整式的四则运算知识点大全

合集下载

七年级下册数学整式的运算知识点

七年级下册数学整式的运算知识点

七年级下册数学整式的运算知识点在数学中,整式的运算是一个非常基础且重要的概念。

整式是由多项式相加或相减得到的,其中每一项都是由常数和变量的乘积得到的。

整式的运算知识点包括加法、减法、乘法、除法等。

一、整式的加法:整式的加法是指将两个或多个整式相加得出一个新的整式。

加法的原则是将同类项合并,并将系数相加。

同类项指的是含有相同变量的项,如2x和5x就是同类项,而2x和3y就不是同类项。

例子1:将2x²+3x+4和5x²-2x+7进行加法运算。

解答:2x²+3x+4+5x²-2x+7=(2+5)x²+(3-2)x+(4+7)=7x²+x+11例子2:将3a³+5a²+2a和2a³+4a²+7a进行加法运算。

解答:3a³+5a²+2a+2a³+4a²+7a=(3+2)a³+(5+4)a²+(2+7)a=5a³+9a²+9a二、整式的减法:整式的减法是指将一个整式从另一个整式中减去得到一个新的整式。

减法的原则是将减数的各项分别乘上-1,然后再与被减数进行加法运算。

例子1:将5x²+4x-3和3x²-2x+8进行减法运算。

解答:5x²+4x-3-(3x²-2x+8)=5x²-3x²+4x-(-2x)-3-8=2x²+6x-11例子2:将4y³-2y²-5y-1和3y³+2y²+4进行减法运算。

解答:4y³-2y²-5y-1-(3y³+2y²+4)=4y³-3y³-2y²-2y²-5y-4-1=y³-4y²-5y-5三、整式的乘法:整式的乘法是指将两个整式相乘得到一个新的整式。

整式的加减乘除

整式的加减乘除

整式的加减乘除整式是数学中重要的概念之一,它在代数表达式中起着重要的作用。

在整式中,加减乘除是基本的运算法则。

本文将针对整式的加减乘除分别进行讨论,以帮助读者更好地理解和运用这些运算法则。

一、整式的加法整式的加法是指对两个或多个整式进行求和的操作。

在整式的加法中,重点是合并同类项,并按照次数从高到低排列。

以下是一个例子:例:将整式3x²+5x-2和2x²-3x+6进行相加。

解:按照同类项合并的原则,我们可以将该整式进行合并,得到5x²+2x+4。

二、整式的减法整式的减法是指对两个整式进行相减的操作。

在整式的减法中,我们可以利用减法的逆运算性质,将减法转化为加法。

以下是一个例子:例:将整式4x²-3x+2和2x²+5x-1进行相减。

解:利用减法的逆运算,我们可以将减法转化为加法,即4x²-3x+2-(2x²+5x-1)等于4x²-3x+2+(-2x²-5x+1)。

继续整理合并同类项,我们得到2x²-8x+3。

三、整式的乘法整式的乘法是指对两个整式进行相乘的操作。

在整式的乘法中,我们需要将每个整式的项进行相乘,并合并同类项。

下面是一个例子:例:将整式3x²+2x+4和2x²-3x+1进行相乘。

解:按照乘法分配律,我们可以将每一项进行相乘,然后将结果进行合并。

(3x²+2x+4)(2x²-3x+1)等于6x^4-3x^3+2x^3-9x^2+3x^2-4x+2x-3+4,继续整理合并同类项,我们得到6x^4-x^3-4x^2-2x+1。

