多面体欧拉定理的发现共21页
多面体欧拉公式的发现

多面体欧拉公式的发现欧拉公式是数学中的一项重要发现,它描述了多面体的顶点、边和面之间的关系。
发现这个公式的历史可以追溯到18世纪,当时瑞士数学家欧拉在研究多面体时首次提出了这个公式。
多面体是由平面面构成的立体,它可以是凸多面体(所有面都凸),也可以是非凸多面体(至少有一个面是凹的)。
欧拉公式适用于任何类型的多面体,它给出了多面体中顶点、边和面的数量之间的关系。
欧拉公式的数学表达式为:V-E+F=2,其中V表示多面体的顶点数,E 表示边数,F表示面数。
这个公式很简洁,却能揭示多面体的基本性质。
让我们来探索一下欧拉公式的发现过程。
首先,我们从最简单的多面体开始,即立方体。
立方体有8个顶点,12条边和6个面。
代入欧拉公式:8-12+6=2,等号左边的结果与右边的结果相等。
这意味着欧拉公式在立方体上成立。
接下来,让我们考虑一个更复杂的多面体,例如八面体。
八面体有6个顶点、12条边和8个面。
再次代入欧拉公式:6-12+8=2,等号左边的结果与右边的结果相等。
欧拉公式在八面体上同样成立。
通过反复尝试,我们可以发现,无论是简单的立方体还是复杂的八面体,欧拉公式都成立。
这提示我们欧拉公式可能是普适的。
更进一步,我们可以通过归纳法来证明欧拉公式对于任意多面体都成立。
假设对n-1个面的多面体,欧拉公式成立。
现在考虑多面体增加一个面的情况。
如果我们在新面上加上一个新顶点,那么顶点数V将增加1,边数E将增加至少3(因为每个新面至少有3条边相邻),面数F将增加1、根据归纳法的假设,对于n-1个面的多面体,欧拉公式成立,即V-E+F=2(V+1)-(E+3)+(F+1)=V-E+F+2=2+2=4所以对于n个面的多面体,欧拉公式仍然成立。
通过归纳法的推理,我们可以证明欧拉公式对于任意多面体都成立。
总结起来,欧拉公式的发现是通过观察不同形状的多面体并尝试找到它们之间的共同点。
通过代入不同的数值并观察等式的平衡,欧拉发现了顶点、边和面的数量之间的关系,并提出了著名的欧拉公式。
欧拉多面体公式证明

欧拉多面体公式证明欧拉多面体公式,也被称为欧拉公式,是数学中的一个重要定理,它描述了一个多面体的面数、顶点数和边数之间的关系。
这个公式被广泛应用于几何学和拓扑学领域,它的证明过程既有逻辑性又有美感,让人感叹数学的奇妙。
在开始证明之前,先来回顾一下欧拉多面体公式的表达方式。
设一个多面体的面数为F,顶点数为V,边数为E,那么根据欧拉多面体公式:F + V - E = 2证明的过程可以分为两个部分:首先是证明欧拉多面体公式对于凸多面体成立,然后是证明对于非凸多面体也成立。
对于凸多面体来说,首先我们可以通过归纳法证明一个特殊情况,即当多面体只有一个面、一个顶点和一条边时,欧拉公式成立。
接着,我们假设当多面体的面数小于等于n时,欧拉公式成立,然后考虑当多面体的面数为n+1时的情况。
假设这个多面体有m个面,n个顶点和p条边。
我们可以通过将一个面切割成三个面,增加三个顶点和三条边的方式,来构造一个新的多面体。
这样,我们得到的新多面体的面数为m+2,顶点数为n+3,边数为p+3。
根据归纳假设,原多面体满足欧拉公式,即m + n - p = 2。
而新多面体的面数、顶点数和边数分别为m+2、n+3和p+3,所以根据欧拉公式,有(m+2) + (n+3) - (p+3) = 2。
整理后得到 m + n - p = 2,即新多面体也满足欧拉公式。
