反应釜外文翻译

合集下载

学习一大波化工设备类英语词汇来袭(三),是学霸还是学渣,马上就知道!

学习一大波化工设备类英语词汇来袭(三),是学霸还是学渣,马上就知道!

学习一大波化工设备类英语词汇来袭(三),是学霸还是学渣,马上就知道!小7说:从周五开始,小7便为大家开始刊登化工企业生产过程当中的英语词汇,今天小7整理了部分化工设备的英语词汇,送给大家!至于为何要学英语嘛,上面那张图片已经说过了!作为一个高尚的中国人,聪明且高尚的中国化工人,如果再学会了英语,那就是聪明且高尚还勤奋的中国化工人!同意的赶紧学习吧~~~泵 pump轴流泵 axial flow pump真空泵 vacuum pump屏蔽泵 canned pump柱塞泵 plunger pump涡轮泵 turbine pump涡流泵 vortex pump离心泵 centrifugal pump喷射泵 jet pump转子泵 rotary pump管道泵 inline pump双作用往复泵 double action reciprocating pump计量泵 metering pump深井泵 deep well pump齿轮泵 gear pump手摇泵 hand(wobble) pump螺杆泵 screw (spiral) pump潜水泵 submersible pump斜转子泵 inclined rotor pump封闭式电磁泵 hermetically sealed magnetic drive pump 气升泵 air-lift-pump轴承 bearing叶轮 impeller虹吸管 siphon高压容器 high pressure vessel 焚化炉 incinerator火焰清除器 flame arrester工业炉 furnace烧嘴 burner锅炉 boiler回转窑 rotary kiln加热器 heater电加热器 electric heater冷却器 cooler冷凝器 condenser换热器 heat exchanger反应器 reactor蒸馏釜 still搅拌器 agitator混合器 mixer静态混合器 static mixers 管道混合器 line mixers 混合槽 mixing tanks破碎机 crusher磨碎机 grinder研磨机 pulverizer球磨机 ballmill过滤器 filter分离器 separator干燥器 drier翅片 fins烟囱 stack火炬 flare筛子 screen煅烧窑 calciner倾析器 decanter蒸发器 evaporator再沸器 reboiler萃取器 extractor离心机 centrifuger吸附(收)器 adsorber结晶器 crystallizer电解槽 electrolyzer电除尘器 electric precipitator 洗涤器 scrubber消石灰器 slaker料仓 bin料斗 hopper加料器 feeder增稠器 thickener澄清器 clarifier分级器 classifier浮洗器 flocculator废液池 sump喷射器 ejector喷头 sprayer成套设备 package unit仪器设备 apparatus附属设备 accessory旋转式压缩机 rotary compressor往复式压缩机 reciprocating compressor 水环式压缩机 nash compressor螺杆式压缩机 helical screw compressor 离心式压缩机 centrifugal compressor多级压缩机 mutiple stages compressor固定床反应器 fixed bed reactor流化床反应器 fluidized bed reactor管式反应器 tubular reactor列管式换热器 tubular heat exchanger螺旋板式换热器 spiral plate heat exchanger 萃取塔 extraction column板式塔 plate column填料塔 packed column洗涤塔 scrubber吸收塔 absorber冷却塔 cooling tower精馏塔 fractionating tower汽提塔 stripper再生塔 regenerator造粒塔 prill tower塔附件 tower accessories液体分配(布)器 liquid distributor 填料支持板 support plate定距管 spacer降液管 downcomer升气管 chimney顶(底)层塔盘 top (bottom) tray挡板 baffle抽出口 draw nozzle溢流堰 weir泡罩 bubble cap筛板 sieve plate浮阀 float valve除沫器 demister pad塔裙座 skirt椭圆封头 elliptical head高位槽 head tank中间槽 intermediate tank 加料槽 feed tank补给槽 make-up tank计量槽 measuring tank电解槽 cell溜槽 chute收集槽 collecting tank液滴分离器 knockout drum 稀释罐 thinning tank缓冲罐 surge drum回流罐 reflux drum闪蒸罐 flash drum浮顶罐 floating roof tank内浮顶罐 covered floating roof tank 球罐 spheroid气柜 gas holder湿式气柜 wet gas-holder干式气柜 dry gas-holder螺旋式气柜 helical gas-holder星型放料器,旋转阀 rotary valve抽滤器 mutche filter压滤器 filter press压滤机 pressure filter板框压滤器 plate-and-fram filter press 转鼓过滤器 rotary drum filter带式过滤器 belt filter袋滤器 bag filter旋风分离器 cyclone separator盘式干燥箱 compartment tray drier真空干燥器 vacuum drier隧道式干燥器 tunnel drier回转干燥器 rotary drier穿流循环干燥器 through circulation drier 喷雾干燥器 spray drier气流干燥器 pneumatic conveyor drier 圆盘式加料器 dish feeder螺旋式加料器 screw feeder颚式破碎机 jaw crusher回转破碎机 gyratory crusher滚洞破碎机 roll crusher锤式破碎机 hammer crusher冲击破碎机 rotor impact breaker气流喷射粉碎机 jet pulverizer 棍磨机 rod mill雷蒙机 raymond mill锤磨机 hammer mill辊磨机 roller mill振动筛 vibrating screen回转筛 rotary screen风机 fan罗茨鼓风机 root's blower起重机 crane桥式起重机 bridge crane电动葫芦 motor hoist发电机 generator电动机 motor汽轮机 steam turbine。

