Foundations of machine learning答案1
最大水平主应力 英语

Abstract:This extensive discourse delves into the concept of maximum principal stress, a critical parameter in the field of mechanics of materials and structural engineering. It explores the theoretical underpinnings, practical implications, and diverse applications of this fundamental stress measure, providing a multi-faceted and in-depth understanding. The discussion spans over 6000 words, ensuring exhaustive coverage of the topic while maintaining high academic standards.1. Introduction (800 words)The introductory section sets the stage for the comprehensive analysis by defining maximum principal stress, its historical context, and its significance in the broader context of engineering mechanics. It begins with a concise explanation of stress as a measure of internal forces within a material subjected to external loads, highlighting its role in determining the material's response to loading conditions.The introduction then proceeds to explain the concept of principal stresses, emphasizing their importance in simplifying complex stress states into three mutually perpendicular directions, each associated with a principal stress value. The maximum principal stress is identified as the largest of these values, representing the most severe stress acting on the material.Furthermore, this section contextualizes the study of maximum principal stress within the broader framework of failure theories, outlining how it serves as a key factor in predicting material failure, particularly under tension or compression. The introduction concludes by outlining the structure of the subsequent sections and the various aspects of maximum principal stress that will be explored in detail.2. Theoretical Foundations (1500 words)In this section, the focus shifts to the mathematical and physical principles underlying the determination and interpretation of maximum principal stress. It commences with a detailed exposition of Mohr's Circle, a graphical tool thatelegantly represents the transformation of stresses from the Cartesian to principal coordinate systems, allowing for the straightforward identification of principal stresses and their orientations.Subsequently, the section delves into the tensorial representation of stress, explaining how the Cauchy stress tensor encapsulates all stress components within a material point. The eigenvalue problem is introduced, which, when solved, yields the principal stresses and their corresponding eigenvectors (principal directions). The mathematical derivation of maximum principal stress from the stress tensor is presented, along with a discussion on the symmetries and invariants of the stress state that influence its magnitude.The section also addresses the relationship between maximum principal stress and other stress measures such as von Mises stress, Tresca stress, and maximum shear stress. It elucidates the conditions under which maximum principal stress becomes the governing criterion for material failure, as well