这样就证明了欧拉公式对于凸多面体成立。
接下来考虑非凸多面体的情况。
非凸多面体可以看作是由多个凸多面体通过共享顶点组合而成的。
我们可以通过将非凸多面体切割成凸多面体,然后分别证明欧拉公式对于每个凸多面体都成立,最后再将它们的公式相加来证明欧拉公式对于非凸多面体成立。
总结一下,欧拉多面体公式证明的关键是通过归纳法来证明对于凸多面体和非凸多面体都成立。
通过将多面体切割成更小的多面体,然后利用归纳假设来推导出新多面体的面数、顶点数和边数之间的关系,最终得到欧拉公式成立的结论。
通过这个证明过程,我们不仅可以理解欧拉多面体公式的推导过程,还可以感受到数学中的美妙和逻辑性。
§910多面体欧拉定理的发现

§ 9.10研究性课题:多面体欧拉定理的发现(1)教学目标:1•通过探现欧拉公式的过程,学会提出问题和明确探索方向,体验数学活动的过程,培养创新精神和应用能力;教学重点:教学难点:2.体会数学家的创造性工作,掌握“实验一归纳一猜想一证明”的研究方法;3.通过介绍数学家欧拉的业绩,激发学生献身科学、勇于探索创新的精神如何发现欧拉公式怎样证明欧拉公式教学过程:创设情境,提出问题1996年的诺贝尔化学奖授予对发现Ceo有重大贡献的三位科学家如图,C60是由60个C原子构成的分子,它是一个形如足球的多面体•这个多面体有60个顶点,以每一顶点为一端点都有三条棱,面的形状只有五边形和六边形,你能计算出Ceo中有多少个五边形和六边形吗?要解决上述问题,就必须弄清多面体的顶点数、棱数和面数的尖系•我们知道'在平面多边形中'多边形的边数b,顶点数d之间有尖系b=d ;而多面体是多边形在空间的类似,那么在多面体中,它的顶点数、棱数和面数之间有类似的规律吗?2.实验探索,归纳猜想让我们先观察几个简单的多面体,填写下表:多面体F V E四面体446正方体6812五棱柱71015四棱锥558非凸多面体6610正八面体8612“屋顶”体9916截顶立方体71015(问题1 :你能从增减性的角度揭示顶点数、棱数和面数的尖系吗?(1)由表中数据,当我们把正方体和八面体对比时,不难发现,面数增加,顶点数反而减少,而棱数未变。
并且五棱柱与八面体对比时,面数增加,顶点数和棱都减少,即V、E并不随F增大而增大,同时指出:V与E同增减的结论也不对;(2 )对比正方体与八面体时,发现E未变,但F与V的数值互换,即:立方体:F=6, V=8 , E=12 正八面体:F=8 , V=6 , E=12。
这说明了什么?好像隐约透露出某种联系•为了弄清这个问题'整理资料'将上表按E 增加的顺序重排,得:多面体F V E四面体446四棱锥558非凸多面体6610正方体68121.观察上表可知:F、V单个看,虽不总是因E的增加而增加,但“总体”看来,却是F+V随E的增加而增加。
§多面体欧拉定理的发现01

芯衣州星海市涌泉学校多面体欧拉定理的发现〔2〕一、课题:多面体欧拉定理的发现〔2〕二、教学目的:欧拉定理的应用.三、教学重、难点:欧拉定理的应用.四、教学过程:〔一〕复习:1.简单多面体的定义;2.欧拉定理;3.正多面体的种类.〔二〕新课讲解:例1.由欧拉定理证明:正多面体只有正四面体、正六面体、正八面体、正十二面体、正二十面体这五种. 证明:设正多面体的每个面的边数为n ,每个顶点连有m 条棱,令这个多面体的面数为F ,每个面有n 条边,故一一共有nF 条边,由于每条边都是两个面的公一一共边,故多面体棱数2nFE =〔1〕令这个多面体有V 个顶点,每一个顶点处有m 条棱,故一一共有mV 条棱。
