裂隙岩体的渗流特性试验及理论研究方法

合集下载

裂隙非饱和渗流试验研究及有地表入渗的裂隙岩体渗流数值分析

裂隙非饱和渗流试验研究及有地表入渗的裂隙岩体渗流数值分析

裂隙非饱和渗流试验研究及地表入渗裂隙岩体渗流数值分析1.本文概述本文旨在探索裂隙中非饱和渗流现象的实验研究方法和理论,通过数值分析方法全面分析具有地表入渗效应的裂隙岩体的渗流特性。

裂隙非饱和渗流是地下工程、环境地质、能源开采等领域广泛关注的重要问题。

其复杂性源于裂缝介质的非均质性和各向异性,以及与饱和和非饱和转换过程的密切耦合。

有鉴于此,本研究的目的是为理解这种复杂的渗流行为提供坚实的经验基础和精确的模拟工具。

阐述了裂缝非饱和渗流试验的设计与实施过程。

我们使用先进的实验室设备模拟真实的裂缝结构,精确控制水条件,实现非饱和状态下的渗流实验。

在实验中,重点考察了裂缝几何特征(如宽度、间距、连通性)、孔隙介质特征(如粒度分布、孔隙度、渗透率)和边界条件(如压力梯度、入渗速率)等因素对非饱和渗流规律的影响。

通过精心设计的一系列对比实验,该系统收集并分析了非饱和渗流流速、压力分布、水分特征曲线等关键数据,旨在揭示裂缝中非饱和渗流的内在机理及其对各种影响因素的敏感性。

本文建立了地表入渗条件下裂隙岩体渗流问题的详细三维数值模型。

该模型充分考虑了裂隙网络的复杂性、非饱和土壤水动力方程以及地表入渗水流的动态注入过程。

采用有效的数值计算方法,如有限元法或有限差分法,求解模型,模拟不同降雨模式、地表覆盖条件和裂隙网络参数变化下裂隙岩体内部的水传输、饱和度分布和压力场。

通过与实验数据的比较和验证,保证了数值模型的准确性和可靠性。

在理论分析层面,本文还探讨了非饱和渗流理论在裂隙介质中的适用性和修正性,包括BrooksCorey、van Genuchten等模型在描述裂隙介质水特征曲线方面的适应性,以及考虑裂隙粗糙度和毛细管力效应等因素进行非达西流修正的必要性。

这些理论探索有助于更深入地理解裂缝中非饱和渗流的基本规律,并为改进模型参数的选择和标定提供理论指导。

本文将严格的实验研究与先进的数值分析相结合,系统地探讨了裂隙中的非饱和渗流现象及其在地表入渗条件下的表现。

《2024年裂隙岩体渗流—损伤—断裂耦合理论及应用研究》范文

《2024年裂隙岩体渗流—损伤—断裂耦合理论及应用研究》范文

《裂隙岩体渗流—损伤—断裂耦合理论及应用研究》篇一裂隙岩体渗流-损伤-断裂耦合理论及应用研究一、引言在地球科学与工程领域,裂隙岩体的渗流、损伤和断裂问题一直是研究的热点。