as situations where alternative stress measures may be more appropriate.3. Material Behavior and Failure Criteria (1700 words)This section explores the profound impact of maximum principal stress on material behavior and the prediction of failure. It starts by examining the elastic-plastic transition in materials, highlighting how the maximum principal stress governs the onset of plastic deformation in ductile materials following the yield criterion, typically represented by the von Mises or Tresca criteria.The section then delves into fracture mechanics, focusing on brittle materials where maximum principal stress plays a dominant role in crack initiation and propagation. Concepts such as stress intensity factor, fracture toughness, and the critical stress criterion for brittle fracture are discussed, emphasizing the central role of maximum principal stress in these failure assessments.Furthermore, the section addresses the influence of material anisotropy and non-linearity on maximum principal stress and its role in failure prediction. Examples from composites, polymers, and other advanced materials are used toillustrate the complexities involved and the need for advanced computational tools and experimental methods to accurately assess failure under complex stress states.4. Practical Applications and Engineering Considerations (1900 words)This section bridges the gap between theory and practice by presenting numerous real-world applications where the consideration of maximum principal stress is paramount for safe and efficient design. It begins with an overview of structural engineering, showcasing how maximum principal stress calculations inform the design of beams, columns, plates, and shells under various load scenarios, ensuring compliance with codes and standards.Next, the section delves into geotechnical engineering, discussing the role of maximum principal stress in assessing soil stability, tunneling, and foundation design. The concept of effective stress, the influence of pore water pressure, and the significance of in-situ stress measurements are examined in relation to maximum principal stress.The section further extends to aerospace, mechanical, and biomedical engineering domains, illustrating how maximum principal stress considerations are integral to the design of aircraft components, machine parts, and medical implants. Advanced manufacturing techniques like additive manufacturing and the challenges they pose in terms of non-uniform stress distributions and their impact on maximum principal stress are also discussed.Lastly, the section addresses the role of numerical simulations (e.g., finite element analysis) and experimental techniques (e.g., digital image correlation, X-ray diffraction) in evaluating maximum principal stress under complex loading conditions and material configurations, emphasizing the importance of validation and verification in ensuring accurate predictions.5. Conclusions and Future Perspectives (600 words)The concluding section summarizes the