迈克尔逊干涉仪
迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告一、实验目的1、了解迈克尔逊干涉仪的结构和工作原理。
2、观察等倾干涉和等厚干涉条纹,加深对干涉现象的理解。
3、学会使用迈克尔逊干涉仪测量光波的波长。
二、实验原理迈克尔逊干涉仪是一种分振幅双光束干涉仪,其光路图如下图所示:此处可插入迈克尔逊干涉仪光路图光源 S 发出的光经过分光板 G1 分成两束光,一束光反射后到达反射镜 M1,另一束光透射后到达反射镜 M2。
两束光分别被 M1 和 M2反射后,再次回到分光板 G1,并在观察屏 E 处相遇发生干涉。
当 M1 和 M2 严格垂直时,观察到的是等倾干涉条纹。
此时,两束光的光程差为:$\Delta = 2d\cos\theta$其中,d 为 M1 和 M2 之间的距离,θ 为入射光与 M1 或 M2 法线的夹角。
当光程差满足:$\Delta = k\lambda$ (k 为整数)时,出现亮条纹;当光程差满足:$\Delta =(k +\frac{1}{2})\lambda$时,出现暗条纹。
当 M1 和 M2 不严格垂直时,观察到的是等厚干涉条纹。
此时,两束光的光程差主要取决于 M1 和 M2 之间的距离变化。
三、实验仪器迈克尔逊干涉仪、HeNe 激光器、扩束镜、毛玻璃屏等。
四、实验步骤1、仪器调节调节迈克尔逊干涉仪的底座水平,使干涉仪处于水平状态。
调节 M1 和 M2 背后的三个微调螺丝,使 M1 和 M2 大致垂直。
打开 HeNe 激光器,使激光束经过扩束镜后均匀地照射在分光板G1 上,并在毛玻璃屏上看到清晰的光斑。
调节 M1 或 M2 的位置,使屏上出现圆形的等倾干涉条纹。
2、观察等倾干涉条纹仔细调节 M1 或 M2 的位置,使干涉条纹清晰、对比度高。
观察条纹的形状、疏密和级次分布,记录条纹的变化情况。
3、测量光波波长沿某一方向缓慢移动 M1,观察条纹的“冒出”或“缩进”现象,并记录条纹变化的条数 N 和 M1 移动的距离Δd。
3迈克尔逊干涉仪

光源单色性越好,相干长度越大。
常用光源单色光的相干长度
钠光灯、汞灯、水银灯 δ max~ 1mm~10cm
氦--氖激光
δ ~ max 180km
A M2
S
B
解:若两臂相等,则玻璃管内气体
抽空前后的光程差为
l 2 ( s d ) 2 n 2 s d 2 ( n 1 ) d N
n1Nl 2d
1205546109 20.2
1.00028
对不同特殊用途,设计制造了许多专用干涉仪 显微干涉仪:测表面光洁度 泰曼-格林干涉仪:测光学元件成象质量 干涉比长仪测长度 瑞利干涉仪:测气体、液体折射率 测星干涉仪:测星球角直径 ……
迈 克 耳 逊 干 涉 仪
§迈克耳逊(A.A.Michelson)干涉仪
M1 反射镜 2 M 2
单 色
G1 G2
M1
反 射
光
镜源Biblioteka 半透明镀银层1 补偿玻璃板
d
=N
l 2
N 干涉条纹移动数目 d M 2 移动距离
迈克耳孙干涉仪
等倾和等厚光路