化工英语

化工英语

PSV pressure safety valve 压力安全阀 PCV pressure control valve 压力调节阀 Normally open 常开阀 Gate valve 闸阀 Globe valve 截止阀 Ball valve 球阀 Steam trap 疏水器 3-way valve 三通阀 Diaphragm valve隔膜阀 Check valve 止回阀 Plug valve旋塞阀 Safety valve/relief valve 安全阀
Heater 加热器 Preheater 预热器 Cooler 冷却器 Piston 活塞 (pistonring活塞环) Seal flush. System press. Piston 密封冲 洗系统加压活塞 Pipe 管道 Instrument 仪表
Pot 釜 Z209 reactors jacket water additive pot 反应 器夹套水添加剂釜 Reaction pot反应釜 Tank (盛液体或气体的)大容器 ;槽 Lube oil tank Comonomer Surge Tank 共聚单体缓冲罐 Tower 塔 Cos removal towers –cos 脱除塔 Mixer 混合器 ,搅拌器 Dryer 干燥器
ethylene 乙烯 Ethylene feed 乙烯进料 propylene 丙烯 polypropylene 聚丙烯 polyethylene 聚乙烯 Hydrogen 氢气 Off gas 回收气 butene丁烯 hexene己烯 Low pressure steam低压蒸汽 High pressure steam高压蒸汽 catalyst 催化剂 cocatalyst 助催化剂
Cylinder 汽缸; 钢瓶