四、整式的除法整式的除法是指对两个整式进行相除的操作。

在整式的除法中,我们需要找出商和余数。

以下是一个例子:例:将整式5x³-2x²+3x-1除以x-1。

解:按照除法的步骤,我们首先进行第一步骤——比较最高次项。

整式的加减乘除运算

整式的加减乘除运算

整式的加减乘除运算整式是由数和字母的乘方、乘积以及算术运算符号组成的代数表达式。

整式的加减乘除运算是初中数学中的基本知识点,它们在代数运算中起着重要的作用。

本文将介绍整式的加减乘除运算,并给出一些例子来帮助读者更好地理解。

一、整式的加法运算整式的加法运算是指将相同字母的项进行合并,得到一个新的整式。

在进行加法运算时,我们需要注意以下几个步骤:1. 合并同类项:将相同字母的项进行合并,系数相加。

例如,将3x + 2x合并为5x;将2y^2 + 3y^2合并为5y^2。

2. 不同字母的项不能合并。

例如,2x + 3y不能合并为5xy。

通过以下例子,我们可以更好地理解整式的加法运算:例1:计算2x^2 + 3xy + 4x^2 - 2xy + 5y的值。

解:首先将相同字母的项进行合并:(2x^2 + 4x^2) + (3xy - 2xy) + 5y = 6x^2 + xy + 5y。

二、整式的减法运算整式的减法运算与加法运算类似,只是在合并同类项时,需要将减号变为加号,然后将减数取负。

具体的步骤如下:1. 合并同类项:将相同字母的项进行合并,系数相加。

例如,将3x - 2x合并为x;将2y^2 - 3y^2合并为-y^2。

2. 不同字母的项不能合并。

例如,2x - 3y不能合并。

通过以下例子,我们可以更好地理解整式的减法运算:例2:计算2x^2 + 3xy - 4x^2 + 2xy - 5y的值。

解:首先将减数取负,并将相同字母的项进行合并:(2x^2 - 4x^2) + (3xy + 2xy) - 5y = -2x^2 + 5xy - 5y。

三、整式的乘法运算整式的乘法运算是指将两个整式相乘,得到一个新的整式。

在进行乘法运算时,我们需要注意以下几个步骤:1. 使用分配律展开乘法:将一个整式中的每一项与另一个整式中的每一项相乘,并将结果进行合并。

例如,(2x + 3y)(4x - 5y) = 8x^2 -10xy + 12xy - 15y^2 = 8x^2 + 2xy - 15y^2。

整式的加减乘除法则总结

整式的加减乘除法则总结

整式的加减乘除法则总结一、整式的定义整式是由数字、字母和运算符号(加号、减号、乘号)通过运算得出的式子。

例如,2x - 5y + 3 是一个整式。

二、整式的加法法则整式加法法则可以总结为下列两条规则:1.对于整式的同类项进行合并,即将相同字母的幂次相同的项合并。

例如:2x - 3x + 4x + 5 可以合并为 3x + 5。

2.对合并后的同类项进行系数相加。

例如:3x - 2y + 4x - 5y 可以合并为 7x - 7y。

三、整式的减法法则整式减法法则是整式加法法则的特例,即将减号后面的各项取相反数后,按整式加法法则进行运算。

例如:5x^2 - 3x + 2y - (2x^2 - 4x + 3y) = 5x^2 - 3x + 2y - 2x^2 + 4x - 3y = 3x^2 + x - y。

四、整式的乘法法则整式乘法法则可以总结为下列规则:1.将两个整式的每一项按照乘法分配律进行相乘。

例如:(2x - 3)(4x + 5) 可以按乘法分配律展开为 2x(4x + 5) - 3(4x + 5) = 8x^2 + 10x - 12x - 15 = 8x^2 - 2x - 15。

2.将展开后的各项进行合并。

例如:3x(2x - 1) + 5y(3x + 2y) 可以合并为 6x^2 - 3x^2 + 15xy + 10y^2。

五、整式的除法法则整式除法法则可以总结为下列规则:1.将除法转化为乘法。

即将被除数乘以除数的倒数。

例如:(4x^2 + 8x) / 2x 可以转化为 (4x^2 + 8x) * (1 / 2x)。

2.化简分式。

例如:(4x^2 + 8x) * (1 / 2x) 可以化简为 2x + 4。

六、整式的总结通过以上的总结,可以得出整式的加减乘除法则:1.加法法则:合并同类项后,进行系数相加。

2.减法法则:减号后面的各项取相反数,按照整式加法法则进行运算。

3.乘法法则:按乘法分配律展开,并合并同类项。

中考重点整式的加减乘除

中考重点整式的加减乘除

中考重点整式的加减乘除整式是代数中常见的一种形式,由一些代数式通过加减乘除运算符连接而成。

整式的加减乘除是中考数学中的重点内容之一,本文将重点探讨整式的加减乘除运算。

一、整式的加法整式的加法指的是同类项的加法。

所谓同类项,是指指数相同的项。

例如,3x和2x就是同类项,而3x和2y就不是同类项。

整式的加法运算步骤如下:1. 将相同类型的项按照相同变量的幂次从高到低排列。

2. 对相同类型的项,将它们的系数相加,并保持变量的幂次不变。

例如,将3x² + 5x + 2 和 6x² + 3x - 1相加,步骤如下:排列:6x² + 3x - 1 + 3x² + 5x + 2合并同类项:(6x² + 3x²) + (3x + 5x) + (-1 + 2)计算:9x² + 8x + 1二、整式的减法整式的减法也是同类项的减法。