岩体的力学行为和渗流特性直接关系到资源开发、地下工程建设以及地质灾害的防控等多个方面。

随着科学技术的发展,人们逐渐认识到岩体中渗流、损伤与断裂之间存在着紧密的耦合关系。

因此,对裂隙岩体渗流-损伤-断裂耦合理论及其应用的研究,具有重要的理论价值和现实意义。

二、裂隙岩体渗流理论在岩体工程中,渗流问题是最基本且关键的问题之一。

裂隙岩体的渗流过程受多种因素影响,包括岩体的孔隙结构、裂隙分布、渗透性等。

渗流理论的研究主要集中在渗流场与应力场的耦合分析上,探讨不同裂隙类型、大小、方向对岩体渗透性的影响,进而预测和控制地下水流运动。

三、损伤力学在岩体工程中的应用损伤力学是研究材料或结构在受力过程中内部损伤演化规律的科学。

在岩体工程中,损伤主要表现为岩体内部微裂纹的萌生、扩展和贯通。

通过对岩体损伤的定量描述,可以更好地理解岩体的力学行为和变形特性。

此外,损伤力学还可用于评估岩体的强度和稳定性,为地下工程的设计和施工提供依据。

四、裂隙岩体断裂理论断裂是岩体破坏的主要形式之一,其发生与岩体的材料性质、结构特征以及外部荷载密切相关。

裂隙岩体的断裂理论主要研究断裂的起因、过程和结果,以及断裂过程中能量的传递和分配。

通过断裂理论的分析,可以预测和控制岩体的破坏模式和破坏程度,为资源开发和地质灾害防控提供科学依据。

五、裂隙岩体渗流-损伤-断裂耦合理论渗流、损伤和断裂三者之间存在着密切的耦合关系。

在外部荷载作用下,岩体内部的裂隙会发生变化,导致渗流场的变化;而渗流的改变又会影响到岩体的应力分布和损伤演化;当损伤累积到一定程度时,可能导致岩体的断裂。

因此,建立裂隙岩体渗流-损伤-断裂耦合理论,对于全面理解岩体的力学行为和渗流特性具有重要意义。

六、应用研究1. 资源开发:在矿产资源开发、地下水开采等领域,通过应用裂隙岩体渗流-损伤-断裂耦合理论,可以更好地预测和控制资源开采过程中的渗流场变化和岩体破坏模式,提高资源开采的效率和安全性。

《2024年裂隙岩体渗流—损伤—断裂耦合理论及应用研究》范文

《2024年裂隙岩体渗流—损伤—断裂耦合理论及应用研究》范文

《裂隙岩体渗流—损伤—断裂耦合理论及应用研究》篇一一、引言随着工程建设的不断深入,岩体工程中的渗流、损伤和断裂问题日益突出,特别是在裂隙岩体中,这些问题更是成为了研究的热点。

裂隙岩体因其特有的地质构造和物理特性,使得其渗流、损伤和断裂行为具有显著的复杂性和特殊性。

因此,研究裂隙岩体渗流—损伤—断裂的耦合理论,不仅有助于理解岩体的力学行为,也有助于指导实际工程的设计和施工。

二、裂隙岩体渗流理论渗流是岩体中流体运动的一种基本现象,尤其在裂隙岩体中,流体的运动规律直接影响到岩体的稳定性和力学行为。

裂隙岩体渗流理论主要研究的是流体在裂隙中的流动规律,包括流体的物理性质、裂隙的几何特征以及流体的运动方程等。

目前,常见的裂隙岩体渗流理论有达西定律、非达西定律等。

三、损伤理论在裂隙岩体中的应用损伤是指材料或结构在受力或环境作用下,其内部产生微观或宏观的缺陷,导致材料或结构的性能降低。

在裂隙岩体中,损伤主要表现为岩体的强度降低、变形增大等。

损伤理论在裂隙岩体中的应用主要表现在以下几个方面:一是通过研究损伤的演化规律,预测岩体的长期强度和稳定性;二是通过建立损伤本构模型,描述岩体的力学行为;三是通过分析损伤与渗流、断裂的耦合关系,揭示岩体的破坏机制。

四、断裂理论及在裂隙岩体中的应用断裂是岩体的一种基本破坏形式,也是工程中需要重点关注的问题。

在裂隙岩体中,断裂不仅与岩体的强度和稳定性有关,还与流体的运动和渗流有关。

断裂理论主要研究的是材料或结构的断裂过程和断裂机制,包括裂纹的扩展、能量释放等。

在裂隙岩体中,断裂理论的应用主要包括以下几个方面:一是通过分析裂纹的扩展规律,预测岩体的破坏模式;二是通过建立断裂力学模型,描述裂纹的扩展过程;三是通过研究断裂与渗流、损伤的耦合关系,揭示岩体的破坏机理。