由于每条棱有两个顶点,故多面体棱数2mVE =〔2〕 由〔1〕〔2〕得:2E Fn =,2E V m =代入欧拉公式:222E E E m n +-=. ∴11112m n E+-=〔3〕,∵又3m ≥,3n ≥,但m ,n 不能同时大于3,〔假设3m >,3n >,那么有11102m n +-≤,即10E≤这是不可能的〕∴m ,n 中至少有一个等于3.令3n =,那么1111032m E +-=>, ∴116m >,∴5m ≤,∴35m ≤≤.同样假设3m =可得35n ≤≤. 例2.欧拉定理在研究化学分子构造中的应用:1996年诺贝尔化学奖授予对发现60C 有重大奉献的三位科学家。
60C 是由60个C 原子构成的分子,它是形如足球的多面体。
这个多面体有60个顶点,以每一个顶点为一端点都有三条棱,面的形状只有五边形和六边形,计算60C 分子中五边形和六边形的数目.解:设60C 分子中有五边形x 个,六边形y 个。
60C 分子这个多面体的顶点数60V =,面数F x y =+,棱数1(360)2E =⨯⨯,由欧拉定理得:160()(360)22x y ++-⨯=〔1〕,另一方面棱数可由多边形的边数和来表示,得11(56)(360)22x y +=⨯〔2〕,由〔1〕〔2〕得:12x =,20y = ∴60C 分子中五边形有12个,六边形有20个.例3.一个正多面体各个面的内角和为20π,求它的面数、顶点数和棱数.解:由题意设每一个面的边数为m ,那么(2)20F m ππ-=,∴(2)20F m -=, ∵2mF E =,∴10E F =+,将其代入欧拉公式2V F E +-=,得12V =,设过每一个顶点的棱数为n ,那么62n E V n ==,12n F m =得121262n n m +-=,即5213n m+=〔1〕, ∵3m ≥,∴5n ≤,又3n ≥,∴n 的可能取值为3,4,5,当3n =或者者4n =时〔1〕中m 无整数解;当5n =,由〔1〕得3m =,∴30E =,∴20F =,综上可知:30E=,12V =,20F =.五、小结:1.欧拉定理的应用;2.会用欧拉公式2V F E +-=解决简单多面体的顶点数、面数和棱数的计算问题.六、作业:课本第69页习题9.10第2,3题.。
多面体欧拉定理的发现课件

多面体是一种几何体,展示了独特的定义和基本特征。
欧拉定理的介绍
欧拉定理是一项重要的数学定理,它描述了多面体中的顶点、边和面之间的关系。
欧拉定理的证明方法
学者通过数学推导和逻辑推理,发展出了证明欧拉定理的有效方法。
欧拉定理的应用举例
欧拉ห้องสมุดไป่ตู้理在计算机图形学、拓扑学和材料科学等领域有着广泛的应用。
欧拉定理的局限性和扩展
尽管欧拉定理非常有用,但在某些情况下可能无法适用。研究者正在不断探索和扩展这一理论。
对欧拉定理的意义和影响
欧拉定理的发现深刻影响了数学和科学领域的发展,为我们理解几何学和拓扑学提供了重要的基础。
总结和展望
多面体欧拉定理是数学世界中的重要成就,它激发了更多的数学研究和发现。
多面体欧拉定理的发现

,nF边形,各面的 (4)图2中全体多边形的内角和是多少?它是否等于(V-2) × (5)研究欧拉(Leonhard Euler)的一生(包括他的故事、成就等) (V-m)×360 +(m-2)×180 所有其他多边形的内角和是多少?