迈克耳逊干涉仪的干涉条纹
等
倾
干
涉
条 纹
M2
M 2 M 1与M 2
M2
干涉条纹
的移动
M1
当M 2 与 M 1 之
之间距离变大 时,圆形干涉 条纹向外扩张, 干涉条纹变密。
1. 1892年,迈克尔逊利用干涉仪首先测定了镉(Cd) 的波长为643.84696nm. 因为光的波长稳定,容易再 现,特别是在干涉仪上光的波长能直接当作长度单 位。所以,用光的波长作为长度基准是方便的。在 1960年第11届国际计量会议上曾决定以氪-86橙线的 波长作为长度基准,规定
《迈克尔逊干涉仪》课件

提高测量精度的措施
使用高精度仪器
选择加工精度高、装配精度高的迈克 尔逊干涉仪,能够减少仪器本身带来 的误差。
细致调整
在实验前对迈克尔逊干涉仪进行细致 的调整,确保干涉条纹完全对齐,以 减小调整误差的影响。
控制环境因素
尽可能在恒温、无气流和振动的环境 中进行实验,以减小环境因素对实验 结果的影响。
重复测量
等方面将更加智能化和自动化。
03
多功能化与拓展应用
未来迈克尔逊干涉仪将进一步拓展应用领域,不仅局限于光学和物理学
,还将应用于化学、生物学等领域,实现更多功能和应用。
THANKS
感谢观看
折射率测量
迈克尔逊干涉仪可以用于测量介质的 折射率,这对于光学玻璃、晶体等材 料的检测和表征具有重要意义。通过 干涉仪测量折射率,可以获得高精度 的结果。
光学玻璃的检测
光学玻璃的折射率
迈克尔逊干涉仪可以用于检测光学玻璃的折射率,这对于光学仪器的制造和校准具有关键作用。通过干涉仪测量 折射率,可以确保光学元件的性能和精度。
光学玻璃的均匀性
迈克尔逊干涉仪还可以用于检测光学玻璃的均匀性,即检查玻璃内部是否存在杂质或气泡。通过观察干涉条纹的 变化,可以判断玻璃的质量和加工工艺。
物理实验中的重要工具
基础物理实验
迈克尔逊干涉仪是许多基础物理实验的重要工具,如光速的测量、光的波动性研究等。通过使用迈克 尔逊干涉仪,学生可以深入理解光的干涉原理和波动性质。
暗物质与暗能量研究
迈克尔逊干涉仪可以用于寻找暗物质和暗能量的线索,帮助解决宇宙 学中的重大问题。
迈克尔逊干涉仪在技术领域的应用前景
1 2 3
量子信息技术
迈克尔逊干涉仪是量子通信和量子计算中的关键 组件,对于量子密钥分发和量子纠缠态的制备具 有重要意义。
迈克尔逊干涉仪

实验原理
4.点光源产生的非定域干涉条纹的形成
从光学角度看,E处的干涉图样和 M 1 M 2 间空气薄膜所产生的干涉图样是同样的。 如图,点光源经M1、M2反射后,相当于 两个虚光源,它们发出的球面波在相遇空 间处处相干,等光程面是一组旋转双曲面, 干涉条纹就是旋转双曲面与观察屏相交而 得的曲线,因在光场中任何位置都可看到 条纹,故叫做非定域干涉。
M'2 M1
移动反射镜
d
d
d k
M 移 1
动 距 离
2Βιβλιοθήκη G1G2M2
干涉条 纹移动 数目
干涉条纹的移动
当 M1与 M 2之间距离变大时 , 圆形干涉条纹从中心一个个长出, 并 向外扩张, 干涉条纹变密; 距离变小 时,圆形干涉条纹一个个向中心缩进, 干涉条纹变稀 .