五、裂隙岩体渗流—损伤—断裂耦合理论及应用裂隙岩体渗流—损伤—断裂耦合理论是指综合考虑渗流、损伤和断裂对岩体稳定性和力学行为的影响的理论。

《2024年裂隙岩体渗流—损伤—断裂耦合理论及应用研究》范文

《2024年裂隙岩体渗流—损伤—断裂耦合理论及应用研究》范文

《裂隙岩体渗流—损伤—断裂耦合理论及应用研究》篇一一、引言岩体裂隙中的渗流现象与岩体的损伤、断裂现象在自然地质现象以及工程实践中都具有极其重要的研究意义。

为了进一步深化对这些过程的理解与掌控,本篇文章将对裂隙岩体中的渗流—损伤—断裂的耦合理论进行探讨,并分析其在工程实践中的应用。

二、裂隙岩体渗流理论岩体中的裂隙是地下水流动的主要通道,其渗流特性直接影响着岩体的稳定性和力学性能。

渗流理论主要研究的是流体在多孔介质中的流动规律,特别是在裂隙岩体中,其流动规律受裂隙的几何形态、大小、分布以及流体物理性质等多重因素影响。

渗流理论的核心在于通过数学模型来描述流体在岩体裂隙中的流动过程,包括流速、流量以及压力分布等。

三、损伤理论在岩体中的应用损伤理论是研究材料或结构在受力过程中内部微结构变化和劣化过程的理论。

在岩体中,损伤主要表现为岩体内部裂纹的扩展和连通,这会导致岩体强度和刚度的降低。

通过引入损伤变量,可以定量描述岩体的损伤程度,并建立与应力、应变等物理量之间的关系。

损伤理论的应用主要包括对岩体稳定性分析、岩石力学性能预测等。

四、断裂理论与岩体破坏断裂理论是研究材料或结构在达到一定条件下发生断裂的规律和机制的理论。

在岩体中,断裂往往与损伤密切相关,当损伤累积到一定程度时,岩体便可能发生断裂破坏。

断裂理论不仅包括对断裂过程的描述,还包括对断裂后岩体稳定性的分析。

通过对断裂过程的研究,可以更好地理解岩体的破坏机制和预测其破坏模式。

五、渗流—损伤—断裂的耦合理论渗流—损伤—断裂的耦合理论是将上述三个理论相互结合,综合考虑流体在岩体裂隙中的渗流过程、岩体的损伤过程以及由此引起的断裂过程。

这种耦合关系在理论上更加全面地描述了岩体的力学行为和渗流特性,有助于更准确地预测和评估岩体的稳定性和安全性。

六、应用研究裂隙岩体渗流—损伤—断裂的耦合理论在工程实践中有着广泛的应用。

例如,在地下工程建设中,通过对该理论的深入研究,可以更好地预测和评估地下工程的稳定性和安全性;在石油、天然气等能源开采中,该理论有助于优化开采方案和提高开采效率;在地质灾害防治中,该理论有助于预测和评估地质灾害的发生概率和影响范围,为灾害防治提供科学依据。

裂隙岩体的渗流特性试验及理论研究方法

裂隙岩体的渗流特性试验及理论研究方法

裂隙岩体的渗流特性试验及理论研究方法摘要:简要叙述岩体裂隙的几何特性,岩石裂隙渗流特性研究的方法。

综述了国内外裂隙岩体单裂隙、水力耦合、非饱和情况下的渗流特性物模试验研究成果,并做了相应的分析和讨论。

分析表明:物模试验在研究裂隙岩体渗流特性方面具有不可替代的作用;需要进行更多的模拟实际岩体裂隙的试验;真正意义上的非饱和渗流试验还很少;分析结果为今后的裂隙岩体渗流特性物模试验研究提供了有益的方向。

关键词:裂隙岩体;渗流 ;单一裂隙;水力耦合;非饱和一 前言新中国成立以后,交通、能源、水利水电与采矿工程各个领域遇到了许多与工程地质及岩土力学密切相关的技术难题,在许多岩土工程、矿山工程及地球物理勘探过程中,岩体的渗透率起到十分重要的作用,但在理论上尚未引起足够的重视,通常将岩体渗流处理为砂土一样的多孔介质,用连续介质力学方法求解。