反应釜毕业设计外文翻译

反应釜毕业设计外文翻译

Welding Simulation of Cast Aluminium A356X-T. Pham*, P. Gougeon and F-O. GagnonAluminium Technology Centre, National Research Council Canada Chicoutimi, Quebec, CanadaAbstractWelding of cast aluminium hollow parts is a new promising technical trend for structural assemblies. However, big gap between components, weld porosity, large distortion and risk for hot cracking need to be dealt with. In this paper, the MIG welding of aluminium A356 cast square tubes is studied. The distortion of the welded tubes was predicted by numerical simulations. A good agreement between experimental and numerical results was obtained.IntroductionAluminium structures become more and more popular in industries thanks to their light weights, especially in the automotive manufacturing industry. Moreover, welding of cast aluminium hollow parts is a new promising technical trend for structural assemblies [1-3]. However, it may be very challenging due to many problems such as big gap between components, weld porosity, large distortion and risk for hot cracking [4,5]. Due to local heating, complex thermal stresses occur during welding; residual stress and distortion result after welding. In this paper, the aluminium A356 cast tube MIG welding is studied. The software Sysweld [6] was used for welding simulations. The objective is to validate the capability of this software in predicting the distortion of the welded tubes in the presence of large gaps. In this work, the porosity of welds was checked after welding using the X-ray technique. The heat source parameters were identified based on the weld cross-sections and welding parameters. Full 3D thermal metallurgical mechanical simulations were performed. The distortions predicted by the numerical simulations were compared to experimental results measured after welding by a CMM machine.ExperimentsExperimental setupTwo square tubes are made of A356 by sand casting and then machined. They are assembled by four MIG welds, named W1 to W4. Their dimensions and the welding configuration are depicted in Figure 1. Both small (inner) and large (outer) tubes are well positioned on a fixture using v-blocks as shown in Figure 2. The dimensions of the tubes make a peripheral gap of 1 mm between them. This fixture is fixed on a positioner that allows the welding process to be carried out always in the horizontal position. The length of each weld is of 35 mm. The Fronius welding head, which is mounted on a Motoman robot, was used for the MIG welding process. Table 1 indicates the parameters of the welding process forthis welding configuration.a)b)Figure 1: Tube welding configuration: a) cross-section view, b) tube dimensionsFigure 2: Experimental setup for tube weldingTestingThe porosity of welds was observed before and after welding using the X-ray technique to check the quality of these welds according to the standard ASTM E155. The whole welded tubes were then tested by traction on a MTS testing machine. The final dimensions of the welded tubes are measured on a CMM machine at many points on the tubes. The distortion of the welded tubes is determined by comparing the final positions with the initial positions of the tubes.Numerical analysisIn Sysweld, a welding analysis is performed based on a weak-coupling formulation between the heat transfer and mechanical problems. Only the thermal history will affect on the mechanical properties, but not in reverse direction. Therefore, a thermal metallurgical mechanical analysis is divided into two steps. The first step is a thermal metallurgical analysis, in which the heat transferred from the welding source makes phase changes during the welding process. The results of temperature and phase changes from the first step are then used as input for the second analysis. It is a pure thermo-elasto-plastic simulation [6].Heat source model identificationBefore running a welding simulation, it is necessary to determine the parameters of the heat source model. This is called heat source fitting. Actually, it is a thermal simulation using this heat source model in the steady state, which iscombined with an optimization tool to obtain the parameters of the heat source. Figure 3 presents the form of a 3D conical heat source of which the energy distribution is described in Eq (1) as follows:F=Q0exp(-r²/r0²) (1)in which Q0 denotes the power density; and r,r0 are defined byr²=(x-x0)²+(x-x0-v t)²(2)andr0=r e-(r e-r i)(z e-z+z0)/(z e-z i) (3)where(x0,y0,z0)is the origin of the local coordinate system of the heat source; r e and r i the radius of the heat source at the positions z e and z i,respectively;v the welding speed and t the time.In this study, a metallographic cross-section has been used to identify the heat source parameters as shown in Figure 4. The use of a 3D conical heat source fits very well the weld cross-section. The mesh size in the cross-section is around 0.5 mm for this case. The finer is the mesh, the more accurate is the shape of the melting pool, but the longer is the simulation.Figure 3: 3D conical heat source (Sysweld).a)b)Figure 4: (a) Metallographic cross-section, (b) Melting pool cross-section.Analysis modelThe mesh of the tubes was created in Hypermesh 7.0. Sysweld 2007 has been used as solver and pre/post processor. A full 3D thermal metallurgical mechanical analysis with brick and prism elements. Two welding sequences have been done such as W1/W2/W3/W4 and W1/W3/W2/W4. The tubes are clamped using four v-blocks during the welding, two for each tube. In the simulations, the positions where the tubes are in contact against the surfaces of the v-blocks are considered as fixed conditions (i.e. Ux = Uy = Uz = 0). In the release phase, the tubes are free from the v-blocks.ResultsThe distortion of the welded tube is measured when it is released from the constraints. The distortion is determined by measuring the displacement of the small tube on the top andlateral surfaces along the centre line of the tube. These measures are relative to the large tube. Figures 5a-b depict the distortion predicted by the numerical simulations of the sequence W1/W2/W3/W4 and W1/W3/2/W4, respectively. Good agreements between experimental and numerical results were obtained in the two welding sequences as indicated in Tables 2-3, in both the distortion tendency and distortion range of the process variation.a)b)Figure 5: Tube distortion (Norm U): (a) Sequence W1/W2/W3/W4, (b) Sequence W1/W3/W2/W4.Table 2: Distortion result comparison (welding sequence W1/W2/W3/W4)a)b)Figure 7: State of stresses Sxy (a) Clamped, (b) Released. (Red = positive, Blue = negative)a)b)Figure 8: State of stresses Sxz (a) Clamped, (b) Released. (Red = positive, Blue = negative) Figures 6-8 shows the state of the stresses of the welded tubes at room temperature for the sequence W1/W2/W3/W4 after welding when clampled and released from constraints (x is the direction along the axe of the welded tube). To show how the welded tube is distorted, positive-negative values are used instead of the true values of stresses. The distortion of the welded tube can be explained as the new equilibrium position due to the residual stresses when there is no external load. It is remarked that in the presence of large gaps, the distortion of the welded tube is very likely in the rotational mode around local welds.ConclusionsThe MIG welding is very good for assembling aluminium cast tubes (hollow parts) in the presence of large gaps.The 3D thermal metallurgical mechanical simulation of the cast tube welding using Sysweld has been validated. A very good agreement between numerical and experimental results was obtained for both the distortion tendency and distortion range.The welding sequence has a major influence on the distortion of the welded structure. It turns out that the optimization of the welding sequences for a reasonable distortion of a welded structure with a large number of welds becomes very important.AcknowledgmentsThe authors would like to thank gratefully Rio Tinto Alcan and General Motor for financial and technical supports, particularly Martin Fortier and Pei-Chung Wang. Also, the authors are grateful to Welding Team at ATC (Audrey Boily, Martin Larouche, François Nadeau and Mario Patry) for experimental works.References1. K-H. Von Zengen, Aluminium in future cars – A challenge for materials science, Materials Science Forum, 519-521 (Part 2), 1201-1208 (2006).2. S. Wiesner S., M. Rethmeier and H. Wohlfart, MIG and laser welding of aluminium alloy pressure die cast parts with wrought profiles, Welding International, 19 (2), 130-133 (2005).3. R. Akhter, L. Ivanchev, C.V.Rooyen, P. Kazadi and H.P. Burger, Laser welding of SSM Cast A356 aluminium alloy processed with CSIR-Rheo technology, Solid State Phenomena, 116-117, 173-176 (2006).4. J.F. Lancaster, Metallurgy of welding, Abington Publishing (1999).5. Φ. Grong, Metallurgical modelling of welding, The institute of materials (1997).6. Sysweld, Sysweld reference manual, ESI Group (2005).译文铸造A356铝合金的焊接模拟X-T. Pham*, P. Gougeon and F-O. GagnonAluminium Technology Centre, National Research Council Canada Chicoutimi, Quebec, Canada摘要:空心铝铸造件的焊接是一个很有前途的新结构组件技术的趋势。