左图中多面体某个面是n边形,右图中相应的多边形仍为n边形 利用多边形的内角
(4)由欧拉公式你能得出什么新的结论 (2)从简单的几个多面体去猜测他们的关系。
(3)欧拉发现欧拉公式的背景及其相关著作 形的面各有12个和20个。 这体现了发现数学定理的一种重要的思路,问题来源于我们的现实生活,结论可以先猜再证。
二利、用多 多面边(体形欧的5拉内)公角式研的发究现 欧拉(Leonhard Euler)的一生 (包括他的故事、成就等) (V-m)×360 +2(m-2)×180 =(V-2)×360
解:设C60分子中形状为五边形和六
边形的面各为x个和y个
多面体的顶点数V=60,面数F=x+y
棱数E 1 (360) 代入欧拉公式,可得
2
60 (xy)1(36)02 2
另一方面,棱数可以由多边形的边
数来表示,即 1(5x6y)1(36)0
2
2
由以上两个方程可解出 x=12,y=20
答:C60分子中形状为五边形和六边 形的面各有12个和20个。
(2)从简单的几个多面体去猜测他们的关系。
(3)尝试证明猜测的结论。
这体现了发现数学定理的一种重要的思路,问题来源于我们 的现实生活,结论可以先猜再证。
三、多面体欧拉公式的应用 (1)1996年的诺贝尔化学奖授予对发现C60有重要贡献的三位科 学家。C60是由60个C原子组成的分子,它的结构为简单多面体 形状。这个多面体有60个顶点,从每个顶点都引出3条棱,各个 面的形状分为五边形或六边形两种(如图)。计算C60分子中形 状为五边形和六边形的面各是多少?
高二数学最新课件-多面体欧拉公式的发现 精品

解:设C60分子中形状为五边形和六边形的面 各有x个和y个。 多面体的顶点数V=60,面数F=x+y, 棱数E=1/2(3×60) 根据欧拉公式,可得 60+(x+y)-1/2(3×60)=2 (1) 另一方面,棱数也可由多边形的边数来表示,即 1/2(5x+6y)=1/2(3×60) 由以上两方程可解出 x=12,y=20 答:分子中形状为五边形和六边形的面各有12个 和60个。 (2)
故(1)不可能;
当V=4时,多面体也是四面体,而四面体只有4个面, 故(2)不可能. ∴没有棱数为7的简单多面体.
公式的应用探究
试一试3 已知一个十二面体共有8个顶点,其 中两个顶点处各有6条棱,其他顶点处各有相 同数目的棱,则其他顶点处各有几条棱?
学到了什么?
公式的应用探究
探究1 一个简单多面体的各面都是三角形, 且有6个顶点,求这个简单多面体的面数. 解:因为一个面都有3条边,每两条边合为 1条棱. 3F 所以它的面数F和棱数E之间有关系E= 2 . 又由欧拉公式V+F-E=2,且顶点数V=6. ∴F=E+2-V=E+2-6= ∴F=8
3F 2 -
公式的应用探究
试一试2 简单多面体每个面都是五边形, 且每个顶点处有3条棱,求这个简单多面 体的面数、棱数、顶点数.
通过这个探究案例的学习,请大家归 纳棱数E的计算方法
公式的应用探究
探究3 有没有棱数为7的简单多面体?说明理由
解:假设一个简单多面体的棱E=7,它的面数为F,顶点数为V, 那么根据欧拉公式有V+F=E+2=9. 又多面体的面数F≥4,顶点数V≥4 ∴只能有两种情况: (1)F=4,V=5或(2)F=5,V=4 当F=4时,多面体为四面体,而四面体只有4个顶点,
多面体欧拉定理的发现(g)

多面体的顶点数、面数和棱数之 间存在一定的关系,这是多面体 的基本特征。
03 欧拉定理的发现过程
欧拉之前的学者研究
欧拉之前,数学家们已经对多面体的几何特性进行了一些研究, 例如希腊数学家欧几里得(Euclid)在他的《几何原本》中证 明了“一个多面体的所有面都是三角形”的定理。