与孔隙渗流的多孔介质相比,裂隙岩体渗流的特点有:渗透系数的非均匀性十分突出;渗透系数各向异性非常明显;应力环境对岩体渗流场的影响显著;岩体渗透系数的影响因素复杂,影响因子难以确定。

岩石裂隙渗流特性研究的方法通常有直接试验法、公式推导法和概念模型法,而试验研究是其中一个最重要最直接的途径。

本文介绍了当前裂隙岩体渗流试验研究。

二 岩体裂隙的几何特性岩体的节理裂隙及空隙是地下水赋存场所和运移通道。

岩体节理裂隙的分布形状、连通性以及空隙的类型,影响岩体的力学性质和岩体的渗透特性。

岩体中节理的空间分布取决于产状、形态、规模、密度、张开度和连通性等几何参数。

天然节理裂隙的表面起伏形态非常复杂,但是从地质力学成因分析,岩体总是受到张拉、压扭、剪切等应力作用形成裂隙,这种作用不论经历多少次的改造,其结构特征仍以一定的形貌保留下来,具有一定的规律性。

裂隙面形态特征的研究越来越受到重视,在确定裂隙面的导水性质及力学性质方面,其作用越来越大。

裂隙面的产状是描述裂隙面在三维空间中方向性的几何要素,它是地质构造运动的果,因而具有一定的规律性,即成组定向,有序分布。

裂隙岩体渗流特性及溶质运移研究综述

裂隙岩体渗流特性及溶质运移研究综述

裂隙岩体渗流特性及溶质运移研究综述裂隙岩体是一种具有裂隙结构的岩石,裂隙通常是岩体中一些断裂、节理、收缩或膨胀形成的。

裂隙岩体的渗流特性及溶质运移是地下水资源、地下水污染防治等问题中的重要研究内容。

本文将首先介绍裂隙岩体渗流特性的研究进展,接着对溶质运移的研究进行综述。

裂隙岩体的渗流特性是指岩体中水或其他流体在裂隙中运移的性质与规律。

过去的研究发现,裂隙岩体的渗透系数与渗透性、裂隙长度和裂隙宽度等因素有关。

一般而言,裂隙岩体的渗透系数较高,水的渗流速度也较快。

裂隙岩体中的渗流通道通常呈现为非均匀性分布,即通道的宽窄和连通性等参数差异较大。

裂隙岩体的渗流过程还受到张力水、压力水和升华水等多种水文过程的影响。

裂隙岩体的渗流特性研究对于地下水资源的开发、管理和污染防治具有重要意义。

溶质运移是指地下水中溶解物质(溶质)在裂隙岩体中迁移的过程。

裂隙岩体中的溶质运移可以通过多种方式进行,如对流、扩散和吸附等。

裂隙岩体中的溶质运移与裂隙的物理化学性质、水流的速度和溶质的性质等因素密切相关。

研究表明,裂隙岩体中的溶质运移通常呈现非均质性和非线性性。

这些非线性特征使得溶质在岩体中的迁移过程具有一定的难以预测性。

溶质运移的研究可以帮助理解地下水中污染物的迁移规律,以及通过合理的预测和控制手段来保护地下水的质量。

近年来,随着各种地球物理、地质和化学技术的发展,裂隙岩体渗流特性及溶质运移的研究得到了较大的进展。

高分辨率扫描电子显微镜技术可以更加精确地观察和测量裂隙岩体中的裂隙形态和渗透性。

数值模拟方法可以模拟裂隙岩体中的渗流和溶质运移过程,为进一步研究提供了理论基础。

实地观测和实验室试验可以验证和验证模型的有效性。

裂隙岩体渗流特性及溶质运移是地下水资源和地下水污染防治等领域的重要研究内容。

未来的研究可以从深入理解裂隙岩体的渗流机制和溶质迁移规律出发,提出相应的模型和方法。

与其他学科的交叉研究也可以为裂隙岩体渗流特性及溶质运移的研究提供新的思路和方法。