反应釜英文

反应釜英文

Jacketed glass reactor can be used to do high temperature experiment(max temperature is 250℃),as well as low temperature experiment(min temperature is -60℃) and vacuum test.It is an ideal equipment for modern chemistry small and medium-sized experiment,bio-pharmaceuticals and new materials synthesis. Furthermore,the design of this reactor is unique,which can guarantee experiments of more convenient and safer.Operating principle:1 The inner layer is used to inject reaction material.2 The constant temperature fluid,which be injectted in the jacketed glass,can be replaced by hot solution or cooling liquid,to do cycle heating or cooling reaction.3 The reaction material can be stirred by stirring rod.4 The reaction process happened in the vessel.5 The evaporation and backflow of reaction material can be controlled.6 When the reaction is completed,the reaction material can be released from the discharge port,which is in the bottom of the reactor.This operation is quite convenient.Main fittings:1 Motor:high quality motor,it can work for 168 hours,just also work normally under the condition of strong acid,strong alkali or when its temperature is 90 centigrade.Itbelongs to VVVF,AC induction motor.Speed constant,no brush,no sparks,security and stable.2 Stirring rod:the material of stirring rod is PTFE of stainless steel 304.The structure of paddle is four-leaf and double-layer,so it is easy to stir evenly.The stirring rod of mini glass reactor is trefoil propeller structure.3 Decentralization of material:flange mouth and PTFE valve,fixed by aluminum flange,and fastened with metal screws.There is no dead corner in the container,so it is easy to outlet the reaction material.Features:1 All of the glass adopts Pyrex,which can ensure good chemical and physical properties.2 If hot oil cycles through the jacketed glass,heating experiments could be done.On the contrary,low temperature experiments can be done if the circulated fluid is cold.3 The heat of reaction could be taken away quickly through water,which cycling in the jacketed glass.4 Large mouth design makes it easy to cleaning,standard mouth makes theassembly and backflow could be chose.5 It can be use as distillation syntheses device.6 Titanium alloy mechanical sealing.So the sealing is more stability,the stirring is more evenly,the rusting is disappearance.There is a fluororubber seal between titanium alloy circle and PTFE.Each glass reactor must through the strict tests before leaving factory,the sealing performance is 0.098Mpa.7 The temperature is measured by PT100 electronic.LCD display makes it is easier and more convenient to measure temperature.Parameters:We guarantee one year warranty for all the reactor.Within one year, any fault caused by non-artificial reason we should maintain it freely.。

搪玻璃反应釜英汉互译

搪玻璃反应釜英汉互译

搪玻璃反应釜Glass lining reactor1概述 1 overview)2应用范围 2 application scope3维护保养 3 maintenance4保管方法 4 preservation methods5制作流程 5 process1概述搪玻璃反应釜是将含高二氧化硅的玻璃,衬在钢制容器的内表面,经高温灼烧而牢固地密着于金属表面上成为复合材料制品。

所以,它具有玻璃的稳定性和金属强度的双重优点,是一种优良的耐腐蚀设备。

1 overviewGlass lining reactor is to contain high silica glass, lined on the inner surface of the steel container, high-temperature calcination and firmly on the metal surface be compositematerial products. So, it has the double advantage of the stability of the glass and metal strength, is a kind of excellent corrosion resistant equipment.2应用范围搪玻璃反应釜广泛地应用于化工、石油、医药、农药、食品等工业Range of applicationGlass lining reactor is widely used in chemical, petroleum, medicine, agricultural chemicals, food and other industries3维护保养(1)每班(经常)巡回检查搪玻璃反应釜的釜内及夹套操作压力、温度、真空度等是否在设备许可的安全操作范围之内(尤其是反应釜夹套的使用压力不允许超压),搅拌在转动时要时常关注设备的运行声音,注意釜内温度计套管及搅拌的有否异常。

搪玻璃反应釜英汉互译

搪玻璃反应釜英汉互译

搪玻璃反应釜Glass lining reactor1概述 1 overview)2应用范围 2 application scope3维护保养 3 maintenance4保管方法 4 preservation methods5制作流程 5 process1概述搪玻璃反应釜是将含高二氧化硅的玻璃,衬在钢制容器的内表面,经高温灼烧而牢固地密着于金属表面上成为复合材料制品。