文艺复兴时期,意大利数学家莱昂纳多·达·芬奇(Leonardo da Vinci)也对多面体进行了研究,他发现了多面体的顶点数、边 数和面数之间的关系,但未能完全证明。
多面体欧拉定理的发现(g)
contents
目录
• 引言 • 多面体的基本概念 • 欧拉定理的发现过程 • 欧拉定理的应用 • 结论
01 引言
欧拉与多面体研究
01
欧拉是多面体研究的先驱之一, 他对多面体的性质进行了深入的 研究,并取得了许多重要的成果 。
02
欧拉对多面体的研究始于他对数 学的热爱和探索,他通过观察、 分析和证明,揭示了多面体的许 多内在规律和性质。
弹性力学
在弹性力学中,欧拉定理 用于分析弹性体的应力、 应变和位移之间的关系。
流体动力学
在流体动力学中,欧拉定 理用于研究流体的运动规 律,如流体中的涡旋和流 动稳定性。
在其他领域的应用
化学
在化学中,欧拉定理用于 分析分子结构,了解分子 的几何形状和化学键的性 质。
生物学
在生物学中,欧拉定理用 于研究细胞形态和生物体 的复杂结构。
等。
几何形状分析
通过欧拉定理,我们可以分析多面 体的几何形状,了解其对称性、边 数和面数之间的关系。
几何建模
在计算机图形学中,欧拉定理被用 于几何建模,通过控制顶点数和边 数来创建复杂的3D模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究性课题:多面体欧拉定理的发现第一课时欧拉定理(一)教学目标:(一)教学知识点1.简单多面体的V、E、F关系的发现.2.欧拉公式的猜想.3.欧拉公式的证明.(二)能力训练要求1.使学生能通过观察具体简单多面体的V、E、F从中寻找规律.2.使学生能通过进一步观察验证所得的规律.3.使学生能从拓扑的角度认识简单多面体的本质.4.使学生能通过归纳得出关于欧拉公式的猜想.5.使学生了解欧拉公式的一种证明思路.(三)德育渗透目标1.通过介绍数学家的业绩,培养学生学习数学大师的献身科学、勇于探索的科学研究精神、激发学生对科学的热爱和对理想的追求.2.培养学生寻求规律、发现规律、认识规律,并利用规律解决问题的能力.教学重点欧拉公式的发现.教学难点使学生从中体会和学习数学大师研究数学的方法.教学方法指导学生自学法首先通过问题1利用具体实物,从观察入手,培养学生对简单多面体V、E、F关系的感性认识从中寻找规律,问题2让学生作进一步观察、验证得出规律,问题3让学生在认识简单多面体的基础上,通过归纳,得出关于欧拉公式的猜想,再通过问题4让学生了解欧拉公式的证明思路,即从理论上探索对发现规律的证明.以上4个问题逐步深入地展开,旨在不仅使学生在知识上有新的收获,同时应体会和学习研究数学的思想和方法.教学过程情境设置欧拉瑞士著名的数学家,科学巨人,师从数学家约翰·伯努利,有惊人的记忆力,是数学史上的最多产的数学家,他所写的著作达865部(篇),28岁右眼失明,1766年,左眼又失明了,1771年,圣彼得堡一场大火,秧及欧拉的住宅,欧拉虽然幸免于难,可他的藏书及大量的研究成果都化为灰烬。
种种磨难,并没有把欧拉搞垮。
大火以后他立即投入到新的创作之中。
资料被焚,他又双目失明,在这种情况下,他完全凭着坚强的意志和惊人的毅力,回忆所作过的研究。
他总是把推理过程想得很细,然后口授,由他的长子记录。
他用这种方法又发表了论文400多篇以及多部专著,这几乎占他全部著作的半数以上,欧拉从19岁开始写作,直到逝世,留下了浩如烟海的论文、著作,甚至在他死后,他留下的许多手稿还丰富了后47年的圣彼得堡科学院学报。