整式的减法可以通过将减数中的每一项取相反数,然后与被减数相加的方式实现。

例如,将3x² + 5x + 2 减去 6x² + 3x - 1,步骤如下:将减数的每一项取相反数:-6x² - 3x + 1相加:(3x² + 5x + 2) + (-6x² - 3x + 1)合并同类项:(3x² - 6x²) + (5x - 3x) + (2 + 1)计算:-3x² + 2x + 3三、整式的乘法整式的乘法指的是多项式之间的乘法,乘法的结果是一个新的整式。

整式的乘法可以通过分配律和同类项相加的方式实现。

例如,将(2x + 3)乘以(4x - 5),步骤如下:分配律:2x * 4x + 2x * (-5) + 3 * 4x + 3 * (-5)计算:8x² - 10x + 12x - 15合并同类项:8x² + 2x - 15四、整式的除法整式的除法是指将一个整式除以另一个整式,得到商式和余式的过程。

整式的运算法则

整式的运算法则

整式的运算法则整式是由数字及其系数和字母及其指数通过加减乘除等运算符号连接而成的代数式。

在代数运算中,整式的运算法则是非常重要的,它包括了加法、减法、乘法和除法四种基本运算法则。

本文将分别介绍这四种运算法则,并通过例题进行详细说明。

一、加法法则加法法则是指将同类项相加时,保持其字母部分不变,将其系数相加即可。

例如,对于整式3x^2+5x^2,将其同类项3x^2和5x^2的系数相加,得到8x^2。

二、减法法则减法法则与加法法则相似,也是将同类项相减时,保持其字母部分不变,将其系数相减即可。

例如,对于整式7x^3-4x^3,将其同类项7x^3和4x^3的系数相减,得到3x^3。

三、乘法法则乘法法则是指将整式相乘时,按照分配律和乘法交换律进行计算。

例如,对于整式2x(3x+4),首先将2x分别乘以3x和4,得到6x^2+8x。

四、除法法则除法法则是指将整式相除时,首先进行除数的分解,然后利用乘法的逆运算进行计算。

例如,对于整式6x^2÷2x,首先将6x^2分解为2x*3x,然后进行约分,得到3x。

以上就是整式的四种基本运算法则,下面通过例题进行详细说明。

例题1:计算整式的和已知整式3x^2+5x^2+2x-4x,求其和。

解:根据加法法则,将同类项相加,得到8x^2-2x。

例题2:计算整式的差已知整式7x^3-4x^3-2x^2+5x^2,求其差。

解:根据减法法则,将同类项相减,得到3x^3+3x^2。

例题3:计算整式的积已知整式2x(3x+4),求其积。

解:根据乘法法则,将2x分别乘以3x和4,得到6x^2+8x。

例题4:计算整式的商已知整式6x^2÷2x,求其商。

解:根据除法法则,首先将6x^2分解为2x*3x,然后进行约分,得到3x。

通过以上例题的计算,我们可以看到整式的运算法则是非常简单的,只需要按照规则进行操作即可得到结果。

在代数运算中,整式的运算法则是非常基础的,也是后续学习更复杂代数式和方程的基础。

初中数学知识归纳整式的加减乘除

初中数学知识归纳整式的加减乘除

初中数学知识归纳整式的加减乘除整式是由字母与数通过加减乘除得到的代数式,是数与字母的运算结果。

在初中数学中,我们学习了整式的加减乘除运算规则,下面将对这些知识进行归纳整理。

一、整式的加法1. 同类项的加法:同类项是具有相同字母部分且相同指数的项。

在进行同类项的加法时,只需要将同类项的系数相加,字母部分保持不变。

例如:2a + 3a = 5a-4xy + 2xy = -2xy2ab² + 3ab² = 5ab²2. 不同类项之间的加法:不同类项之间是无法直接相加的,只能通过化简、合并同类项的方式进行。