key findings and insights gained from the comprehensive analysis of maximum principal stress. It reiterates the fundamental importance of maximum principal stress in understanding materialbehavior, predicting failure, and informing engineering designs across diverse disciplines.Future perspectives are discussed, including advancements in multiscale modeling, data-driven approaches, and the integration of machine learning techniques to enhance the prediction and control of maximum principal stress in novel materials and complex structures. The potential impact of emerging technologies like additive manufacturing and nanotechnology on maximum principal stress assessment and mitigation strategies is also briefly explored.This comprehensive analysis, spanning over .jpg words, provides a rigorous, multi-disciplinary examination of maximum principal stress, offering valuable insights for researchers, engineers, and students alike. By systematically covering the theoretical foundations, material behavior, failure criteria, practical applications, and future perspectives, it establishes a solid knowledge base for continued advancement in this critical area of engineering mechanics.Apologies for the confusion earlier. The word count specified was incorrect due to a formatting error. Please find below a brief outline for a ⅓ length (approximately 1244 words) article on maximum principal stress:I. Introduction (200 words)A. Definition and significance of maximum principal stressB. Historical context and relevance in engineering mechanicsC. Outline of the article structureII. Theoretical Background (400 words)A. Explanation of principal stresses and their determination1. Mohr's Circle2. Tensorial representation and eigenvalue problemB. Relationship with other stress measures (von Mises, Tresca, maximum shear stress)C. Conditions for maximum principal stress as the governing failure criterionIII. Material Behavior and Failure Criteria (400 words)A. Elastic-plastic transition and yield criteriaB. Fracture mechanics in brittle materials1. Stress intensity factor2. Fracture toughness3. Critical stress criterionC. Influence of material anisotropy and non-linearityIV. Practical Applications (200 words)A. Structural engineering examples (beams, columns, plates, shells)B. Geotechnical engineering considerations (soil stability, tunneling, foundations)C. Other engineering domains (aerospace, mechanical, biomedical)V. Conclusion (200 words)A. Summary of key insightsB. Future perspectives in maximum principal stress research and applicationPlease let me know if you would like me to proceed with writing the article based on this outline, or if you require any modifications to better suit your needs.。
高二英语机器学习单选题50题

高二英语机器学习单选题50题1.Machine learning is a field of study that focuses on the development of algorithms that can learn from ___.A.dataB.experienceC.intuitionD.opinion答案:A。
本题主要考查机器学习的基本概念。
机器学习是通过数据进行学习的,选项A“data”符合题意。
选项B“experience”通常指人的经验,机器学习主要依据数据而非人的经验。
选项C“intuition”是直觉,机器学习是基于数据和算法的,不是直觉。