数学方面:他的论著几乎涉及18世纪所有的数学分支.比如,在初等数学中,欧拉首先将符号正规化,如f(x)表示函数,e表示自然对数的底,a、b、c表示△ABC的三边等;数学中的欧拉公式、欧拉方程、欧拉常数、欧拉方法、欧拉猜想等.其中欧拉公式的一个特殊公式,将数学上的5个常数0、1、i、e、π联在一起;再如就是多面体的欧拉定理V-E+F=2,V、E、F分别代表一简单多面体的顶点、棱和面的数目物理方面:他创立了分析力学、刚体力学,研究和发展了弹性理论、振动理论以及材料力学,在光学上也有杰出的贡献,古典力学的基础是牛顿奠定的,而欧拉则是其主要建筑师,他研究了天文学,并与达朗贝尔、拉格朗日一起成为天体力学的创立者,流体力学的创始人。
其它方面:欧拉在搞科学研究的同时,还把数学应用到实际之中,为俄国政府解决了很多科学难题,为社会作出了重要的贡献。
如菲诺运河的改造方案,宫延排水设施的设计审定,为学校编写教材,帮助政府测绘地图;在度量衡委员会工作时,参加研究了各种衡器的准确度。
另外,他还为科学院机关刊物写评论并长期主持委员会工作。
他不但为科学院做大量工作,而且挤出时间在大学里讲课,作公开演讲,编写科普文章,为气象部门提供天文数据,协助建筑单位进行设计结构的力学分析,他把自己所建立的理想流体运动的基本方程用于人体血液的流动,从而在生物学上添上了他的贡献,又以流体力学、潮汐理论为基础,丰富和发展了船舶设计制造及航海理论。
今天我们就去体验当年的数学大师是如何运用数学思想和方法发现欧拉公式并给予理论上的推理证明等研究活动,希望大家在活动中要充分展开自己的想象,展开热烈的讨论互相进行数学交流.探索研究问题1:下列共有五个正多面体,分别数出它们的顶点数V、面数F和棱数E,并填表1正多面体顶点数V面数F棱数E正四面体446正六面体8612观察表中填出的数据,请找出顶点数V、面数F及棱数E之间的规律。
教师巡视指导,如正十二面体,先定面数E=12;再定棱数,每个面有5条棱,共有12×5=60条,由于每条棱都是两个面的公共边,所以上面的计算每条棱被算过两次,于是棱数E=60/2=30;最后算顶点数,每个顶点处连有三条棱,所以它共有3V条棱,又因为每条棱连着两个顶点,所以上面的计算每条棱被算过两次,因此实际上只有3V/2条棱,即E=3V/2,所以V=20。
表1中多面体的面数F都随顶点数目V的增大而增大吗?不一定.请举例说明.如八面体和立方体的顶点数由6增大到8,而面数由8减小到6.此时棱的数目呢?棱数都是一样的.所以我们得到:棱的数目也并不随顶点数目的增大而增大.大家从表中还发现了其他的什么规律,请积极观察,勇于发言.当多面体的棱数增加时,它的顶点与面数的变化也有一定规律.上面的归纳引导去猜想,棱数与顶点数+面数即E与V+F是否有某种关系,请大家按这个方向考察表中的数据,发现并归纳出它们都满足的关系.(积极验证,得出)V+F-E=2以上同学们得到的V+F-E=2这个关系式是由表1中的五种多面体得到,那么这个关系式对于其他的多面体是否也成立吗?请大家尽可能的画出多个其他多面体去验证.(许多同学可能举出前面学过的图形)四棱锥、五棱锥、六棱柱等.(教师应启发学生展开想象,举出更多的例子)一个三棱锥截去含3条棱的一个顶得到的图形、一个立方体截去一个角所得的图形等.好,同学们现在想象,例如:n棱锥在它的n边形面上增加一个“屋顶”或截去含n条棱的一个顶后,刚才的猜想是否成立?能证明吗?所得的多面体的棱数E为3n条,顶点数V为2n个,面数V为2+n 个,因2n+(2+n)-3n=2,故满足V+F-E=2这个关系式.请继续来观察下面的图形,填表2,并验证得出的公式工V+F-E=2_A(学生观察,数它们的顶点数V、面数F、棱数E,并填入表2,可能有些同学出错,教师在巡视时要及时给予指导,帮助学生填完)观察你们的数据,请验证这些图形是否符合前面找出的规律吗?