所以,它具有玻璃的稳定性和金属强度的双重优点,是一种优良的耐腐蚀设备。

1 overviewGlass lining reactor is to contain high silica glass, lined on the inner surface of the steel container, high-temperature calcination and firmly on the metal surface be compositematerial products. So, it has the double advantage of the stability of the glass and metal strength, is a kind of excellent corrosion resistant equipment.2应用范围搪玻璃反应釜广泛地应用于化工、石油、医药、农药、食品等工业Range of applicationGlass lining reactor is widely used in chemical, petroleum, medicine, agricultural chemicals, food and other industries3维护保养(1)每班(经常)巡回检查搪玻璃反应釜的釜内及夹套操作压力、温度、真空度等是否在设备许可的安全操作范围之内(尤其是反应釜夹套的使用压力不允许超压),搅拌在转动时要时常关注设备的运行声音,注意釜内温度计套管及搅拌的有否异常。

不锈钢反应釜的分类

不锈钢反应釜的分类

不锈钢反应釜的分类英文回答:Classification of Stainless Steel Reactors.Stainless steel reactors are widely used in various industries for chemical reactions. They are known for their durability, resistance to corrosion, and ability to withstand high temperatures and pressures. Theclassification of stainless steel reactors can be based on different criteria, such as design, function, and application. Let me explain the different types ofstainless steel reactors and provide examples for better understanding.1. Based on Design:a. Vertical Reactors: These reactors have a vertical cylindrical shape and are commonly used for reactions that require a high degree of mixing. They are suitable forprocesses like polymerization, crystallization, and distillation. For example, in the pharmaceutical industry, vertical reactors are used for the production of active pharmaceutical ingredients (APIs).b. Horizontal Reactors: As the name suggests, these reactors have a horizontal cylindrical shape. They are preferred for reactions that involve gas-liquid or liquid-liquid phases. Horizontal reactors are commonly used in industries such as petrochemicals, food processing, and wastewater treatment. For instance, in the food industry, horizontal reactors are used for the production of sauces and condiments.2. Based on Function:a. Batch Reactors: These reactors are used for carrying out reactions in batches. They are suitable for processes that require precise control of reactionconditions and allow for easy cleaning and maintenance. Batch reactors are commonly used in the production of specialty chemicals, dyes, and pharmaceutical intermediates.For example, in the production of specialty chemicals, batch reactors are used for the synthesis of custom-made compounds.b. Continuous Reactors: Unlike batch reactors, continuous reactors operate continuously, allowing for a steady flow of reactants and products. They are ideal for large-scale production and continuous processing. Continuous reactors are widely used in industries such as oil refining, polymerization, and water treatment. For instance, in the oil refining industry, continuous reactors are used for the conversion of crude oil into various petroleum products.3. Based on Application:a. High-Pressure Reactors: These reactors are designed to handle reactions that require high pressures. They are built with robust materials and safety features to ensure the containment of high-pressure reactions. High-pressure reactors are used in industries like chemical manufacturing, pharmaceuticals, and energy production. Forexample, in the energy industry, high-pressure reactors are used for the synthesis of hydrogen gas through steam reforming.b. Low-Temperature Reactors: These reactors are designed to operate at low temperatures, often below freezing point. They are used for reactions that are sensitive to heat or require cryogenic conditions. Low-temperature reactors find applications in industries such as food preservation, cryogenic storage, and pharmaceutical research. For instance, in the pharmaceutical research field, low-temperature reactors are used for the synthesis of certain drugs that are unstable at higher temperatures.In conclusion, stainless steel reactors can be classified based on design, function, and application. The choice of reactor type depends on the specific requirements of the reaction process. Whether it is a vertical or horizontal reactor, a batch or continuous reactor, or a high-pressure or low-temperature reactor, each type serves a unique purpose in various industries. Understanding the classification of stainless steel reactors helps inselecting the most suitable reactor for specific chemical reactions.中文回答:不锈钢反应釜的分类。