裂隙岩体渗流特性及溶质运移研究综述

裂隙岩体渗流特性及溶质运移研究综述

裂隙岩体渗流特性及溶质运移研究综述
裂隙岩体是指具有显著透水性的岩体,其中存在着许多连通的裂隙空隙。

裂隙岩体是地下水运移和岩溶发育的重要媒介之一。

裂隙岩体渗流特性及溶质运移研究对于地下水资源管理、环境保护和岩溶地质灾害预测具有重要意义。

1. 渗流特性:裂隙岩体的渗流特性取决于岩石的裂隙结构、裂隙的连接性和空隙的连通性等因素。

常用的渗流参数包括渗透率、孔隙度、渗透率分布等。

研究发现,裂隙岩体的渗透率和孔隙度呈现一定的尺度效应,即渗透率或孔隙度随着测量尺度的增加而增加。

2. 溶质运移:溶质运移是指溶解于地下水中的物质在裂隙岩体中的迁移过程。

溶质运移过程受到多种因素的影响,包括溶质的吸附-解吸、扩散、对流等。

研究发现,裂隙岩体中的溶质运移速度与渗透率、孔隙度、溶质特性等因素密切相关。

3. 渗流与溶质运移的模拟:为了更好地理解裂隙岩体的渗流特性和溶质运移过程,研究者使用数值模拟方法对岩体中的渗流与溶质运移进行了模拟。

常用的模拟方法包括有限元法、有限差分法等。

数值模拟结果可以帮助我们预测地下水流动和溶质运移的规律,为地下水资源管理和环境保护提供科学依据。

裂隙岩体渗流特性及溶质运移研究中还存在一些挑战和难点,如裂隙岩体的空间异质性、渗透率和孔隙度的尺度效应以及溶质吸附-解吸的机制等。

需要进一步深入研究和探索,提高对裂隙岩体渗流特性及溶质运移的理解和预测能力。

裂隙岩体渗流特性及溶质运移研究综述

裂隙岩体渗流特性及溶质运移研究综述

裂隙岩体渗流特性及溶质运移研究综述
裂隙岩体是地下水和溶质运移的重要通道,对地下水资源的保护和管理具有重要意义。

随着裂隙岩体渗流特性及溶质运移研究的不断深入,人们对裂隙岩体地下水和溶质运移的
认识逐渐提高。

本文将对裂隙岩体渗流特性及溶质运移研究的现状和发展进行综述,以期
为相关领域的研究和应用提供一定的参考和借鉴。

一、裂隙岩体渗流特性研究
裂隙岩体渗流特性是研究裂隙岩体地下水和溶质运移的基础。

裂隙岩体的渗流特性受
裂隙结构、渗透性、压力、温度等因素的影响。

研究发现,裂隙岩体的渗透性与裂隙结构
密切相关,裂隙间距越大、连通性越好,渗透性就越强。

裂隙岩体的渗透性还受压力和温
度的影响,压力越大、温度越高,渗透性就越强。

裂隙岩体的渗流特性研究有助于揭示裂
隙岩体地下水和溶质运移的规律,为地下水资源的保护和利用提供科学依据。

二、裂隙岩体地下水运移研究
裂隙岩体是地下水的重要储集层之一,地下水在裂隙岩体中的运移规律对地下水资源
的保护和管理具有重要意义。

目前,裂隙岩体地下水运移的研究主要集中在地下水补给来源、运移速度和规律等方面。

研究发现,裂隙岩体地下水的补给来源主要包括降雨、地表
水和地下水的补给,裂隙岩体地下水的运移速度与裂隙结构、渗透性等因素密切相关,裂
隙结构复杂、渗透性好的裂隙岩体地下水运移速度较快。

裂隙岩体地下水的运移规律还受
地下水位、孔隙水压力、地下水流方向等因素的影响。

裂隙岩体地下水运移研究有助于揭
示裂隙岩体地下水资源的补给、运移和演化规律,为地下水资源的可持续利用提供科学依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