M'2 M1
光程差
实验原理
3. 扩展光源产生的定域干涉条纹
当M1、M2‘平行时将产生等倾干涉。 光束(1)和光束(2)的光程差为 2d cos i i为光线的入射角,d为空气层的厚度。 当 2d cos i k 时可以看到亮条纹。空气薄层厚度d一定时,入射角越小, 及越靠近中心,圆环条纹的级数k越高。并且移动M1(即d 发 生变化)时,中心处条纹级数随之变化,可观察到条纹由中 心“冒出”或“缩入”,而每当中心处“冒出”或“缩入” 一个条纹,d就增加或减少λ/2,即M1就移动了λ/2。 Δd=Nλ,由此可根据M1移动的距离Δd及条纹级数改变的次 数N,来测出入射光的波长。
实验现象
M1
M1
M2
'
M2 '
M 2 与 M1
重合
'
M2 '
迈克尔逊干涉仪的调节和使用

迈克尔逊干涉仪的调节和使用迈克尔逊干涉仪是光学实验中一种重要的仪器,它的原理是基于干涉现象来测量长度、速度、折射率等物理量。
因此,正确地调节和使用迈克尔逊干涉仪对于实验结果的准确性和可靠性至关重要。
一、调节步骤1、粗调:首先调整干涉仪的粗调旋钮,使干涉条纹大致对称。
2、细调:然后调整干涉仪的细调旋钮,使干涉条纹更加清晰、对称。
具体步骤如下:(1)将光源对准干涉仪的入射缝,调整干涉仪的三个脚螺旋,使干涉条纹出现在视野中。
(2)调节干涉仪的粗调旋钮,使干涉条纹大致对称。
(3)调节干涉仪的细调旋钮,使干涉条纹更加清晰、对称。
可以通过观察干涉条纹的移动方向和距离来判断调节是否正确。
(4)重复以上步骤,直到干涉条纹完全对称、清晰。
二、使用注意事项1、保持干涉仪的清洁,避免灰尘和污垢进入干涉仪内部。
2、在调节过程中,要轻拿轻放,避免损坏干涉仪的精密部件。
3、在使用过程中,要避免过度调节粗调旋钮和细调旋钮,以免损坏干涉仪的调节机构。
4、在记录实验数据时,要保证记录的准确性和完整性。
5、在实验结束后,要将干涉仪恢复到初始状态,以便下一次使用。
正确地调节和使用迈克尔逊干涉仪需要耐心和细心。
只有掌握了正确的调节方法,才能更好地发挥其作用,提高实验的准确性和可靠性。
迈克尔逊干涉仪法测定玻璃折射率迈克尔逊干涉仪是一种精密的光学仪器,其原理基于干涉现象,能够用于测量微小的长度变化和折射率。
本文将介绍如何使用迈克尔逊干涉仪法测定玻璃的折射率。
一、实验原理折射率是光学材料的一个重要参数,它反映了光在材料中传播速度的改变。
迈克尔逊干涉仪法利用干涉现象来测量折射率。
当光线通过不同介质时,其速度和波长都会发生变化,这就导致了光程差的产生。
通过测量光程差,我们可以计算出介质的折射率。
二、实验步骤1、准备实验器材:迈克尔逊干涉仪、单色光源(如激光)、测量尺、待测玻璃片。
2、将单色光源通过分束器分为两束相干光束,一束直接照射到参考镜,另一束经过待测玻璃片后照射到测量镜。
迈克尔逊干涉仪

动镜移动精度(微调):0.0004mm动镜移动精度(粗调):0.01mm
动镜移动距离(微调):1mm动镜移动距离(粗调):12mm
分束板和补偿板平面度:≤1/20λ激光输出功率:0.8-1mW
仪器成套性
迈克尔逊干涉仪主机、He-Ne激光器、一维可调升降底座等
可选附件
低压钠灯、白光源、法布里珀罗标准具、气室部件(气室、压力表、压气球)
大调距反光镜
迈克尔逊干涉仪的使用注意:
干涉仪是精密光学仪器,使用中不能触摸光学元件光学表面;不要对着仪器说话、咳嗽等;测量时动作要轻、要缓,尽量使身体部位离开实验台面,以防震动。测量时还要认真做到:
1.在调整反射镜背后粗调螺钉时,不可旋得太紧,用来防止镜面的变形,先要把微调螺钉调在中间位置,以便能在两个方向上作微调,一定要轻、慢,决不允许强扳硬扭。
大调距反光镜
包括:法布里-珀罗多光束系统
(3)产品型号:WSM-200
产品特点:动镜定镜二维调节,演示和观察干涉现象,
动镜范围200mm
测定单色光波长,最小读数0.0001mm
大调距反光镜
(4)产品型号:WSM-100