例如:2a + 3b 无法合并,保持不变。

ab + 4a 无法合并,保持不变。

二、整式的减法整式的减法可以转化为加法运算。

即,a - b = a + (-b)。

因此,整式的减法就转化为了整式的加法运算。

例如:2a - 3a = 2a + (-3a) = -a3xy² - xy² = 3xy² + (-xy²) = 2xy²三、整式的乘法整式的乘法遵循分配律的规则。

即,a × (b + c) = a × b + a × c。

具体来说,将一个整式的每一项与另一个整式的每一项进行相乘,并将结果进行合并。

例如:(2x + 3)(4x - 5) = 2x × 4x + 2x × (-5) + 3 × 4x + 3 × (-5)= 8x² - 10x + 12x - 15= 8x² + 2x - 15四、整式的除法整式的除法是将一个整式除以另一个整式的运算。

与乘法类似,我们将整式展开,然后进行除法运算。

例如:(8x² + 2x - 15) ÷ 2x = 4x - 7需要注意的是,除法运算有时会产生不能整除的情况,此时可以用余数表示。

整式的运算知识点

整式的运算知识点

整式的运算知识点整式是数学中的一个重要概念,是指由常数、变量及它们的乘积和幂次构成的代数式。

在代数运算中,我们常常需要对整式进行加减乘除的运算。

下面将分别介绍整式运算中的加法、减法、乘法和除法知识点。

一、加法运算在整式的加法运算中,我们对同类项进行合并。

所谓同类项,指的是具有相同的字母部分和相同的指数部分的项。

例如,对于整式3x² + 2xy + 5x² - 4xy,我们可以将其中的同类项合并,得到3x² + 2xy + 5x² - 4xy = 8x² - 2xy。

二、减法运算整式的减法运算与加法运算类似,仍然需要对同类项进行合并。

例如,对于整式3x² + 2xy - 5x² + 4xy,我们可以将其中的同类项合并,得到3x² + 2xy - 5x² + 4xy = -2x² + 6xy。

三、乘法运算整式的乘法运算是将一个整式与另一个整式相乘,需要运用分配律和同底数幂相乘的法则。

例如,对于整式(2x + 3)(4x - 5),我们可以使用分配律展开式子,得到8x² - 10x + 12x - 15 = 8x² + 2x - 15。

四、除法运算整式的除法运算需要使用长除法的方法进行。

例如,对于整式12x³ + 6x² - 4x + 8除以3x + 2,我们可以按照长除法的步骤进行计算:先将被除式按照指数从高到低的顺序排列:12x³ + 6x² - 4x + 8。