化工设备常用词汇中英文对照复习进程

化工设备常用词汇中英文对照复习进程

化工设备泵pump轴流泵axial flow pump真空泵vacuum pump屏蔽泵canned pump柱塞泵plunger pump涡轮泵turbine pump涡流泵vortex pump离心泵centrifugal pump喷射泵jet pump转子泵rotary pump管道泵inline pump双作用往复泵double action reciprocating pump 计量泵metering pump深井泵deep well pump齿轮泵gear pump手摇泵hand(wobble pump螺杆泵screw (spiral pump潜水泵submersible pump斜转子泵inclined rotor pump圭寸闭式电磁泵hermetically sealed magnetic drive pump气升泵air-lift-pump 轴承bearing叶轮impeller虹吸管siphon高压容器high pressure vessel焚化炉incinerator火焰清除器flame arrester工业炉furnace烧嘴burner锅炉boiler回转窑rotary kiln加热器heater电加热器electric heater冷却器cooler冷凝器condenser换热器heat exchanger蒸馏釜still搅拌器agitator 混合器mixer 静态混合器static mixers 管道混合器line mixers 混合槽mixing tanks 破碎机crusher 磨碎机grinder 研磨机pulverizer 球磨机ballmill 过滤器filter 分离器separator 干燥器drier 翅片fins 烟囱stack 火炬flare 筛子screen 煅烧窑calciner 倾析器decanter再沸器reboiler萃取器extractor离心机centrifuger吸附(收器adsorber结晶器crystallizer电解槽electrolyzer电除尘器electric precipitator 洗涤器scrubber消石灰器slaker料仓bin料斗hopper加料器feeder增稠器thickener澄清器clarifier分级器classifier浮洗器flocculator废液池sump喷头sprayer成套设备package unit仪器设备apparatus附属设备accessory旋转式压缩机rotary compressor往复式压缩机reciprocating compressor水环式压缩机nash compressor螺杆式压缩机helical screw compressor^心式压缩机centrifugal compressor多级压缩机mutiple stages compresso固定床反应器fixed bed reactor流化床反应器fluidized bed reactor管式反应器tubular reactor列管式换热器tubular heat exchanger螺旋板式换热器spiral plate heat exchange萃取塔extraction column板式塔plate column填料塔packed column洗涤塔scrubber吸收塔absorber冷却塔cooling tower精馏塔fractionating tower汽提塔stripper再生塔regenerator造粒塔prill tower塔附件tower accessories 液体分配(布器liquid distributor 填料支持板support plate 定距管spacer降液管downcomer升气管chimney顶(底层塔盘top (bottom tray 挡板baffle抽出口draw nozzle溢流堰weir泡罩bubble cap筛板sieve plate浮阀float valve除沫器demister pad塔裙座skirt椭圆封头elliptical head高位槽head tank中间槽intermediate tank加料槽feed tank补给槽make-up tank计量槽measuring tank电解槽cell溜槽chute收集槽collecting tank液滴分离器knockout drum稀释罐thinning tank缓冲罐surge drum回流罐reflux drum闪蒸罐flash drum浮顶罐floating roof tank内浮顶罐covered floating roof tank 球罐spheroid气柜gas holder湿式气柜wet gas-holder干式气柜dry gas-holder螺旋式气柜helical gas-holder星型放料器,旋转阀rotary valve抽滤器mutche filter压滤器filter press压滤机pressure filter板框压滤器plate-and-fram filter press转鼓过滤器rotary drum filter带式过滤器belt filter翻盘式过滤器袋滤器bag filter旋风分离器cyclone separator盘式干燥箱compartment tray drier真空干燥器vacuum drier隧道式干燥器tunnel drier回转干燥器rotary drier穿流循环干燥器through circulation drier 喷雾干燥器spray drier气流干燥器pneumatic conveyor drier圆盘式加料器dish feeder螺旋式加料器screw feeder颚式破碎机jaw crusher回转破碎机gyratory crusher滚洞破碎机roll crusher 锤式破碎机hammer crusher 冲击破碎机rotor impact breaker 气流喷射粉碎机jet pulverizer 棍磨机rod mill 雷蒙机raymond mill 锤磨机hammer mill 辊磨机roller mill 振动筛vibrating screen 回转筛rotary screen 风机fan 罗茨鼓风机root's blower 起重机crane桥式起重机bridge crane 电动葫芦motor hoist 发电机generator 电动机motor汽轮机steam turbine。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊在搅拌釜中大涡模拟的混合时间化学工程学院,北京化工大学,北京100029,中国简要:大涡模拟(LES)的混合过程在一个直径0.476米的搅拌釜用3狭窄的叶片水翼CBY叶轮被报道。

湍流流场的计算和混合时间使用KES SmagorinskyLilly 次网格尺度模型。

叶轮旋转是建模使用滑动网格技术。

“电力需求和混合时间获得从实验和LES之间进行了预测要比传统的雷诺平均 n - s(RANS)方法要好。

示踪响应预测的曲线由LES和实验之间来预测的。

结果表明,LES是一个可靠的工具来研究在搅拌罐里不稳定周期行为的紊流。

关键词:大涡模拟,次网格尺度模型、混合时间、水翼叶轮1 介绍:机械搅拌罐广泛应用于许多工业过程。

在搅拌釜中流结构是高度三维并且复杂,涵盖范围广泛的空间和时间尺度。

液体是通过坦克传阅的作用下旋转叶轮。

这个漩涡叶轮旋转产生的,保留其相干就大量距离到散装液体,伴随着高剪切率和强烈的湍流活动。

因此,他们是必不可少的在流场的混合性能。

混合时间,θm,是时候需要混合添加二级液体与容器的内容有一定程度的均匀性,通常θ95为了达到95%以上最后的浓度。

在任何情况下,混合时间的一个搅拌釜通常用于指示其有效性。

知识的混合时是需要时间的优化设计的搅拌罐。

在过去的30年广泛的实验研究已报道混合时间。

在过去的二十年里,进展取得了在计算流体动力学(CFD)模拟混合过程拥有伟大的计算机技术的进步。

Ranadeetal 用数值仿真给详细的流和散装混合产生的向下流投球叶片涡轮在一个完全困惑的圆柱形容器。

undenetal 和Schmalzriedt和罗伊斯形式-迟来的脉冲示踪实验解决了材料在三维流场平衡与拉什顿涡轮(DT6)他们建议的质量结果是高度依赖于精确的流体动力学计算,特别是关于湍流建模。