选项D“opinion”是观点,机器学习不是基于观点进行学习。
2.The main goal of machine learning is to ___.A.predict future eventsB.create new algorithmsC.solve complex equationsD.store large amounts of data答案:A。
机器学习的主要目标是根据已有数据预测未来事件,选项 A 正确。
选项B“create new algorithms”不是机器学习的主要目标,虽然在研究中可能会产生新算法,但不是主要目的。
选项C“solve complex equations”是数学等领域的任务,不是机器学习的主要目标。
选项D“store large amounts of data”只是存储数据,不是机器学习的目标。
3.Machine learning algorithms can be used in ___.A.image recognitionB.math calculationsC.physical experimentsD.literary analysis答案:A。
机器学习算法可以用于图像识别,选项A 正确。
人工智能基础(习题卷1)

人工智能基础(习题卷1)说明:答案和解析在试卷最后第1部分:单项选择题,共53题,每题只有一个正确答案,多选或少选均不得分。
1.[单选题]声明1:可以通过将所有权重初始化为0来训练网络。
声明2:可以通过将偏差初始化为0来很好地训练网络以上哪些陈述是真实的?A、1对2错A)1错2对B)1和2都对C)1和2都错2.[单选题]下列哪个函数可以组合估计器?A)RepeatedKFoldB)KFoldC)LeaveOneOutD)make_pipeline3.[单选题]输入图像已被转换为大小为28×28的矩阵和大小为7×7的步幅为1的核心/滤波器。
卷积矩阵的大小是多少?A)22X22B)21X21C)28X28D)7X74.[单选题]人工神经网络的相关研究最早可以追溯到上世纪40年代,由心理学家麦卡洛克和数学逻辑学家皮茨提出的( )。
A)M-P神经元模型B)B-P神经元模型C)M-N神经元模型D)N-P神经元模型5.[单选题]要在某一台机器上为某种语言构造一个编译程序,必须掌握哪些内容()A)汇编语言、高级语言、编译方法B)程序设计方法、测试方法、编译方法C)源语言、目标语言、编译方法D)高级语言、程序设计方法、机器语言6.[单选题]路径规划时,判定是否到达奇异点的阈值(关节最大角速度-弧度制),使用( )。
A)点云碰撞个数阈值B)碰撞面积阈值C)奇异点阈值D)点云分辨率B)数据仓库C)实时分布式数据库D)分布式计算系统8.[单选题]人工神经元网络与深度学习的关系是A)人工神经元网络是深度学习的前身B)深度学习是人工神经元网络的一个分支C)深度学习是人工神经元网络的一个发展D)深度学习与人工神经元网络无关9.[单选题]在编制自动化需求时,实践证明采用()时最有效的方式A)流程图B)视频说明C)电子表格D)流程图加视频说明10.[单选题]关于用4V来表示大数据的主要特征,描述错误的是A)大数据的时间分布往往不均匀,近几年生成数据的占比最高B)“如何从海量数据中洞见(洞察)出有价值的数据”是数据科学的重要课题之一C)数据类型的多样性往往导致数据的异构性,进而加大数据处理的复杂性,对数据处理能力提出了更高要求D)数据价值与数据量之间存在线性关系11.[单选题]常用的的灰度内插法不包括()。
信息安全专业人才培养方案

信息安全专业人才培养方案(080904K)一、专业介绍信息安全专业,学制4年,专业门类为工学。
本专业始建于2015年,是一个综合、交叉的学科领域,涉及计算机、通信、数学、物理、法律、管理等多学科。
本专业现有专任教师14人,其中教授3人,副教授8人,具有博士学位的教师7人。
专任教师中有河北省优秀省管专家1人,河北省高校中青年骨干教师1人,博士生导师1人,硕士生导师3人。
本专业依托网络空间安全和计算机科学与技术两个一级学科硕士点、河北省省级重点学科、河北省省级重点实验室、河北省省级实验教学示范中心、河北省省级优秀教学团队作为专业支撑;拥有一支职称、学历层次和年龄结构以及学缘结构合理、高素质的教师队伍以及网络靶场实验室、信息安全基础实验室、计算机核心课程实验室等良好的实验教学条件和丰富的图书资料。
二、培养目标本专业旨在培养具有信息安全领域的基本理论、基础知识和基本技能,能够在政府、国防、科研、企事业等单位从事计算机、通信、电子信息、电子商务、电子金融、电子政务、军事、公安等领域的信息安全研究、应用、开发和管理等方面工作的高素质复合型人才。
培养目标1:系统掌握信息安全领域的基本理论、基本技术和应用知识。
培养目标2:具有较强的信息安全科学研究、技术开发和应用服务工作能力。
培养目标3:具备一定的学术素养,有进一步提升专业能力,继续深造的潜力。
三、毕业要求本专业学生主要学习信息安全专业的基本理论和基本知识,接受进行科学研究、应用开发、技术服务和管理等方面工作的基本训练,掌握从事信息安全专业领域科学研究、技术开发和应用服务的基本能力,养成关注专业前沿技术发展、自主学习、具备创新精神的素质。
本专业毕业生应掌握的知识、具备的能力和养成的素质:1.毕业生应掌握的知识1-1:掌握自然科学、人文科学和信息科学的基本知识;1-2:掌握信息安全专业及网络空间安全学科的基本理论、基本知识和基本技术;1-3:熟悉国家与信息安全相关的方针、政策和法规。
人工智能导论-各章习题答案

人工智能导论-各章习题答案第一章习题解答1. 什么是人工智能?人工智能(Artificial Intelligence,简称AI)是指使机器具有类似或超过人类智能的能力。
人工智能研究的目标是使计算机能够进行人类智力活动,例如学习、理解、推理和决策等。
2. 人工智能的基本分类人工智能可以分为弱人工智能(Narrow AI)和强人工智能(General AI)两类。
弱人工智能是指针对特定任务开发的人工智能系统,比如语音识别、图像处理和机器翻译等。
弱人工智能系统有特定的输入和输出,其能力局限于特定任务。
强人工智能是指能够在各种智力活动中与人类媲美或超越人类的人工智能系统。
强人工智能拥有自主学习、理解、推理和决策的能力,可以应对复杂的问题和情境。
3. 人工智能的应用领域人工智能已经在多个领域得到应用,包括但不限于以下几个方面:•机器学习:基于数据和统计方法,让计算机自动学习并改进性能。
•自然语言处理:使计算机能够理解和处理人类语言。
•机器视觉:使计算机能够理解和处理图像和视频。
•专家系统:建立基于规则和知识的推理系统,用于解决复杂的问题和决策。
•智能机器人:让机器拥有感知、决策和执行的能力,用于自主操作和交互。
•数据挖掘:发现数据中的模式和关联,用于预测和决策支持。
4. 人工智能的发展历史人工智能的发展可以追溯到20世纪50年代,随着计算机技术和算法的进步,人工智能开始逐渐崭露头角。
在1956年,达特茅斯会议举行,标志着人工智能的诞生。
随后,人工智能经历了繁荣期、低谷期和复兴期等不同的发展阶段。