产品特点:动镜定镜二维调节,演示和观察干涉现象,
动镜范围100mm
测定单色光波长,最小读数0.0001mm
经M2反射的光三次穿过分光板,而经M1反射的光通过分光板只一次。补偿板的设置是为了消除这种不对称。在使用单色光源时,可以利用空气光程来补偿,不一定要补偿板;但在复色光源时,由于玻璃和空气的色散不同,补偿板则是不可或缺的。
应用:
主要用于长度和折射率的测量,在近代物理和近代计量技术中,如在光谱线精细结构的研究和用光波标定标准米尺等实验中都有着重要的应用。
迈克尔逊干涉仪

解:根据题意:
2d k 2d (k 10)
2d cos (k 10) 2dcos (k 10 5)
解得: k 20
迈克尔逊
(A.A.Michelson)
美籍德国人 因创造精密光学仪器,用 以进行光谱学和度量学的 研究,并精确测出光速, 获1907年诺贝尔物理奖。
迈克耳孙干涉仪至今仍是许多光学仪器的核心。
反射镜M2
扩束镜
反射镜M1
激光器
分光板 观察屏
补偿 板
二、迈克尔逊干涉仪的原理
M1的虚像位于 M1 ,M1~M2 可 以看成一空气膜
N 2(n 1)d / 0
M2
(2) (2)
d
M1
O
十字 叉线
(1) (1)
C
条纹移
过N条
等厚条纹
三、迈克尔逊干涉仪的应用
想一想
如何测量气体的折射率? 装入气体 抽真空
L
气体室
n 1 N0 2L
M2
(2) (2)
M1
(1)
(1)
O
C
等厚条纹
三、迈克尔逊干涉仪的应用
测量气体 的折射率
n N0 1
(1) 当M1与M2垂直, 会产生等倾条纹。
M2
(2) (2) M1
M1
(1) (1)
O
C
二、迈克尔逊干涉仪的原理
二、迈克尔逊干涉仪的原理
二、迈克尔逊干涉仪的原理
M1的虚像位于 M1 ,M1~M2 可 以看成一空气膜
(1) 当M1与M2垂直, 会产生等倾条纹。
(2) 当M1与M2不垂直, 会产生等厚条纹。
M1 A M2
B
测量结果: n 107.2 0 1 1.0002927
迈克尔逊干涉仪误差分析

迈克尔逊干涉仪误差分析1. 引言迈克尔逊干涉仪是一种常用于测量光程差的仪器,在各种光学实验和精密测量中广泛应用。
然而,由于各种原因,干涉仪的测量结果可能会受到误差的影响。
了解和分析这些误差对于准确测量和理解干涉现象至关重要。
2. 波长误差迈克尔逊干涉仪基于光的干涉现象,而光的波长是干涉仪测量的重要参数之一。
如果波长误差较大,将导致测量结果的不准确性。
波长误差可能来自于光源的波长不精确、干涉物镜的折射率误差等因素。
因此,在使用干涉仪进行测量之前,必须对光源和干涉物镜的波长进行精确校准。
3. 角度误差迈克尔逊干涉仪中的平台、反射镜等部件的角度误差会导致干涉现象的变化。
这些角度误差可能来自于仪器制造过程中的加工精度问题,或者在使用过程中由于机械振动等外部因素导致。
角度误差将引起光束的偏转,进而影响干涉图样的清晰度和位置。
因此,在使用干涉仪进行测量时,必须对仪器的角度进行精密校准和调整。
4. 环境误差迈克尔逊干涉仪对环境条件非常敏感。
例如,温度的变化会导致光路长度的改变,从而影响干涉现象的测量结果。
此外,空气中的振动、湿度等因素也会对干涉仪的测量结果产生影响。
为了减小环境误差的影响,需要在实验室中提供稳定的温度和湿度环境,并使用隔音装置来减小振动干扰。
5. 光学元件误差迈克尔逊干涉仪中使用的光学元件如分光镜、反射镜等都有一定的制造误差。
这些误差会导致光束的不均匀分布和偏移,从而影响干涉图样的形状和位置。
为了降低光学元件误差对测量结果的影响,需要选择质量优良的光学元件,并进行严格的质量控制。
6. 其他误差除了以上几种常见的误差来源外,还有一些其他因素可能对迈克尔逊干涉仪的测量结果产生影响。
例如,光源的强度波动、光电探测器的灵敏度误差等都可能导致测量结果的偏差。
在实际测量过程中,需要注意并排除这些潜在误差源的影响。
7. 误差分析与优化对迈克尔逊干涉仪的误差进行分析和优化是实现准确测量和高精度实验的关键。