再将除式按照指数从高到低的顺序排列:3x。

将被除式的第一项与除式的第一项相除,得到4x²。

将4x²与除式相乘,得到12x³ + 8x²。

将被除式减去12x³ + 8x²,得到-2x² - 4x + 8。

重复以上步骤,直到被除式的所有项都被除尽或次数不够减为止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的四则运算知识点大全
一、代数式与有理式
1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式.单独的一个数或字母也是代数式.
2、整式和分式统称为有理式.
3、含有加、减、乘、除、乘方运算的代数式叫做有理式.
二、整式和分式
1、没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式.
2、有除法运算并且除式中含有字母的有理式叫做分式.
三、单项式与多项式
1、没有加减运算的整式叫做单项式.(数字与字母的积——包括单独的一个数或字母)
2、几个单项式的和,叫做多项式.其中每个单项式叫做多项式的项,不含字母的项叫做常数项.
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开.②进行代数式分类时,是以所给的代数式
......为对象,而非以变形后的代数式为对象.划分代数式类别时,是从外形来看.
单项式
1、都是数字与字母的乘积的代数式叫做单项式.
2、单项式的数字因数叫做单项式的系数.
3、单项式中所有字母的指数和叫做单项式的次数.
4、单独一个数或一个字母也是单项式.
5、只含有字母因式的单项式的系数是1或―1,此时通常省略数字“1”.
6、单独的一个数字是单项式,它的系数是它本身.
7、单独的一个非零常数的次数是0.
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算.
9、单项式的系数包括它前面的符号.
10、单项式的系数是带分数时,应化成假分数.
11、单项式的次数仅与字母有关,与单项式的系数无关.
多项式
1、几个单项式的和叫做多项式.
2、多项式中的每一个单项式叫做多项式的项.其中不含字母的项叫做常数项.
3、一个多项式有几项,就叫做几项式.
4、多项式的每一项都包括项前面的符号.
5、多项式没有系数的概念,但有次数的概念.
6、多项式中次数最高的项的次数,叫做这个多项式的次数.
整式
1、单项式和多项式统称为整式.
2、单项式或多项式都是整式.
3、整式不一定是单项式.
4、整式不一定是多项式.
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式.
四、整式的加减
1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率.
去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号.
2、同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项.
合并同类项:
1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项.
2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变.3)合并同类项步骤:
a.准确的找出同类项.
b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变.
c.写出合并后的结果.
4)在掌握合并同类项时注意:
a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.
b.不要漏掉不能合并的项.
c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式).
说明:合并同类项的关键是正确判断同类项.
3、几个整式相加减的一般步骤:
1)列出代数式:用括号把每个整式括起来,再用加减号连接.
2)按去括号法则去括号.
3)合并同类项.
4、代数式求值的一般步骤:
(1)代数式化简;
(2)代入计算;
(3)对于某些特殊的代数式,可采用“整体代入”进行计算.
五、同底数幂的乘法
1、n个相同因式(或因数)a相乘,记作a n,读作a的n次方(幂),其中a为底数,n为指数,a n的结果叫做幂.
2、底数相同的幂叫做同底数幂.
3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加.即:a m﹒a n=a m+n.
4、此法则也可以逆用,即:a m+n = a m﹒a n.
5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则.
六、幂的乘方
1、幂的乘方是指几个相同的幂相乘.(a m)n表示n个a m相乘.
2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘.(a m)n =a mn.
3、此法则也可以逆用,即:a mn =(a m)n=(a n)m.
七、积的乘方
1、积的乘方是指底数是乘积形式的乘方.
2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘.即(ab)n=a n b n.
3、此法则也可以逆用,即:a n b n =(ab)n.
八、同底数幂的除法
1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减.即:a m÷a n=a m-n(a≠0).
2、此法则也可以逆用,即:a m-n = a m÷a n(a≠0).
九、零指数幂
1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0).
十、负指数幂
1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数.
注:在同底数幂的除法、零指数幂、负指数幂中底数均不为0.
十一、整式的乘法
(一)单项式与单项式相乘
1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.
2、系数相乘时,注意符号.
3、相同字母的幂相乘时,底数不变,指数相加.
4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式.
5、单项式乘以单项式的结果仍是单项式.
6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用.
(二)单项式与多项式相乘
1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加.即:m(a+b+c)=ma+mb+mc.
2、运算时注意积的符号,多项式的每一项都包括它前面的符号.
3、积是一个多项式,其项数与多项式的项数相同.
4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果.
(三)多项式与多项式相乘
1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即:(m+n)(a+b)=ma+mb+na+nb.
2、多项式与多项式相乘,必须做到不重不漏.相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项.在未合并同类项之前,积的项数等于两个多项式项数的积.
3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”.
4、运算结果中有同类项的要合并同类项.
5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab.
十二、平方差公式
1、(a+b)(a-b)=a2-b2.即:两数和与这两数差的积,等于它们的平方之差.
2、平方差公式中的a、b可以是单项式,也可以是多项式.
3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b).
4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成
(a+b)•(a-b)的形式,然后看a2与b2是否容易计算.
十三、完全平方公式
1、(a±b)2=a2±2ab+b2.即:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.
2、公式中的a,b可以是单项式,也可以是多项式.
十四、整式的除法
(一)单项式除以单项式的法则
1、单项式除以单项式的法则:一般地,单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.
2、根据法则可知,单项式相除与单项式相乘计算方法类似,也是分成系数、相同字母与不相同字母三部分分别进行考虑.
(二)多项式除以单项式的法则
1、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.
2、多项式除以单项式,注意多项式各项都包括前面的符号.
(三)多项式除以多项式:将在分式中讨论,不属于整式的范畴.。

相关文档
最新文档