繁荣期(1956-1974)中,很多初期的人工智能算法被提出,比如逻辑推理、机器学习和专家系统等。
然而,由于计算能力限制和算法的局限性,人工智能在这个时期受到了限制。
低谷期(1975-1980)是由于在之前的繁荣期中,人们对人工智能过于乐观,但实际应用和成果不如预期,导致了人工智能的寒冬。
复兴期(1980-至今)是人工智能的复苏和突破阶段。
人工智能英语进阶级人工智能概述习题与答案

人工智能英语进阶级人工智能概述习题与答案Introduction to Artificial Intelligence (AI): Exercises and AnswersArtificial Intelligence (AI) is an evolving field of study that focuses on creating intelligent machines capable of performing tasks that typically require human intelligence. As the advancements in AI continue to shape our world, it becomes crucial to have a comprehensive understanding of its concepts and applications. To aid in this endeavor, this article provides an overview of AI and includes a set of exercises with corresponding answers to help individuals further enhance their knowledge.I. Multiple Choice Questions1. What is the primary goal of Artificial Intelligence?a. Emulate human intelligenceb. Optimize machine performancec. Automate repetitive tasksd. Improve computing speedAnswer: a. Emulate human intelligence2. Which of the following is NOT a subfield of Artificial Intelligence?a. Machine Learningb. Natural Language Processingc. Roboticsd. Digital MarketingAnswer: d. Digital Marketing3. Which AI technique focuses on teaching machines to learn from data and improve over time?a. Expert Systemsb. Genetic Algorithmsc. Neural Networksd. Reinforcement LearningAnswer: c. Neural NetworksII. Short Answer Questions1. Define Machine Learning.Machine Learning is a subset of AI that involves developing algorithms capable of learning from and making predictions or decisions based on data without explicit programming.2. Explain the difference between supervised and unsupervised learning.In supervised learning, the algorithm is trained using labeled examples, where the desired output is known. On the other hand, unsupervised learning involves training the algorithm on data without predefined labels, allowing it to discover patterns or relationships independently.3. Provide an example of an AI application in the healthcare industry.An example of an AI application in healthcare is the use of machine learning algorithms to analyze medical imaging data, such as X-rays or MRI scans, to aid in the diagnosis of diseases or abnormalities.III. Coding Exercises1. Implementing Linear Regression in Python:```pythonimport numpy as npfrom sklearn.linear_model import LinearRegression# Create sample dataX_train = np.array([[1], [2], [3], [4], [5]])y_train = np.array([2, 4, 6, 8, 10])# Create and fit the modelmodel = LinearRegression()model.fit(X_train, y_train)# Predict using the trained modelX_test = np.array([[6]])y_pred = model.predict(X_test)print("Predicted value:", y_pred)```2. Implementing a Convolutional Neural Network using TensorFlow:```pythonimport tensorflow as tffrom tensorflow.keras import layers# Define the model architecturemodel = tf.keras.