裂隙岩体的渗流特性试验及理论研究方法摘要:简要叙述岩体裂隙的几何特性,岩石裂隙渗流特性研究的方法。

综述了国内外裂隙岩体单裂隙、水力耦合、非饱和情况下的渗流特性物模试验研究成果,并做了相应的分析和讨论。

分析表明:物模试验在研究裂隙岩体渗流特性方面具有不可替代的作用;需要进行更多的模拟实际岩体裂隙的试验;真正意义上的非饱和渗流试验还很少;分析结果为今后的裂隙岩体渗流特性物模试验研究提供了有益的方向。

关键词:裂隙岩体;渗流 ;单一裂隙;水力耦合;非饱和一 前言新中国成立以后,交通、能源、水利水电与采矿工程各个领域遇到了许多与工程地质及岩土力学密切相关的技术难题,在许多岩土工程、矿山工程及地球物理勘探过程中,岩体的渗透率起到十分重要的作用,但在理论上尚未引起足够的重视,通常将岩体渗流处理为砂土一样的多孔介质,用连续介质力学方法求解。

与孔隙渗流的多孔介质相比,裂隙岩体渗流的特点有:渗透系数的非均匀性十分突出;渗透系数各向异性非常明显;应力环境对岩体渗流场的影响显著;岩体渗透系数的影响因素复杂,影响因子难以确定。

岩石裂隙渗流特性研究的方法通常有直接试验法、公式推导法和概念模型法,而试验研究是其中一个最重要最直接的途径。

本文介绍了当前裂隙岩体渗流试验研究。

二 岩体裂隙的几何特性岩体的节理裂隙及空隙是地下水赋存场所和运移通道。

岩体节理裂隙的分布形状、连通性以及空隙的类型,影响岩体的力学性质和岩体的渗透特性。

岩体中节理的空间分布取决于产状、形态、规模、密度、张开度和连通性等几何参数。

天然节理裂隙的表面起伏形态非常复杂,但是从地质力学成因分析,岩体总是受到张拉、压扭、剪切等应力作用形成裂隙,这种作用不论经历多少次的改造,其结构特征仍以一定的形貌保留下来,具有一定的规律性。

裂隙面形态特征的研究越来越受到重视,在确定裂隙面的导水性质及力学性质方面,其作用越来越大。

裂隙面的产状是描述裂隙面在三维空间中方向性的几何要素,它是地质构造运动的果,因而具有一定的规律性,即成组定向,有序分布。

裂隙面的间距和密度是表示岩体中裂隙发育密集程度的指标。

在表征岩体完整性、强度、变形以及在渗透张量计算中都需要用到裂隙面的间距和密度。

裂隙面间距是指同一组裂隙在法线上两相邻面间的距离,常用S 表示。

对同一组裂隙一般认为裂隙间距相等。

在实际野外测量中,布置一条测线,应尽量使测线与裂隙组走向垂直。

分组逐条测量裂隙与裂隙之间的距离,即可求出裂隙组的平均间距。

裂隙面的密度按物理意义魄不同可分为三种:线密度、面密度和体密度。

三 裂隙岩体渗流试验研究20世纪60年代以来,裂隙岩体渗流的研究逐步发展,已有不少结果。

1856年法国工程师达西(Darcy )通过实验所建立的达西线性渗流定律直今仍是研究渗流的基础。

表达式: kj -=ω其中,ω是渗流速度;j 是水力梯度。

它表示渗流速度和水力梯度呈直线关系,负号表示渗流速度方向与水力梯度方向相反。

1、 岩体单裂隙渗流物模试验研究单一裂隙是构成裂隙网络的基本元素,所以研究其渗流基本规律是岩体水力学的基本任务。

对该问题的研究主要是以平行板间的定常层流为基础, 由裂隙流体为不可压缩、粘性及水流为层流的假定,模拟岩体裂隙为两片光滑、平直、无限长的平行板构成,可以推导出岩体裂隙岩体渗流研究的基本理论—— 立方定理。

其表达式为J vge 12q 3= (1) 式中——q 为裂隙内的单宽流量(12-T L );e 为裂宽(L );J 为裂隙内水力梯度的大小;v 水的动力黏度(11--T ML )。