Jaworskietal报道,θ95计算大约两到三次测量值在与双DT6搅拌罐,并暗示这差异是因为大众交流的四个不同的轴径向循环循环是预测下大举CFD。

LES,首先采用搅拌釜的集成判别算法,是被证明是一个不错的方法,研究湍流流动不稳定和准周期性的行为。

随后Revstedtetal指出lES会赞成见详细的流场,无法取得所谓的雷诺平均方程和共同响应模型,然后Revstedt和Fuchs模拟了槽搅拌通过两个标准Scaba拉什顿叶轮或6 srgt叶轮。

Derksenetal使用与Smagorinsky LES次网格模型中,Smagorinsky常数c = 0.12,以模拟困惑的搅拌┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊釜驱动涡轮机拉什顿Re = 29000和Derksen也模拟单相流由一个搭叶片叶轮使用LES与标准Smagorinsky或结构函数的次网格模型。

作者所有的关注研究了三维速度和和湍动能在搅拌釜和证明LES是一个好工具的调查紊流在工业应用的实际意义。

在这部作品中,Smagorinsky-Lilly 和LES介绍了次网格模型首先在模拟混合浓度的过程中,通过监测示踪剂得到混合时间在槽搅拌,在3狭窄叶片水翼CBY叶轮。

LES和RANS之间作了比较。

2 物理和计算配置搅拌釜的使用在这个工作是一个有机玻璃船0.476米直径与平底和四个挡板。

环境使用的自来水。

一个3狭窄的叶片水翼CBY叶轮被使用。

叶轮速度 n是150、180、260和300 r·分钟1(对应 Re =ρND2 /ν= 9×1.8×104 105)分别和流体流动和湍流动。

实验仪器的细节都显示在图1图 1(一)的视图的搅拌釜和(b)3狭窄叶片水翼CBY叶轮┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ (T=476mm; H/T=1.0; C/T=1/3; D/T=0.4; WB/T=0.1)3 实验θ95测量电导率的变化在引进少量的示踪剂(饱和氯化钾溶液)。

10毫升的示踪剂被加入到自由表面的液体是-二层两个挡板。

探测器安装在位置的底部附近的坦克的对面添加点。

电导仪的输出是通过收购获得一个模拟滤波器和一个放大器和A / D转换器,然后存储为后续分析。

这些测量重复在至少5次,实验条件得到一般的混合时间。

叶轮转速和轴转矩测量通过分别使用光学电子转速表和转矩传感器。

这个详细描述报告在其他纸上[12]但是唯一不同的是,目前的水槽有一个平底而不是压制基地[13]在目前的工作模式被选择。

4 数学方法4.1流模型主要的困难相关的模拟湍流在搅拌釜是广泛的范围的尺度:从规模小的体积的水槽的尾涡结构相关联与叶轮叶片运动,和大污风再循环物理几何的限制水槽。

所以质量和精度的仿真在搅拌釜严重依赖于湍流模型。

一个非常准确的预测是可能的手段直接数值模拟(DNS)。

在DNS中,流体运动到耗散尺度是解决和它因此仅适用于相对低雷诺数字流和不适用于工业相关应用程序。

在雷诺平均Navier-Stokes (RANS)模型只代表运输方程的意思流数量, 与所有的尺度的湍流建模相比。

这种方法允许解决方案的平均流量变量大大减少了计算工作量。

如果平均流量是稳定的控制方程没有包含时间衍生品和一个稳态解可以得到经济上的。

计算的优势是看到即使在瞬态情况下,由于时间步将取决于全球不稳定在平均流量而非由湍流。

雷诺平均的方法通常是采用实用的工程的计算,并利用模型Spalart-Allmaras等k-ε,k-ω,RSM及其变体。

标准的k-ε模型,k-εRNG模型[14]和各向异性代数雷诺应力模型[15],是最简单的模型和可以预测完全湍流流场合理吗同意实验数据。

所以与LES相比较,标准k-ε型,k-εRN模型[14]和各向异性代数雷诺应力模型[15],是最简单的模型和可以预测完全湍流流场合理性,同意实验数据。

所以与LES相比较,标准k-ε在目前的工作模式被选择。

LES是一个介于DNS和RANS方法。

基本上大的涡流解析直接用LES,而小旋涡用建模。

在LES,控制方程用于LES是得到过滤含n - s方程在傅里叶(波数)空间或配置(物理)空间。

过滤过程有效地过滤掉的旋涡,滤波器的宽度或网格间距用于计算。

由此产生的方程从而支配大漩涡的动力学。

一个过滤变量被定义为┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊这里 是流体域和G是过滤器函数确定解决的规模的旋涡。