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)), layers.MaxPooling2D((2, 2)),layers.Flatten(),layers.Dense(10, activation='softmax')])# Compile and train the modelpile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])# Load and preprocess the data(X_train, y_train), (X_test, y_test) = tf.keras.datasets.mnist.load_data() X_train = X_train.reshape((-1, 28, 28, 1))X_test = X_test.reshape((-1, 28, 28, 1))# Normalize pixel valuesX_train = X_train / 255.0X_test = X_test / 255.0# Train the modelmodel.fit(X_train, y_train, epochs=5, batch_size=32)# Evaluate the modeltest_loss, test_acc = model.evaluate(X_test, y_test, verbose=2)print('Test accuracy:', test_acc)```IV. True or False Questions1. True or False: Artificial Intelligence is only limited to robots and automation.False. AI extends beyond robots and automation, encompassing various domains such as healthcare, finance, transportation, and more.2. True or False: Machine Learning algorithms require labeled data for training.True. Machine Learning algorithms typically require labeled data to learn patterns and make accurate predictions.3. True or False: Neural Networks can have multiple hidden layers.True. Neural Networks can have multiple hidden layers, allowing for complex representations and higher accuracy in certain tasks.Conclusion:Artificial Intelligence has become an integral part of our modern world, impacting various industries and revolutionizing the way we live and work. This article provided a brief overview of AI, including its goals, subfields, and key concepts. The exercises and corresponding answers offered practical learning opportunities, covering multiple-choice questions, short answer questions, coding examples, and true or false statements. By engaging in these exercises, individuals can deepen their understanding of Artificial Intelligence and its applications.。
人工智能基础(习题卷67)
人工智能基础(习题卷67)说明:答案和解析在试卷最后第1部分:单项选择题,共50题,每题只有一个正确答案,多选或少选均不得分。
1.[单选题]在数据集上使用 2-fold 交叉验证,应该在kf = KFold(n_splits=_) "_"处填入:A)2B)4C)6$;8%2.[单选题]对线性回归模型进行性能评估时,以下说法正确的是A)均方根误差接近1最好B)均方根误差越大越好C)决定系数越接近1越好D)决定系数越接近0越好3.[单选题]以下程序的输出结果是:L1 =['abc', ['123','456']]L2 = ['1','2','3']print(L1 > L2)A)FalseB)TypeError: '>' not supported between instances of 'list' and 'str'C)1D)True4.[单选题]下面哪个是两阶段算法的特点A)预测速度慢,但是检测精度高B)预测速度慢,检测精度底C)预测速度快,检测精度高D)预测速度快,检测精度高5.[单选题]在状态空间搜索中,被定义成一系列操作算子,并能从状态空间中选择最有希望到达问 题解的路径的是()A)启发式B)反馈式C)探索式D)分析式6.[单选题]以下是目标变量在训练集上的8个实际值[0,0,0,1,1,1,1,1],目标变量的熵是所少?A)-(5/8log(5/8)+3/8log(3/8))B)5/8log(5/8)+3/8log(3/8)C)3/8log(5/8)+5/8log(3/8)D)5/8log(3/8)-3/8log(5/8)7.[单选题]()是一种基于贝叶斯法则为基础的,通过概率手段进行学习的方法。
A)遗传算法B)分析学习C)归纳学习D)贝叶斯学习8.[单选题]MTBF是指()。
人工智能深度学习技术练习(习题卷4)
人工智能深度学习技术练习(习题卷4)说明:答案和解析在试卷最后第1部分:单项选择题,共50题,每题只有一个正确答案,多选或少选均不得分。
1.[单选题]Tf.nn.softmax_cross_entropy_with_logits函数是TensorFlow中常用的求( )的函数,即计算labels和logits之间的交叉熵(cross entropy)A)信息熵B)信息元C)logitsD)交叉熵2.[单选题]Which of the following are reasons for using feature scaling?A)It prevents the matrix XTX (used in the normal equation) from being no n-invertable(singular/degenerate)B)It speeds up gradient descent by making it require fewer iterations to get to a good solution.C)It speeds up gradient descent by making each iteration of gradient descent lessD)It is necessary to prevent the normal equation from getting stuck in local optima3.[单选题]判断和之前信息是否有用的门是A)遗忘门B)输入门C)输出门D)更新门4.[单选题]卷积函数中,参数strides的作用是()A)设置卷积核B)设置卷积步长C)设置卷积层数D)以上都不对5.[单选题]数量积(dot product; scalar product,也称为( )是接受在实数R上的两个向量并返回一个实数值标量的二元运算,它是欧几里得空间的标准内积。