Lomize 、Louis 等进行了单一裂隙水流实验,证明层流时立方定理的有效性。

Romm 通过对微裂隙和极微裂隙的研究,提出了只要裂隙宽大于0.2µm ,立方定理是成立的。

天然岩体裂隙均为粗糙裂隙,很难满足平行板裂隙的假定。

许多学者进行了仿天然裂隙的试验研究,对立方定理提出了各种各样的修正。

对仿天然裂隙的试验研究,对立方定理建立如下修正公式:C J v e g 112q 3-=(2) 式中——-e 为平均隙宽;C1为立方定理的修正系数。

与裂隙面的粗糙度及隙宽情况有关。

Barton 通过大量试验,提出JRC(节理粗糙度系数)修正法,将等效水力隙宽 e n 与力学隙宽 e m 联系起来。

在立方定理中裂隙宽度采用等效水力隙宽: J vge JRC m 121q 65.7= (3) 式中——JRC 表示节理粗糙度系数耿克勤 根据人工、天然光滑和粗糙裂隙的试验结果提出经验公式为n m Ae =Q (4)对于小开度裂隙层流,1.7≤ ≤ 3.0;对于中开度,0.8≤,z ≤1.4;对于大开度,0.3≤,z ≤0.48。

Nolte 经验公式为 nm C Q Q e 0+= (5)式中n 随隙宽的变化范围为7.6~9.8。

目前,天然粗糙裂隙渗流的基本规律还没有得到完全统一的认识,渗流量与隙宽之间明显存在3种不同的关系。

可归纳为立方定律、超立方定律和次立方定律。

针对不同修正方法之间存在的较大差异,甚至截然相反的两种关系,通过多种裂隙试件的渗流试验,表明其中可能存在一个临界问题,吻合裂隙试件符合次立方定理,非吻合试件遵循超立方定理。

2、 裂隙岩体水力耦合物模试验研究由于通过裂隙的流量与其裂隙开度的立方关系成正比,而开度又受裂隙应力环境的影响,因此,实际裂隙的水力传导系数试验必须引入应力环境因素,即裂隙法向应力、剪切应力与开度的函数关系,从而确立应力与裂隙水力传导系数的关系。

通过耦合节理裂隙力学开度的变化和水力学开度的变化,可实现节理裂隙的水力学耦合。

学者们沿着不同的思路对比进行研究。

C. Louis 首先对单裂隙面渗流与应力的关系进行了探索性的试验研究,提出了指数型的经验公式:n E K K σa 21-= (6)式中:1K 为裂隙水力传导系数,2K 为初始水力传导系数,a 为常数,n σ为法向应力。

F. O. Jones 针对碳酸盐类建议了对数型的岩石裂隙水力传导系数经验公式:()[]3h '21/㏒p P K K = (7) 式中:p 为法向有效压力, h P 为使f K = 0 时的闭合法向有效压力, '2K 为试验常数。

R. Nelson 提出Navajo 砂岩裂隙渗透系数的经验公式: n B A K -+=p 1 (8)式中:A ,B , n 均为常数。

R. L. Kranz 等得出Barre 花岗岩的裂隙渗透系数的经验公式:()n f C P P Q A K --=01 (9)式中:A 为过水面积,C P 为总压力,f P 为内部孔隙水压力, n 为常数。

J. E. Gale 对花岗岩、大理岩、玄武岩3 种岩体裂隙的室内试验,得出经验公式为 12b 31gE T nn ==-σ (10) 式中:b 为常数。

显然,上述的经验公式都揭示出裂隙的透水性随着法向应力的增加而减小,是符合实际的,但它们所反映的减小程度不一样,式(8)~(10)反映出渗透性随着应力的增加而衰减很快,最后趋近于0,而实际上渗透性不可能达到0,这一点已被Iwai 所证实。

