佳微观结构。
目标
1.制造具有不同组成的光滑球形胶体探针
2.提供设计功能性分散剂所需的知识库,所述功能性分散剂产生陶瓷加工所需的目标胶 体稳定性
3进一步理解粘弹性,处理强度(即脱模),干燥行为和衍生自胶体凝胶和胶体填充有 机凝胶的组件的网络强度之间的关系。
总结 通过这段时间的文献阅读,积累了一些专业词汇,了解了一 些相关专业知识以及相关领域的发展。
文献阅读过程中的主要问题: 1.专业词汇的积累还不够 2.专业知识还比较薄弱,很多较深的内容看不懂
感谢聆听 批评指导
MECHANICAL ELECTRICAL PPT GENERAL LATHE INDUSTRY
悬浮液制备的几点要求
1.稳定性,避免在固结阶段陶瓷颗粒的离析和沉淀; 2.低粘度,允许流动和充模; 3.均匀性,确保均匀的胚体,高颗粒填料,将导致致密烧结材 料;
4.分散状态,颗粒以“个体”的形式存在。微粒,无团聚和聚集
,以尽量减少绿色身体的缺陷。
固结机理
(A)过滤-滑移铸造 (B)流延铸造 (C)凝胶铸造 (D)冷冻铸造 (E)其他技术,如电泳沉积,旋涂,压力铸造,直
塑料系统
用于陶瓷悬浮液,作为高级陶瓷部件的原料。这可以通过掺入有机
加工添加剂,例如聚合物和增塑剂来实现。脱脂困难
各种粒间力量
胶体稳定性
胶体稳定性由总粒间势能Vtotal决定,其可表示为:
Vtotal=Vvdw+Velec+Vsteric+Vstructural
其中VvdW是由于粒子之间的长程范德华相互作用而具有吸引 力的势能。 Velec为相似电荷粒子表面之间的静电相互作用产生的排斥势 能。 Vsteric由吸附涂层的粒子表面之间的空间相互作用产生的排斥 势能。 Vstructural为溶液中存在非吸附物质而产生的势能。
3D打印之陶瓷3D打印
汇报人:李林
目录 CONTENTS
什么是3D打印?
3D打印的发展史以及现状 陶瓷3D打印技术的基本知识 陶瓷3D打印的前景与挑战
什么是3D打印?
基本步骤:
STEP 1
STEP 2
STEP 3
STEP 4

固结成所需要的组分形状
除去溶剂相
致密化
相关文档
最新文档