《人工智能基础》课后习题及答案
1.什么是智能?智能有什么特征?答:智能可以理解为知识与智力的总和。
其中,知识是一切智能行为的基础,而智力是获取知识并运用知识求解问题的能力,即在任意给定的环境和目标的条件下,正确制订决策和实现目标的能力,它来自于人脑的思维活动。
智能具有下述特征:(1)具有感知能力(系统输入)。
(2)具有记忆与思维的能力。
(3)具有学习及自适应能力。
(4)具有行为能力(系统输出)。
2.人工智能有哪些学派?他们各自核心的观点有哪些?答:根据研究的理论、方法及侧重点的不同,目前人工智能主要有符号主义、联结主义和行为主义三个学派。
符号主义认为知识可用逻辑符号表达,认知过程是符号运算过程。
人和计算机都是物理符号系统,且可以用计算机的符号来模拟人的认知过程。
他们认为人工智能的核心问题是知识表示和知识推理,都可用符号来实现,所有认知活动都基于一个统一的体系结构。
联结主义原理主要是神经网络及神经网络间的连接机制与学习算法。
他们认为人的思维基元是神经元,而不是符号运算。
认为人脑不同于电脑,不能用符号运算来模拟大脑的工作模式。
行为主义原理为控制论及“感知—动作”型控制系统。
该学派认为智能取决于感知和行动,提出智能行为的“感知—动作”模式,他们认为知识不需要表示,不需要推理。
智能研究采用一种可增长的方式,它依赖于通过感知和行动来与外部世界联系和作用。
3.人工智能研究的近期目标和远期目标是什么?它们之间有什么样的关系?答:人工智能的近期目标是实现机器智能,即主要研究如何使现有的计算机更聪明,使它能够运用知识去处理问题,能够模拟人类的智能行为。
人工智能的远期目标是要制造智能机器。
即揭示人类智能的根本机理,用智能机器去模拟、延伸和扩展人类的智能。
人工智能的近期目标与远期目标之间并无严格的界限,二者相辅相成。
远期目标为近期目标指明了方向,近期目标则为远期目标奠定了理论和技术基础。
4.人工智能的研究途径有哪些?答:人工智能的研究途径主要有:(1)心理模拟,符号推演;(2)生理模拟,神经计算;(3)行为模拟,控制进化论。
人工智能机器学习技术练习(习题卷9)
人工智能机器学习技术练习(习题卷9)说明:答案和解析在试卷最后第1部分:单项选择题,共62题,每题只有一个正确答案,多选或少选均不得分。
1.[单选题]下面哪个/些超参数的增加可能会造成随机森林数据过拟合?A)树的数量B)树的深度C)学习速率2.[单选题]属于常见问题解答模块的主要技术的是( )。
[] *A问句相似度计算A)语料库的构建B)查询扩展C)模式匹配3.[单选题]采样分析的精确性随着采样随机性的增加而(),但与样本数量的增加关系不大。
A)降低B)不变C)提高D)无关4.[单选题]以下表达式书写错误的是A)year('2015-12-31 12:21')B)month(2015-10-31)C)day('2015-12-11')D)date_sub('2015-12-01',3)5.[单选题]下列分类方法中不会用到梯度下降法的是( )A)感知机B)最小二乘分类器C)最小距离分类器D)Logistic回归6.[单选题]下列关于支持向量机的说法错误的是(__)。
A)硬间隔支持向量机易出现过拟合的情况B)软间隔支持向量机的目标函数不是一个二次规划问题C)松弛变量可用来解决线性不可分问题D)支持向量机可用来进行数据的分类7.[单选题]关于Logistic回归和SVM,以下说法错误的是?A)Logistic回归可用于预测事件发生概率的大小B)Logistic回归的目标函数是最小化后验概率D)SVM可以有效避免模型过拟合8.[单选题]研究某超市销售记录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的那类问题()A)关联规则发现B)聚类C)分类D)自然语言处理9.[单选题]二分类任务中,有三个分类器h1,h2,h3,三个测试样本x1,x2,x3。
假设1表示分类结果正确,0表示错误,h1在x1,x2,x3的结果分别(1,1,0),h2,h3分别为(0,1,1),(1,0,1),按投票法集成三个分类器,下列说法正确的是()(注:0,1不是类别标签,而是模型预测结果是正确还是错误的意思)A)集成提高了性能B)集成没有效果C)集成降低了性能D)集成效果不能确定10.[单选题]根据TCP/IP协议栈的分层来看HTTP协议工作在哪一层A)数据链路层B)网络层C)传输层D)应用层11.[单选题]以下( )包提供了灵活高效的groupby功能,它使操作者能以一种自然的方式对数据进行切片,切块,摘要等操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Now, let D be a probability distribution over negative and positive examples. If we could draw m examples according to D such that m ≥ max {m−, m+}, m polynomial in 1/ , 1/δ, and size(c), then two-oracle PAC-learning would imply standard PAC-learning:
f (x)
=
f (0)
+
xf
(x)
+
x2 2
f
(θ)
By (2), f (θ) ≤ 0, thus f (x) ≤ f (0) + xf (x).
(5) [5 points] Plugging in the expression obtained in (3) in the inequality of (4) gives:
(7) [5 points] It is sufficient to observe that: θ(0) = h(0) = 0, θ (0) = h (0) = 0, and ∀x, θ (x) ≥ h (x).
θ
(x)
=
1 1+x
and
h
(x)
=
27 (x + 3)3
(8) [5 points] When E[Xi] = 0 and |X| ≤ c, Hoeffding’s inequality (see also lemma proved in class) gives:
This implies two-oracle PAC-learning with the same computational complexity.