Iwai 通过试验发现,当应力达到20 MPa 时,裂隙岩体的力学特性已接近于完整岩块,但其渗透性远远大于完整岩块。

R. Nelson 提出的公式反应这一点,因此,式(8)更为合理。

为了更好地解释应力作用对裂隙面渗透性的影响机制,学者们还试图提出某种理论模型。

A. F.Gangi 首先提出钉床模型,将裂隙面上的凸起比拟成具有一定概率分布形式的钉状物,并以钉状物的压缩来反映应力对渗流的影响;J. B. Walsh 则将为描述裂隙力学变形性质提出的洞穴模型进行了推广,用来描述应力对裂隙面的渗流特性的影响。

但这两种模型具有一定的局限性,不能兼顾解释高应力下裂隙面的渗流、力学性质。

于是Y. W. Tsang 和P. A. Witherspoon 在上述两种模型的基础上进一步提出了洞穴–凸起结合模型,这一模型将裂隙面看作是由两壁面凸起的接触面与接触面之间的洞穴构成的集合体,以洞穴模型反应裂隙面的变形性质,以凸起模型反应裂隙面的渗流性质,认为随着应力的增加,不仅引起洞穴直接减小,而且引起凸起接触面积的增加;在高应力下,裂隙上的洞穴平均直径已经减小到一定程度,使得洞穴的形状由长形变成球形,接近于岩块中的孔隙形状,因此其力学性 质也接近于岩块,但其渗透性却与裂隙面上凸起的接触面积有关,在高应力下裂隙面并不能完全闭合,还存在着渗流通道,因此其渗透性大于完整岩块。

3、裂隙岩体非饱和渗流物模试验研究由于非饱和水力参数难以测量和确定,国内在9O 年代也开始了这方面的研究。

所做的工作主要集中在单裂隙非饱和渗流机理的研究和非饱和水力参数的确定方面。

目前大多通过水.油拟稳态驱替试验和二相流试验来研究单裂隙非饱和渗流的机理和测定单裂隙非饱和水力参数。

Persof 和Pruess 通过天然凝灰岩裂隙的水气二相流试验和多孔介质的拟合模型得出了相对渗透系数.饱和度的经验关系式: 432211⎪⎪⎭⎫ ⎝⎛---=S S S S K (11)式中 K 为水相的相对渗透系数;2S 为束缚水饱和度;3S 为残余气饱和度。

孙役等 进行了不同隙宽、不同饱和水位、不同降雨强度下的一系列非饱和渗流模拟试验,建立了裂隙隙宽与毛细压力、饱和度与毛细压力、裂隙隙宽与饱和度以及毛细压力与非饱和渗透系数之间的试验关系。

饱和度与毛细压力的关系为: bh aeS +=11 (12) 式中 S 为饱和度;h 为毛细压力;a ,b 均为拟合参数。

毛细压力与非饱和渗透系数的关系为: bh ae aK K +=0.10(13)式中 K 为非饱和渗透系数;0K 为饱和渗透系数;a 为毛细作用引起的渗透性衰减系数;a ,b 均为拟合参数。

由于物模试验中水相的饱和度很难确定,很多学者致力于数值模拟法和数学推导法,但物模试验法在研究裂隙非饱和渗流特性和机理方面具有不可替代的地位。

另外,数值试验法和数学推导法中所作的假定需由物模试验来检验。

只要测量准确,用物模试验法所建立的毛细压力一饱和度和相对渗透系数一饱和度(或毛细压力)关系应比另外两种方法更符合实际。

四 裂隙岩体渗流理论展望岩石裂隙渗流特性研究的方法通常有直接试验法、公式推导法和概念模型法,而试验研究是其中一个最重要最直接的途径。

通过对已有的研究成果的综述分析,得出如下结论:(1) 单裂隙渗流特性研究是裂隙岩体渗流研究的基础,其在实际工程中应用方法还需要进一步的深入研究。

(2) 法向变形的增加在多数情况下引起渗透系数的减小,但是剪切变形对渗透性的影响有着较复杂的变化关系。

剪切应力对断裂节理渗透性的影响依靠剪切位移大小、节理表面形状和粗糙面剪切破坏。

相关文档
最新文档