其中哪些图形符合?一起来设想问题1和问题2中的图形.在某个橡皮膜上,当橡皮膜变形后,有的地方伸长、有的地方压缩,但不能破裂或折叠,橡皮膜上的图形的形状也跟着改变,这种图形的变化过程我们称之为连续变形.那么请大家试想这些图形中的哪些在连续变形中最后其表面可变为一个球面?问题1中的(1)~(5)和问题2中的(1)个图形表面经过连续变形能变为一个球面.请同学们继续设想问题2中⑴~⑻在连续变形中,其表面最后将变成什么图形?问题2中第⑻个图形;表面经过连续变形能变为环面像以上那些在连续变形中,表面能变为一个球面的多面体叫简单多面体.请大家判断我们前面所学的图哪些是简单多面体?棱柱、棱锥、正多面体、凸多面体是简单多面体.简单多面体的顶点数V、面数F的和与棱数E之间存在规律V+F-E=2.我们将它叫做欧拉公式,以上3个问题的解决让我们体会到了数学家欧拉发现V+F-E=2的过程.那么如何证明欧拉公式呢?请大家打开课的欧拉公式证明方法中的一种,认真体会它的证明思路和其间用到本P65的数学思想.(学生自学、教师查看,发现问题,收集问题下节课处理)在欧拉公式中,令f(p)=V+F-E。
f(p)叫做欧拉示性数。
简单多面体的欧拉示性数反思应用例1用三棱柱、四棱锥验证欧拉公式.解:在三棱柱中:V=6,F=5,E=9∵6+5-9=2,∴V+F-E=2在四棱锥中:V=5,F=5,E=8∵5+5-8=2,∴V+F-E=2例2 一个简单多面体的各面都是三角形,且有6个顶点,求这个简单多面体的面数.解:因为一个面都有3条边,每两条边合为1条棱.所以它的面数F和棱数E之间有关系E=3F/2.又由欧拉公式V+F-E=2,且顶点数V=6.∴F=E+2-V=E+2-6=3F/2-4∴F=8例3 证明:没有棱数为7的简单多面体.证明:设一个简单多面体的棱E=7,它的面数为F,顶点数为V,那么根据欧拉公式有V+F=E+2=9.又多面体的面数F≥4,顶点数V≥4,∴只能有两种情况:(1)F=4,V=5或(2)F=5,V=4当F=4时,多面体为四面体,而四面体只有4个顶点,故(1)不可能;当V=4时,多面体也是四面体,而四面体只有4个面,故(2)不可能.∴没有棱数为7的简单多面体.例4 已知一个十二面体共有8个顶点,其中两个顶点处各有6条棱,其他顶点处各有相同数目的棱,则其他顶点处各有几条棱?解:∵F=12,V=8,∴E=V+F-2=18∵两个顶点处各有6条棱∴余6条棱,6个顶点而这6个顶点构成六边形,过这6个顶点的棱应该各有4条.注意:本题也可以作为一个数学模型帮助我们去验证上述结果,即作一个六边形,在它所在面的两侧各取一个点,共8个顶点、12个面.从中体会构建数学模型对于解决问题的方便与直观.例5 证明:四面体的任何两个顶点的连线都是棱,而其他凸多面体都不具有这一性质.证明:设多面体的顶点数V=n,则它们互相连接成的棱数E=n(n-1)/2每一条棱是两个面的边界,每个面至少有3条棱作边界. ∴F ≤232n ⋅(n -1)=3n (n -1) ∵V +F =E +2∴n +3n (n -1)≥2n ·(n -1)+2, ∴6n +2n (n -1)≥3n (n -1)+12, ∴n 2-7n +12≤0,(n -3)(n -4)≤0. ∵n ≥4,∴n =4.例6 正n (n =4,8,20)面体的棱长为a ,求它们表面积共同公式. 