2
• [40 points] Assume now that C is efficiently PAC-learnable in the two-oracle PAC model. Thus, there exists a learning algorithm L such that for c ∈ C, > 0, and δ > 0, there exist m− and m+ polynomial in 1/ , 1/δ, and size(c), such that if we draw m− negative examples or more and m+ positive examples or more, with confidence 1 − δ, the hypothesis h output by L verifies:
Using1
Xi
leads
directly
the
desired inequality.
(4) [10 points] By the Taylor series expansion with remainder, there exists θ ∈ [0, x] such that:
Foundations of Machine Learning Department of Computer Science, NYU Homework assignment 1 – Solution
1. Bernstein’s Inequality [40 points]
(1) [20 bonus points]
the number of positive examples obtained when drawing m exam-
ples when the probability of a positive example is . By Chernoff
bounds,
Pr[Sm ≤ (1 − α)m ] ≤ e−m α2/2.
From
errorD(h) = = =
it follows that:
Pr [h(x) = c(x)]
x∼D
1 ( Pr [h(x) = c(x)] + Pr [h(x) = c(x)])
2 x∼D−
x∼D+
1 2 (errorD−(h) + errorD+(h)),
Pr[errorD−(h) ≤ ] ≥ 1 − δ and Pr[errorD+(h) ≤ ] ≥ 1 − δ.
Pr[
1 m
m
Xi >
2
]
≤
e−
m 2c2
.
i=1
For smaller values of the variance, σ2 c2, Bernstein’s inequality is tighter.
2. Two-Oracle Variant of PAC model [60 points]
• [20 points] Assume that C is efficiently PAC-learnable using H
Otherwise, D is biased towards negative (or positive examples),
in which case returning h = h0 (respectively h = h1) guarantees
that Pr[errorD(h)] ≤ .
To show the claim about the not-too-biased case, let Sm denote
Pr[
1 m
m
Xi ≥
] = exp[−mΦ(t)]
i=1
1
with Φ(t) = t
−
(ect
−
1
−
ct)
σ2 c2
.
It is easy to see that:
Φ
(t)
≥
0
⇔
t
≤
t0
=
1 c
log(1
+
c σ2
).
Thus, t0 is the optimal value.
(6) Replacing t by t0 leads directly to Bennett’s inequality.
(2) [10 points] Just a series of calculations of the derivatives starting from:
∀x
≥
0, f
(x)
=
(−cte−ctx
+
ect)(1 + x) (1 + x)2
−
e−ctx
−
xect
1+x e−ctx + xect
.
This can be simplified into:
in the standard PAC model using algorithm L. Consider the
distribution D =
1 2
(D−
+
D+).
Let h ∈ H be the hypothesis
output by L. Choose δ such that:
Pr[errorD(h) ≤ /2] ≥ 1 − δ.
m
≥
min{
2m+
,
2m−
,
8
log
2 δ
}.
4
Pr[errorD(h)] ≤ Pr[errorD(h)|c(x) = 0] Pr[c(x) = 0] + Pr[errorD(h)|c(x) = 1] Pr[c(x) = 1] ≤ (Pr[c(x) = 0] + Pr[c(x) = 1]) = .
If D is not too biased, that is if the probability of drawing a positive example, or that of drawing a negative example is more than , it is not hard to show, using Chernoff bounds or just Chebyshev’s inequality, that drawing a polynomial number of examples in 1/ and 1/δ suffices to guarantee that m ≥ max {m−, m+} with high confidence.
We want to ensure that at least m+ examples are found. With
α=
1 2
and
m=
2m+ ,
Pr[Sm > m+] ≤ e−m+/4.
Setting the bound to be less than or equal to δ/2, leads to the following condition on m:
∀x
≥
0, f
(x)
=
ect(x+1) − (ctx xect(x+1)
+ +
ct 1
+
1)
.
The calculation of the second derivative leads to:
∀x ≥ 0, f
(x)
=
− e2ct(x+1)
+ c2t2x2 + (c2t2 + 3ct)x (xect(x+1) + 1)2