在 FLUENT中有限体积离散化它-自隐式地提供了过滤操作:在V是一个计算单元的体积。

这个滤波函数,G(X,X ),然后这里暗示的不可压缩Navier-Stokes方程,过滤其结果和是次网格尺度应力定义为应力造成的次网格尺度从费尔-增长率操作未知,需要建模。

最基本的次网格尺度模型是Sma -gorinsky-Lilly模型,在Smagorinsky-Lilly模型,来模拟涡流粘度┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊这里Ls 是次网格尺度的混合长度是应变率张量解析后的量表。

Ls 是计算使用这里的K 是卡门常数,d 是到最近的墙壁的距离,V 是体积计算细胞,CS 是Smagorinsky 常数。

它被设置为0.1在实验发现对各种流动产生最好的结果。

4.2混合网络对混合槽模拟执行, 计算网格是由两个部分:一个内心旋转圆柱体积封闭涡轮,和一个外固定体积含其余的坦克。

网战略技术的采用是结合结构化和非结构化网格(17 - 19)。

叶轮区域分为联合-结构化的四面体细胞和强化来获得更多准确的描述叶轮。

和其余的散装的水槽相结合是处理多嵌段的方法,在六面体的细胞计算中被用来减少成本的计算。

所以在RANS 细胞的大小选择内部分4毫米和外部分8毫米。

但考虑到叶片厚度和泰勒微尺度(7、8、20),所以这是选择2毫米和4毫米LES 。

网格节点的总数量是1044356的LES 和373775在RANS,见图2。

4.3叶轮描述对混合槽模拟执行,计算网格是由两个部分:一个内心旋转圆柱体积封闭涡轮,和一个外固定体积含其余坦克。

网格战略技术的采用是结合结构化和非结构化网格(17 - 19)。

叶轮区域分为联合-结构化的四面体胞和强化来获得更多准确的描述叶轮。

和其余的散装的坦克,是处理多嵌段的方法,在六面体的细胞被用来少主要的困难在模拟搅拌坦克是准确的表示的叶轮作用。

这个滑动网格(SM)和多个参考系(MRF)技术是两个有效的方法处理与叶轮的影响,实现商业软件如流利。

磁流变液的方法,在该地区的叶轮和叶轮蒸汽被描述为旋转参考架和固定架或网格是选择流叶轮区域外。

在SM 科技-种新型pvc 树脂,它实际上是一个瞬态方法,两个网格产生一个旋转的叶轮和一个固定式代表散装罐。

在相同条件下,滑动网格方法需要太多更多的计算时间,数据是反式-在转让之间的接口两个网格。

使磁流变液提供了一个合理的模型时均流和SM 可以计算不稳定和瞬态流场。

SM 方法在这部作品中所使用的LES 。

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊第一步是计算的连续性和ve -使用标准的k-εlocity方程模型,结果发表在其他地方在流场有点聚集,结果被用作一个ini -弧离子镀条件莱斯仿真。

仿真选择了二隐式配方tem -细孔的离散化和中央差分2006年2月LES过程第一步是计算的连续性和ve -使用标准的k-εlocity方程模型,结果发表在其他地方。

在流场有点聚集,结果被用作一个ini -多弧离子镀条件莱斯仿真。

仿真选择了二阶隐式配方tem -细孔的离散化和中央差分方案空间。

解决方案的连续性和速度方程直到流成为统计学通过监测扭矩稳定的叶轮。

和第二步是方程浓度的示踪剂是解决在时间域得到混合时间。

示踪剂注入是假定的不影响流量。

因此,分离时刻和示踪剂平方程是推测减少计算工作量。

基于物理坐标位置的示踪剂添加,添加示踪剂在模拟是经过了几个细胞靠近它来确保质量的示踪剂在模拟的相同的实验。

的浓度示踪剂被初始化为1添加区域,在其余地区为0。

和监测点设置在10毫米以上的底部坦克和50毫米的墙的柜,同样的位置检测器在实验在两个挡板。

LES至强处理器运行在双吗(奔腾Ⅳ)机器(戴尔)和1 gb的内存,2 ghz的时钟频率和LINUX操作系统。

模拟一个搅拌器速度流场做了在六个处理器并行需要大约4周时间去至少20革命以确保速度场统计稳定对浓度场耗时约3周。

5结果与讨论5.1流场和浓度分布的示踪速度和浓度场得到通过RANS和莱斯被吸引在图3和4。

在一个真正的搅拌釜,有大漩涡和产生的宏观不稳定性,促进示踪剂通过这个边界物质交换。

相关文档
最新文档