解:∵正n (n =4,8,20)面体的面都是边长为a 的正三角形. ∴S △=43a 2∴它们表面积的共同公式为 S 全=n ·43432=a na 2(其中n =4,8,20)归纳总结本节课,我们一起体验了数学家欧拉运用数学思想与方法去发现公式V +F -E =2的过程;体会到数学家献身科学、勇于探索的科学研究精神;并通过大家自学了解证明欧拉公式成立的一种方法,希望同学们仔细阅读研究,从中提出一些新问题,待我们下节课一起讨论解决.作业(一)P 69 习题9.10 1、21、已知,凸多面体的各面都是四边形,求证:F =V -2 证明:∵这个凸多面体每个面都是四边形, ∴每个面都是四条边.又∵多面体相邻两面的两条边合为一条棱 ∴E =24F =2F , 将代入欧拉公式V +F -E =2中,得F =V -2注意:数学中可启发学生考虑:各面是三角形或五边形的情况. 2、一个简单多面体的各面都是三角形,证明它的顶点数V 和面数F 有F =2V -4的关系.解:∵V +F -E =2 又∵E =23F ,∴V +F -23F=0,∴F =2V -4 (二)预习提纲(1)请尝试叙述欧拉公式的证明思路.(2)如何用欧拉公式解决“有没有棱数是7的简单多面体?” (3)为什么正多面体只有五种呢? 第二课时 多面体欧拉公式的发现(二) 教学目标 (一)教学知识点 1.欧拉公式的证明.2.欧拉公式的应用.(二)能力训练要求1.使学生能理解多面体欧拉公式的证明过程并能叙述其证明思路.2.使学生掌握多面体欧拉公式并灵活地将其应用于解题中.(三)德育渗透目标继续培养学生寻求规律、发现规律、认识规律、并利用规律解决问题的能力.教学重点欧拉公式的应用.教学难点欧拉公式的证明思路.教学方法学导式本节课继续上节课对欧拉公式的研究活动,遵循寻求规律——发现规律——认识规律——应用规律的学习过程,对上节课已猜想出的欧拉公式进一步深入研究,探索它的证明思路,让学生了解这种证明思想,进而达到熟练掌握欧拉公式的目标,以便于学生得心应手地将欧拉公式应用到各种问题的解决中.教学过程情境设置上节课我们已经猜想出了欧拉公式并且同学们也已自学了它的证明过程,这节课我们继续对它的证明方法及其重要应用进行学习和探讨.探索研究的欧拉公式的证明进行了自学,那么,谁能上节课我们已对课本P65说一下课本中的证明思路和关键是什么?将立体图形转化为平面图形.下面我们运用拓扑变换的手段,将空间图形转化为平面图形进行证明证法一:(1)假想一凸多面体的面用薄橡皮做成,内部是空的,现破掉一个面,把其余的面展平并保持原表面的多边形的边数不变,成为一个平面网络,这时V、E不变,只是F少1,于是即证在网络中V-E+F=1.(2)在网络中的多边形边数若大于3,由于每增加一条对角线,则E、F各加上1,V-E+F不变,于是尽可能增加对角线,使网络成为全由三角形组成的网络.(3)边缘上的三角形若有一个边不是与其他三角形共边,去掉这边,则V不变,E、F各减少1;若有两边不与其他三角形共边,去掉这两边,则F、V各减少1,E减少2,这样逐步可把“周围”的三角形一一去掉(如图).(4)最后剩下一个三角形,显然满足V-E+F=1,从而在凸多面体中,V-E+F=2.证法二:设F个面分别为n1,n2,…,n F边形,则所有面角总和∑a=(n1-2)π+(n2-2)π+…+(n F-2)π=(n1+n2+…+n F)π-2Fπ=2Eπ-2Fπ①如上面展成平面网络后,设去掉的一个面为n边形,可得到一个由n 边形围成的网络,内部有V-n个点.则∑a=(n-2)π+(n-2)π+(V-n)2π=(n-2)2π+(V-n)2π②由①、②易得我们所得到的式子.欧拉定理表明,任意的一个简单多面体,经过连续变形后,尽管它的形状可以变化万千,但有一个数始终不变,这就是:顶点数+面数-棱数,它总是等于2.所以将2叫做连续变形下的不变数.反思应用例1 1996年的诺贝尔奖授于对发现C有重大贡献的三位科学家。