通过定量分析不同误差源的影响,可以制定相应的措施来降低误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
迈克尔逊干涉仪是利用干涉条纹精确测定长度或长度改变的仪器.它是迈克尔逊在1881年设计成功的。
迈克尔逊和莫雷应用该仪器进行了测定以太风的著名实验.后人根据此种干涉仪研制出各种具有实用价值的干涉仪。
预备知识
⏹光程:光波实际传播的路径与折射率的乘积,
光程差:,在杨氏干涉的例子里,它的光程差就可以表示
⏹
⏹光程差与相位差的变换关系为:
⏹相干条件:两束光满足频率相同,振动方向相同,相位差恒定时即可成
为相干光源,这时的光强应表达为:
令;对应的位相差为
⏹获得相干光光源的两种常见方法
1.分波阵面法:从同一波阵面上获取对等的两部分作为子光源成
为相干光源;如杨氏实验等。
2.分振幅法:当一束光投射到两种介质的分界面时,它的所有的
反射光线或所有的透射光线会聚在一起时即可发生相干;如薄膜
干涉等。
⏹迈克尔逊干涉仪的结构和工作原理
G2是一面镀上半透半反膜,M1、M2为平面反射镜,M1是固定的,M2和精密丝相连,使其可前后移动,最小读数为10-4mm,可估计到10-5mm, M1和M2后各有几个小螺丝可调节其方位。
当M2和M1’严格平行时,M2移动,表现为等倾干涉的圆环形条纹不断从中心“吐出”或向中心“消失”。
两平面镜之间的“空气间隙”距离增大时,中心就会“吐出”一个个条纹;反之则“吞进”一个个条纹。
M2和M1’不严格平行时,则表现为等厚干涉条纹,M2移动时,条纹不断移过视场中某一标记位置,M2平移距离d 与条纹移动数N 的关系满足。
迈克尔逊干涉仪示意
经M2反射的光三次穿过分光板,而经M1反射的光只通过分光板一次.补偿板就是为了消除这种不对称而设置的.在使用单色光源时,补偿板并非必要,可以利用空气光程来补偿;但在复色光源时,因玻璃和空气的色散不同,补偿板则是不可缺少的。
若要观察白光的干涉条纹,两相干光的光程差要非常小,即两臂基本上完全对称,此时可以看到彩色条纹;若M1或M2稍作倾斜,则可以得到等厚的交线处(d=0)的干涉条纹为中心对称彩色直条纹,中央条纹由于半波损失为暗条纹。
实验内容
⏹观察非定域干涉条纹,干涉条纹的形状、疏密及中心“吞”、“吐”条纹
随光程差的改变而变化情况;
⏹测量He-Ne激光的波长,利用公式计算,用适当的数据处理
方法求出值;
⏹测钠黄光波长及钠黄光双线的波长差,观察条纹的可见度的变化;
⏹测量钠黄光的相干长度,观察氦氖激光的相干情况;
⏹调节观察白光干涉条纹,测定透明薄片的折射率.
实验重点
⏹迈克尔逊干涉仪的干涉原理;
⏹非定域干涉和时间相干性;
⏹测量激光波长和介质的折射率.
实验难点
⏹等臂情况下的白光干涉条纹的调节;
⏹有测量介质条件下的白光干涉条纹的调节.
自测题
1.迈氏干涉仪的读数精度是
(1) 0.0001 mm
(2) 0.00001mm
2.迈氏干涉仪的两臂的光程基本相等时,对应的干涉条纹是
(1).圆形条纹
(2).直条纹
3.条纹的“涌出”,说明形成干涉的空气“薄膜”是
(1).变薄
(2).变厚.
4.白光条纹是
(1).定域条纹
(2).非定域条纹.
5.激光条纹是
(1).定域条纹
(2).非定域条纹.
6.观察定域条纹的方法是
(1).用眼睛直接观察.
(2).用毛玻璃接收.
思考题
1.在单色光干涉的条件下,去掉补偿镜是否影响实验的正常进行?
2.测He-Ne激光波长时,要求n尽可能大,为什么?测量数据的处理方法
是什么?
3.如果去掉干涉仪中的补偿板,对哪些测量有影响?哪些测量无影响?
4.白光干涉条纹的出现必须在两臂基本相等的条件下,为什么?
参考书目:
1.《大学物理实验》第二册,谢行恕康世秀霍剑青主编,高等教育出版社
2.《中国大百科全书》I,II 中国大百科全书出版社
3.《光学教程》姚启钧高等教育出版社
4.《光谱仪器设计》。